

Final Remedial Investigation Report

Ridgway Training Range, Pennsylvania

Munitions Response Site PAE40-001-R-01 Pennsylvania Army National Guard

Army National Guard

Contract No. W9133L-14-D-0001 Delivery Order No. 0006

June 2019

Prepared for:

Army National Guard NGB-AQ-W9133L 111 South George Mason Drive Building 2, 4th Floor Arlington, VA 22204-1373

Prepared by:

AECOM 12420 Milestone Center Drive Suite 150 Germantown MD, 20876 USA

T: +1 (301) 820 3000 F: +1 (301) 820 3009

aecom.com

Project Name:	Remedial Investigation through Decision Document for Six Army National Guard Munitions Response Sites, Ridgway Training Range, Pennsylvania
Site Location:	Ridgway Township, PA
Contract/Delivery Order:	Contract No. W9133L-14-D-0001 Delivery Order No. 0006
Report Name:	Remedial Investigation Report Ridgway Training Range, Pennsylvania Munitions Response Site PAE40-001-R-01
Preparation Date (Month/Year):	June 2019
Prepared for:	Army National Guard NGB-AQ-W9133L 111 South George Mason Drive Building 2, 4th Floor Arlington, VA 22204-1373
Prepared by:	AECOM 12420 Milestone Center Drive Suite 150 Germantown MD, 20876 USA T: +1 (301) 820 3000 F: +1 (301) 820 3009 aecom.com
AECOM Project Manager	Signature Amibeth Salvatore
Registered Professional Geologist:	Signature Gregory J. Burgdorf, P.G. PA License #PG-000451-G

Table of Contents

Acı	ronyn	ns and Abbreviations	iv
Exe	ecutiv	ve Summary	1
1	Intro 1.1 1.2	Project AuthorizationProject Purpose and Scope	1-1 1-1
	1.3	Remedial Investigation Report Organization	
2	Mur 2.1 2.2 2.3	Location and Setting Historical Use Environmental Setting 2.3.1 Climate 2.3.2 Geology 2.3.3 Surface Topography 2.3.4 Hydrogeology and Hydrology 2.3.5 Vegetation and Habitat 2.3.6 Ecological Receptors 2.3.7 Cultural Resources	2-12-32-32-42-42-4
	2.4 2.5 2.6	Previous Investigations	2-5
3	3.1 3.2 3.3	d Investigation Activities Soil and Sediment Sampling Methodology 3.1.1 X-Ray Fluorescence Screening 3.1.2 Incremental Soil Sampling 3.1.3 Discrete Soil Sampling 3.1.4 Discrete Sediment Sampling 3.1.5 Sample Identification 3.1.6 Decontamination of Sampling Equipment 3.1.7 Investigative Derived Waste 3.1.8 Quality Assurance / Quality Control Laboratory Analytical Methods Data Evaluation Methods	3-13-53-63-83-93-9
4	Data 4.1 4.2	3.3.1 Human Health and Ecological Risk Screening Criteria	4-1 4-1 4-1
5	Ren 5.1 5.2 5.3 5.4	Field Activities and Conditions XRF Screening Results Incremental Sampling Results Discrete Sampling Results	5-1 5-1
6		taminant Fate and Transport Contaminant Migration	

	6.2	Contaminant Persistence	6-2
7	Risk	Assessment	7-1
	7.1	Human Health Risk Assessment	7-1
	7.2	Ecological Risk Assessment	7-6
8	Muni	tions Response Site Prioritization Protocol	
	Explosive Hazard Evaluation Module		
	8.2 8.3	Chemical Warfare Material Hazard Evaluation Module Health Hazard Evaluation Module	
	8.4	Munitions Response Site Prioritization Protocol Scores	
^		•	
9	Sum 9.1	mary and Conclusions Summary of Remedial Investigation Results	
	9.2	Summary of Risk Assessment Results	
	9.3	Conclusions and Recommendations	
10	Refe	rences	10-1
. •			
Tab	les		
Tab	le ES-	1. Incremental Sampling Results Summary	7
Tab	le ES-	2. Human Health Risk Assessment Constituents of Concern for Soil	8
Tab	le 2-1	. Pennsylvania State-endangered Species	2-9
		. Summary of RI Samples	
		. Remedial Investigation Screening Levels	
		. Summary of Discrete XRF Lead Results – Target Berm	
		. Incremental Sampling Results Summary	
		. Discrete Soil and Sediment Sample Results	
		. Human Health Constituents of Concern	
		. Munitions Response Site Prioritization Protocol Summary	
		. RI Human Health Screening Summary (ISM)	
		RI Human Health Screening Summary (Discrete)	
		RI Ecological Screening Summary (ISM)	
		RI Ecological Screening Summary (Discrete)	
lab	le 9-5	. Human Health Risk Assessment Constituents of Concern for Soil	9-12
	ures		
-		S-1. Ridgway Training Range MRS RI Approach	
_		S-2. Target Berm XRF Sample Results	
_		S-3A. Target Berm Discrete Soil Sample Results	
_		S-3B. Firing Point Discrete Soil Sample Results	
_		S-3C. Soil Pile Discrete Soil Sample Results	
-		S-4. Discrete Sediment Sample Results	
		S-5. Incremental Sampling Results	
Figu	ıre 1-	Ridgway Training Range MRS Location	1-2

Figure 2-1. Ridgway Training Range MRS Layout	2-2
Figure 2-2. Preliminary Conceptual Site Model	2-8
Figure 3-1. Remedial Investigation Decision Units	3-3
Figure 3-2. Remedial Investigation Discrete Sample Locations	3-7
Figure 5-1. Target Berm XRF Results	5-5
Figure 5-2. Incremental Sampling Results	5-9
Figure 5-3a. Target Berm Discrete Soil Sample Results	5-20
Figure 5-3b. Firing Point Discrete Soil Sample Results	5-21
Figure 5-3c. Soil Pile Discrete Soil Sample Results	5-22
Figure 5-4. Discrete Sediment Sample Results	5-23
Figure 7-1. Human Health Risk Assessment Pathways	7-4
Figure 9-1. Target Berm XRF Sample Results	9-5
Figure 9-2a. Target Berm Discrete Soil Sample Results	9-6
Figure 9-2b. Firing Point Discrete Soil Sample Results	9-7
Figure 9-2c. Soil Pile Discrete Soil Sample Results	9-8
Figure 9-3. Discrete Sediment Sample Results	9-9
Figure 9-4. Incremental Sampling Results	9-10
Figure 9-5. Proposed MRS Boundary Revision	9-13

Appendices

Appendix A: Field Forms

Appendix B: Photographic Record Appendix C: Data Validation Report

Appendix D: Laboratory Data Analytical Package (on CD)

Appendix E: Human Health Risk Assessment

Appendix F: Screening Level Ecological Risk Assessment

Appendix G: Munitions Response Site Prioritization Protocol Tables

Acronyms and Abbreviations

°F degrees Fahrenheit

AECOM Technical Services, Inc.

ALM Adult Lead Methodology ARNG Army National Guard

BERA Baseline Ecological Risk Assessment

bgs below ground surface

CDC Centers for Disease Control and Prevention

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

CFR Code of Federal Regulations

CHE Chemical Warfare Materiel Hazard Evaluation

CHF Contamination Hazard Factor

COC constituent of concern COI constituents of interest

COPC constituent of potential concern

COPEC constituents of potential ecological concern

CSM conceptual site model

CWM Chemical Warfare Materiel

DD decision document

DoD Department of Defense

DRM dose rate models

DQCR daily quality control report

DU decision unit

EBS Environmental Baseline Survey
EHE Explosive Hazard Evaluation
ELCR excess lifetime cancer risk
ESV ecological screening values

EU exposure units FS Feasibility Study

ft foot/feet H high

HHE Health Hazard Evaluation
HHRA human health risk assessment

HI hazard index

IEUBK Integrated Exposure Uptake Biokinetic

IS incremental sample(s)

ISM incremental sampling methodology

ITRC Interstate Technology & Regulatory Council

L

LCS laboratory control spike

limit of detection LOD

medium M

munitions constituents MC

MEC munitions and explosives of concern

milligram per kilogram mg/kg milligrams per liter mg/L

millimeter mm

MMRP military munitions response program

MPF Migration Pathway Factor **MRS** munitions response site

MRSPP Munitions Response Site Prioritization Protocol

MS matrix spike

MSC Medium Specific Concentrations

MSD matrix spike duplicates

ND non-detect

NDNODS Non-Department of Defense, Non-Operational Defense Site

NPS National Park Service

PAARNG Pennsylvania Army National Guard

PADEP Pennsylvania Department of Environmental Protection **PADMVA** Pennsylvania Department of Military and Veterans Affairs

PARCCS precision, accuracy, representativeness, comparability, completeness, and

sensitivity

PP proposed plan PbB lead blood

parts per million ppm QA quality assurance quality control QC RF Receptor Factor

RI Remedial Investigation **RPD** relative percent difference relative standard deviation **RSD**

SI Site Inspection

SLERA screening level ecological risk assessment **SMDP** scientific management decision points

SOP standard operating procedures

toxicity characteristic leaching procedure **TCLP**

Unified Federal Policy - Quality Assurance Project Plan **UFP-QAPP**

microgram per deciliter $\mu g/dL$

U.S. **United States**

United States Environmental Protection Agency **USEPA**

U.S. Fish and Wildlife Service **USFWS** Ridgway Weekend Training Site **WETS**

X-ray fluorescence **XRF**

Executive Summary

This Remedial Investigation (RI) Report presents the methodology and results of a study of munitions constituents (MCs) in soil conducted at the small arms range at the Ridgway Training Range Munitions Response Site (MRS) located in Ridgway Township, Elk County, Pennsylvania (PA). This is a Non-Department of Defense, Non-Operational Defense Site (NDNODS) identified by Army Environmental Database Restoration Number PAE40-001-R-01. AECOM Technical Services, Inc. (AECOM) performed the RI under Army National Guard (ARNG) Contract Number W9133L-14-D-0001, Delivery Order No. 0006. This report has been prepared following the United States (U.S.) Environmental Protection Agency (USEPA) Guidance for Conducting RIs and Feasibility Studies (FSs) under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA; USEPA, 1988) and the U.S. Army Military Munitions Response Program (MMRP) RI/FS guidance document (U.S. Army, 2009).

Ridgway Training Range was formerly used by the Pennsylvania ARNG (PAARNG) for smallarms, live-fire weapons training between 1987 and 2005. The 0.22-acre Ridgway Training Range layout comprises a mostly enclosed, 25-meter, outdoor baffled, M-16 rifle range. The range includes 12 sheltered firing points, an earthen berm on the western edge of the MRS in the target area, and wooden baffles suspended over the earthen berm and range floor area. The property is currently used as a staging area for equipment associated with a private landscaping company owned by the property owner. To improve drainage at the MRS, the landowner installed a French drain parallel to the berm, and in doing so, moved soil from the Target Berm to a pile near the north sidewall.

Following a 2012 Site Inspection (SI), the range was divided into two parts based on a visual survey to distinguish between the area including the Firing Point, Target Berm, and range floor in between, and the area where no historical firing occurred (PAE40-001-R-01 and PAE40-001-R-23 respectively). No further action was recommended for the 7.78-acre Ridgway Training Range - PA MRS (PAE40-001-R-02) that included the original area where firing never occurred. The SI found elevated levels of small arms MC in surface soil at the Target Berm, and elevated levels of nitroglycerin at the Firing Point. The 0.22-acre MRS was subsequently recommended to move forward to an RI and is the subject of this investigation.

Environmental data were needed to identify the presence, nature, and extent of small arms MC in soil at the Ridgway Training Range MRS, evaluate whether MCs are present at concentrations that could pose a potential risk to human and ecological receptors, and guide further management decisions as to whether remedial action is required. Per the preliminary conceptual site model (CSM) in the Final RI Work Plan/Uniform Federal Policy-Quality Assurance Project Plan (UFP-QAPP; AECOM, 2017), potentially complete pathways exist for human receptors to come into direct contact with site soils. The landowner and visitors or workers (e.g., construction, commercial/industrial) that the landowner allows on site may be exposed to site soil. As there is no restriction on the land, there is potential that the site could be used for residential purposes in the future. Additionally, a portion of wetland area is present within the MRS, and the Allegheny National Forest borders the western edge of the MRS, representing ecological habitats within and surrounding the Ridgway Training Range. No federally designated critical habitat is located within the MRS. Pennsylvania State-endangered species may be present in the MRS; however, habitat within the MRS is fragmented to the north, east, and south, and the MRS is very small.

Prepared for: Army National Guard AECOM ES-1

This RI compiled and evaluated information and data about the MRS relating to the potential contamination associated with its historical use for small arms training activities conducted at the Ridgway Training Range. The sampling approach was designed to characterize the nature and extent of MC contamination in soil at the Target Berm, Firing Point, and Soil Pile; and MC contamination in sediment at the French Drain Outfall. For data interpretation purposes and for assessing risks, the MRS was divided into four decision units (DUs) – the Target Berm, Firing Point, Soil Pile, and French Drain Outfall – that reflect the four areas of potential contamination as indicated by site history and post-training construction activities (Figure ES-1). Field investigation activities included X-Ray fluorescence (XRF) screening and discrete soil sampling the Target Berm to evaluate the lateral extent of MC; and the collection of surface soil samples using incremental sampling methodology (ISM) and discrete sampling of soil and sediment for evaluating human health and ecological risks (Table ES-1). A background reference area adjacent to the MRS that was not affected by historical training activities was also sampled using ISM. Discrete subsurface samples were collected at select areas to determine the vertical extent of MC.

The data collected at the MRS were sufficient to delineate the extent of site-related MC contamination. Exceedances of the human health criterion for lead were observed in XRF screening results at the Target Berm (Figure ES-2) and resulted in step-out sampling that expanded the DU boundary to 0.126 acres. The extent of elevated lead concentrations indicates MC transportation by precipitation or via movement of soil by the property owner. The DU extended beyond the enclosed firing range walls and the current extent of the MRS. ISM sample results at the Target Berm indicate that small arms MC are present in soil above human health screening criteria. Four locations at the Target Berm (location #80 #22, #91, and #45) were selected to represent distinct areas at the DU (the Target Berm north of the concrete walls, the Target Berm within the concrete walls, the Target Berm south of the concrete walls, and the range floor within the concrete walls) for discrete subsurface soil sampling based on XRF results exceeding human health criterion for lead. Discrete subsurface sampling at locations #22 and #91 indicated that small arms MC at the Target Berm are present above their risk-based screening levels at the 12 to 18-inches below ground surface (bgs) depth interval and the 24 to 30-inch bgs interval (Figure ES-3a), although MC concentrations generally decreased with depth. Deeper samples at these locations could not be collected due to refusal at a gravel layer within the berm. Solid waste characterization parameters (toxicity characteristic leaching procedure [TCLP]) collected from surface soil at grid location #06 exhibited waste characteristics of toxicity for lead (720 milligrams per liter [mg/L]). The TCLP hazardous waste threshold for lead is 5 mg/L. Detected TCLP parameters are shown on **Figure ES-3a**. XRF data showed that lead is migrating from the Target Berm but does not extend into drainage areas to the north and south of the MRS that are intermittently inundated. Additional sediment samples were collected from a drainage ditch south of the MRS to assess the potential transport of MC from the Target Berm to the drainage ditch sediment. Neither sample showed MC concentrations exceeding human health screening criteria. Target Berm sediment sample results are shown on Figure ES-4.

The data collected at the Firing Point were sufficient to delineate the extent of MC contamination at the DU. Surface soil samples collected adjacent to the DU from uncovered soil east of the firing positions showed no exceedances for nitroglycerin, indicating that small arms MC is not being transported outside of the MRS (Figure ES-3b). Three locations at the Firing Point were

selected for discrete subsurface soil sampling based on their proximity to historical firing positions. Nitroglycerin was elevated above human health screening criterion in subsurface samples from all three locations at depths from 12 to 18-inches bgs (Figure ES-3b); the 24 to 30-inch bgs interval could not be sampled due to refusal at a gravel layer. Detected TCLP parameters are also shown on Figure ES-3b; however, nitroglycerin does not have a federal Toxicity Characteristic level for solid waste. Although nitroglycerin is elevated above human health screening criterion in Firing Point soil, it is not being transported beyond the MRS boundary.

Discrete soil and sediment samples from the Soil Pile DU and French Drain Outfall DU, respectively, were collected to assess the potential spread of MC contamination because of the installation of the French drain parallel to the berm. Discrete soil samples from the Soil Pile DU, created as a result of excavating soils from the base of the Target Berm, showed small arms MC (antimony, copper, and lead) elevated above human health screening criteria (Figure ES-3c). MC in the Soil Pile may be transported to the range floor via runoff due to precipitation but is not anticipated to be transported beyond the MRS due to its confining concrete walls. Discrete sediment samples from the French Drain Outfall DU did not exhibit any small arms MC above human health screening criteria, but did exhibit levels of copper and lead elevated above ecological screening criteria. (Figure ES-4).

ISM provided high quality data that are an unbiased estimate of the mean concentration of MC in Target Berm and Firing Point soil and suitable for risk screening. Incremental samples (IS) collected from the both DUs showed elevated concentrations of small arms MC (metals and explosives) compared to human health screening criteria (Table ES-1 and Figure ES-5). Discrete samples from soil at the Soil Pile DU exceeded human health screening criteria for respective small arms matrix spike (MS), as expected. Discrete samples from sediment at the French Drain Outfall DU were elevated only above ecological screening criteria for small arms MC. Based on these results, there is evidence of unacceptable risk to human receptors visiting or working at the MRS. Furthermore, MC concentrations exceed human health screening criteria in soil beyond the current extent of the MRS; however, MC concentrations do not exceed human health screening criteria beyond the MRS's immediate surroundings, and exceedances do not reach the wetland east of the MRS. Furthermore, discrete soil sampling data showed MC concentrations elevated at depths of up to 24-30 inches bgs, indicating an elevated risk to maintenance workers (e.g., landscaper).

A site-specific human health risk assessment (HHRA) was conducted to evaluate whether constituents of potential concern (COPCs) attributable to past site activities have the potential to cause adverse health effects to human receptors from exposure to soil and sediment at the MRS.

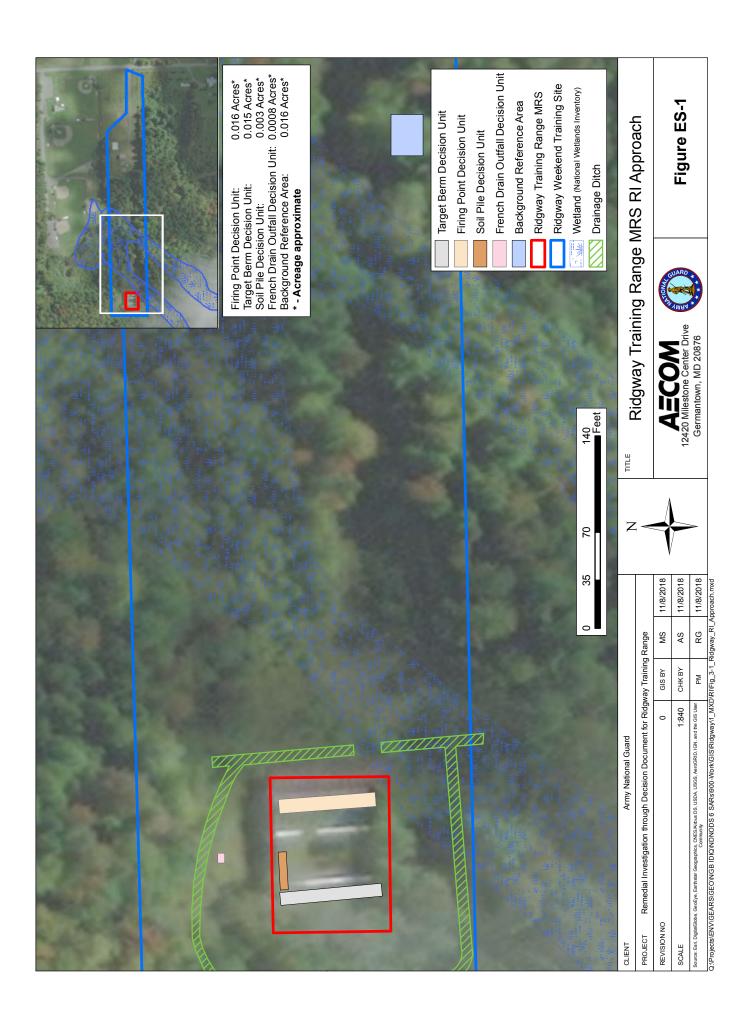
The following human health on-site receptors were evaluated: outdoor worker, teen trespasser, child and adult visitor, child and adult hypothetical resident, construction worker, and utility worker. The current scenarios represent exposure to site conditions that is assumed to not change in the future (i.e., no land re-development). Receptors are assumed to be exposed to surface soil (0 to 24 inches bgs). The future scenarios are used to address site conditions that have changed due to land re-development. Land re-development results in excavation activities that bring subsurface soil to the surface, and the soils are "mixed" together. Future receptors are exposed to total soil (0 to 36 inches bgs). Soil-related exposure pathways that were evaluated in the HHRA were incidental ingestion and dermal contact with soil. The inhalation exposure pathway was

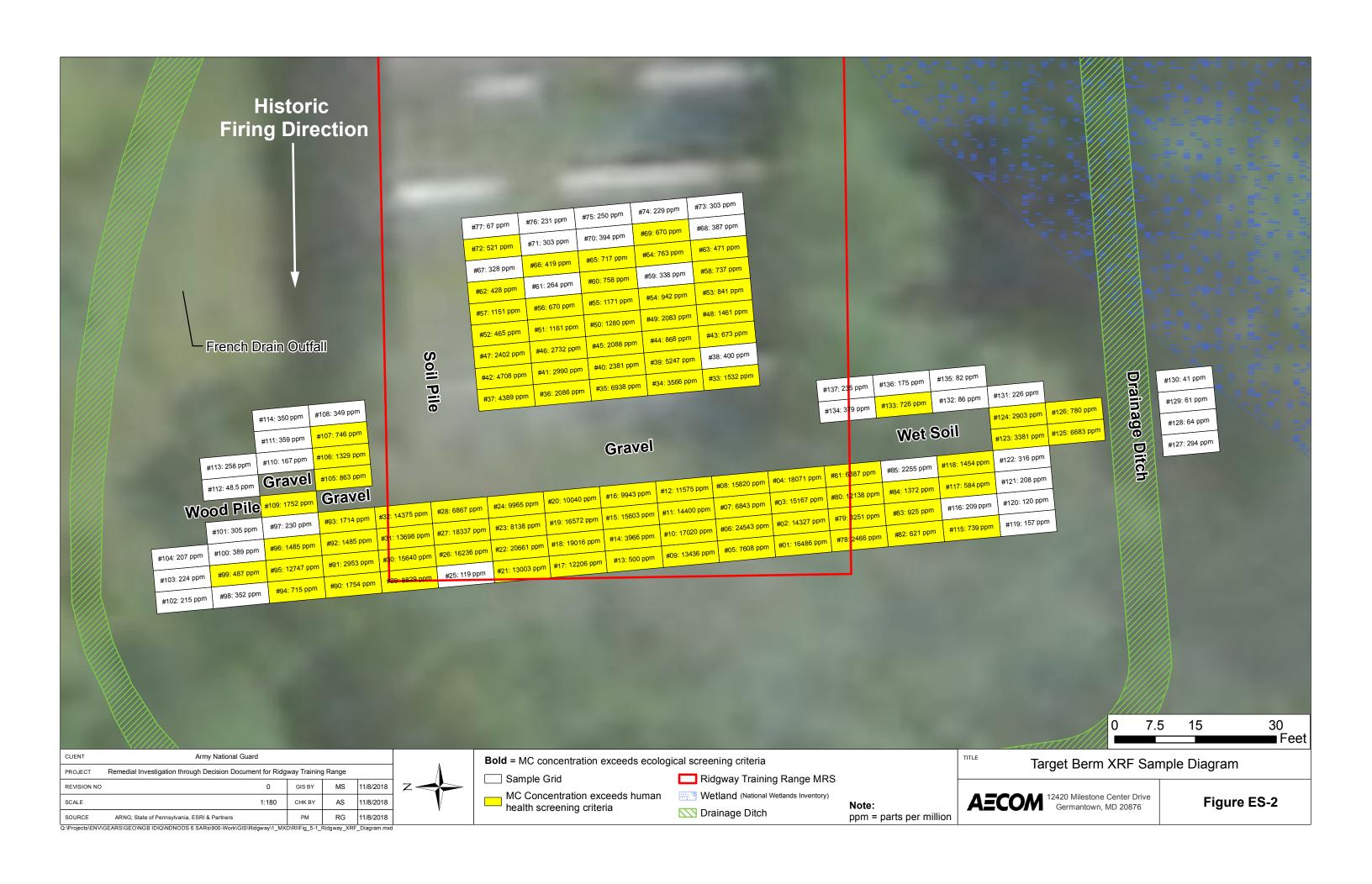
Prepared for: Army National Guard AECOM incomplete because the soil chemicals of potential concern did not have inhalation toxicity values.

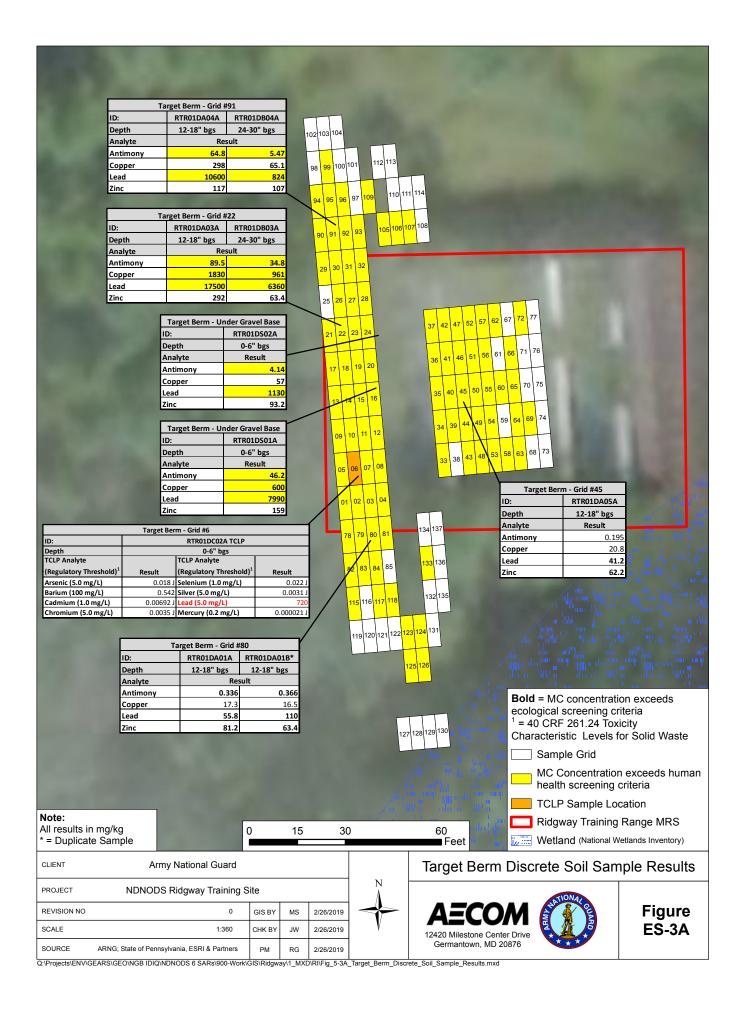
Potential off-site receptors were not identified for the MRS because site access is restricted via a locked gate. However, an on-site trespasser scenario was evaluated in the HHRA to address potential breaches in site security. On-site and surrounding area vegetation, the concrete wall, and other structures inhibit windblown particulates from leaving the MRS. Also, human health sediment COPCs were not identified in the surface water drainage areas of the French Drain Outfall and Target Berm DUs where surface water leaves the MRS.

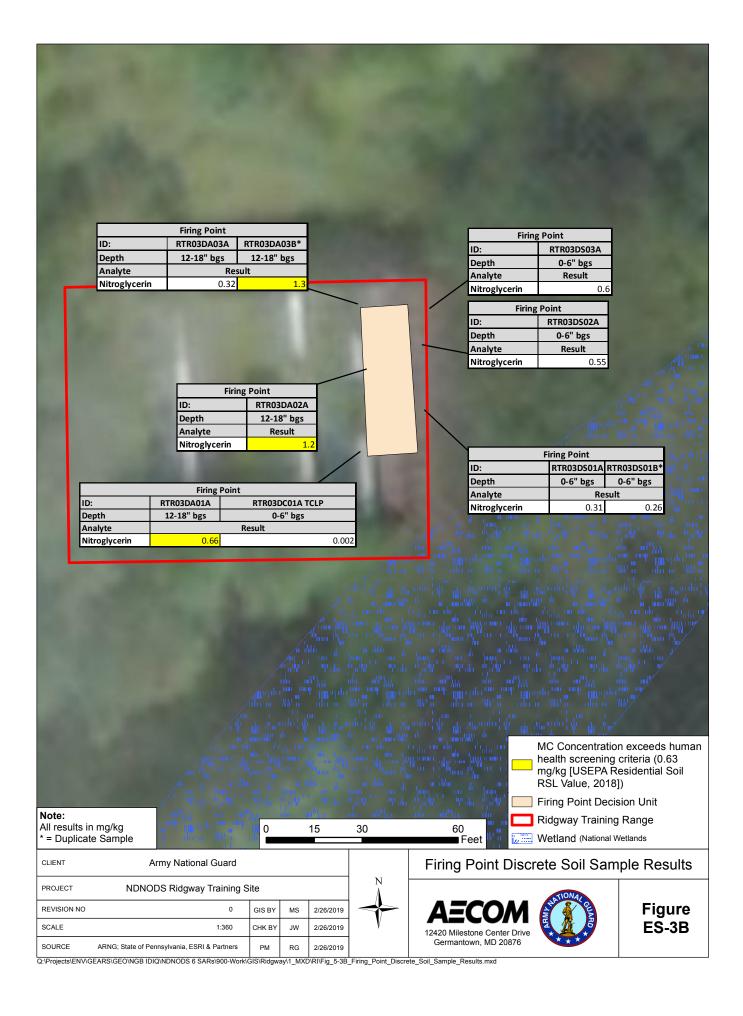
Cancer risk and non-cancer hazard calculations were conducted for the soil exposure medium. USEPA's Adult Lead Methodology (ALM) and Integrated Exposure Uptake Biokinetic (IEUBK) models were used to estimate lead blood (PbB) concentrations for receptors exposed to lead in soil

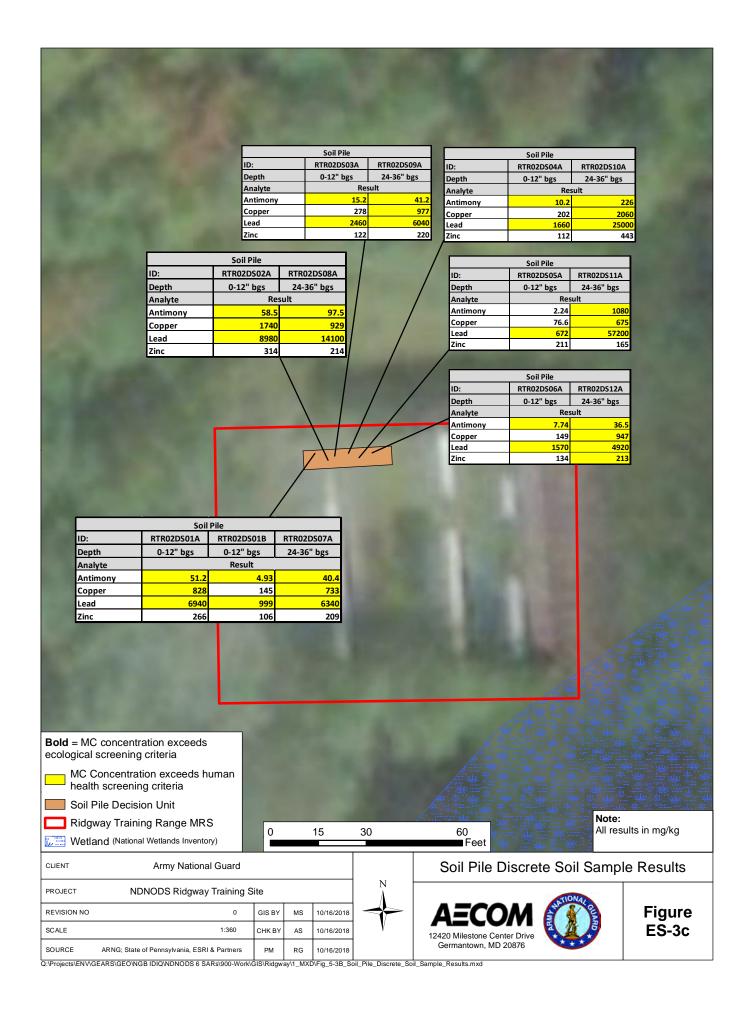
Table ES-2 identifies the constituents of concern (COCs) that exceeded the Pennsylvania Department of Environmental Protection (PADEP) and risk thresholds in the HHRA (Appendix **F**). The HHRA recommends further evaluation of the soil COCs in an FS for the Ridgway Training Range MRS


Preferential habitat quality exists in the areas surrounding the MRS (e.g., wetlands), but ecological receptors are anticipated to be minimally exposed to MRS-related MC within or adjacent to the MRS due to forest fragmentation in the surrounding the areas and the relatively small size of the MRS.


Due to MC concentrations in soil at all DUs exceeding ecological screening criteria, a Screening Level Ecological Risk Assessment (SLERA) was conducted. The purpose of the SLERA was to identify the potential risks to ecological receptors exposed to Site-related constituents of interest (COIs) in environmental media at the Site and determine which constituents of potential ecological concern (COPECs), if any, were exerting adverse effects to potential ecological receptor populations. The results of the risk characterization determined the following scientific management decision points (SMDPs):


- 1. Exposure to COPECs in on-Site soil resulted in substantial impact (de manifestis) to both soil invertebrate and terrestrial wildlife populations; action should be taken that can eliminate or reduce exposure to an acceptable level.
- 2. The potential for adverse effects to the benthic macroinvertebrate community is de minimus, and the potential for adverse effects to the aquatic and semi-aquatic wildlife community is de minimus.


The results of the SLERA are presented in **Appendix G**.


Based on the results of the RI, the MRS has been sufficiently characterized. The MRS boundary has been revised to include the furthest extent of MC concentration exceedances of human health screening criterion for lead based on XRF data; the revised acreage is 0.27acres (**Figure ES-5**). The presence of unacceptable risks to human health warrants an FS for the Ridgway Training Range MRS. The next step after an FS would be to prepare a proposed plan (PP) to convey this finding to the public, followed by a decision document (DD) to formally conclude work at the MRS.

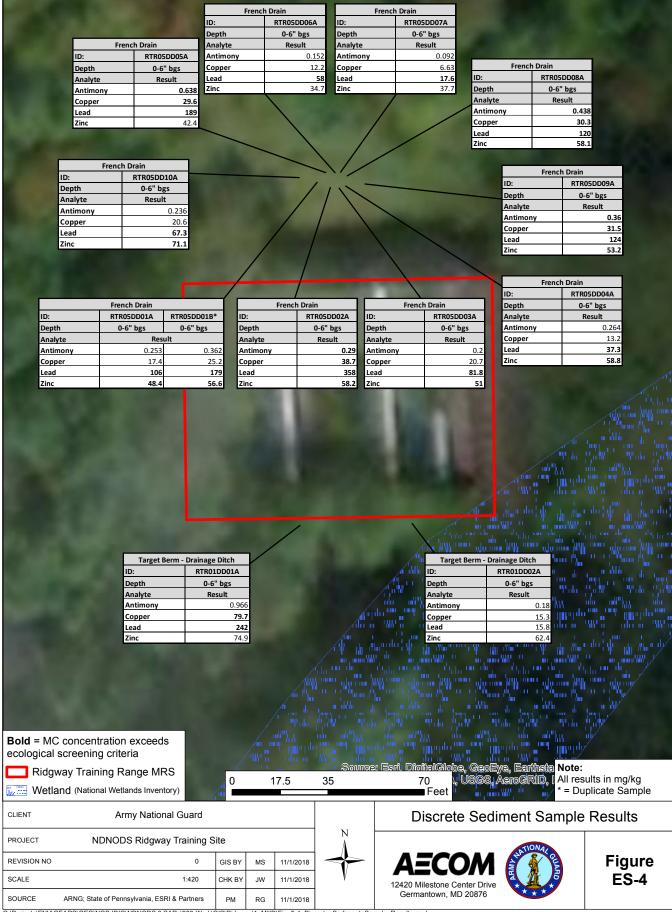


Table ES-1. Incremental Sampling Results Summary

Location: Sample ID: Sample Depth (inches bgs): Date Collected:				RTR04IS 0-6 7/12/20				und R TR04I 0-6 7/12/20	S02	ice		TR04I: 0-6 7/12/20		
Analyte	Human Health Screening Level	Ecological Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals b	y USEPA SW-84	6 Method 6020A	(mg/kg)											
Antimony	3.1	0.27	0.244	N	J-	m	0.682		J-	m	0.626		J-	m
Copper	310	28	12		J	S	12.7		٦	S	10.5		J	S
Lead	400	11	59.2	NA			81.8				82.3			
Zinc	2,300	46	33.2		J	m	33.5		J	m	23		J	m
Explosives by	USEPA SW-846	Method 8330B	(mg/kg)				·							
Nitroglycerin	0.63	13	0.460	ULMM	UJ	ı	0.44	UL	UJ	- 1	0.38	U	UJ	S

	Sample De	Location: Sample ID: pth (inches bgs): Date Collected:		RTR01IS 0-6 7/11/20			R	rget Bo TR011 0-6 7/11/20	S02			TR011 0-6 7/11/20		
Analyte	Human Health Screening Level	Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals b	y USEPA SW-84	6 Method 6020A	(mg/kg)					•						
Antimony	3.1	0.27	24.80	NA	J-	m	27		J-	m	40.1		J-	m
Copper	310	28	636	N*EA	J	S	481		J	S	612		J	S
Lead	400	11	5720	NA			6180				8770			
Zinc	2,300	46	158	NEA	J	m	149		J	m	165		J	m

		Location:	Firing Point											
Sample ID:			RTR03IS01			RTR03IS02			RTR03IS03					
Sample Depth (inches bgs):		0-6		0-6		0-6								
Date Collected:			7/12/20	18		7/12/2018		7/12/2018						
Analyte	Human Health Screening Level	Ecological Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Explosives by USEPA SW-846 Method 8330B (mg/kg)														
Nitroglycerin	0.63	13	3.70	L	J		4.4	LMM	J		21	L	J	I

Notes:

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = Laboratory qualifier (LQ flags available in lab report)

VQ = Validiation qualifier

RC = Reason Code

U = non-detect

J = estimated

J- = estimated, negative bias

UJ= non-detect, estimated detection limit

I = LCS recovery failure

m = MS/MSD percent recovery anomaly

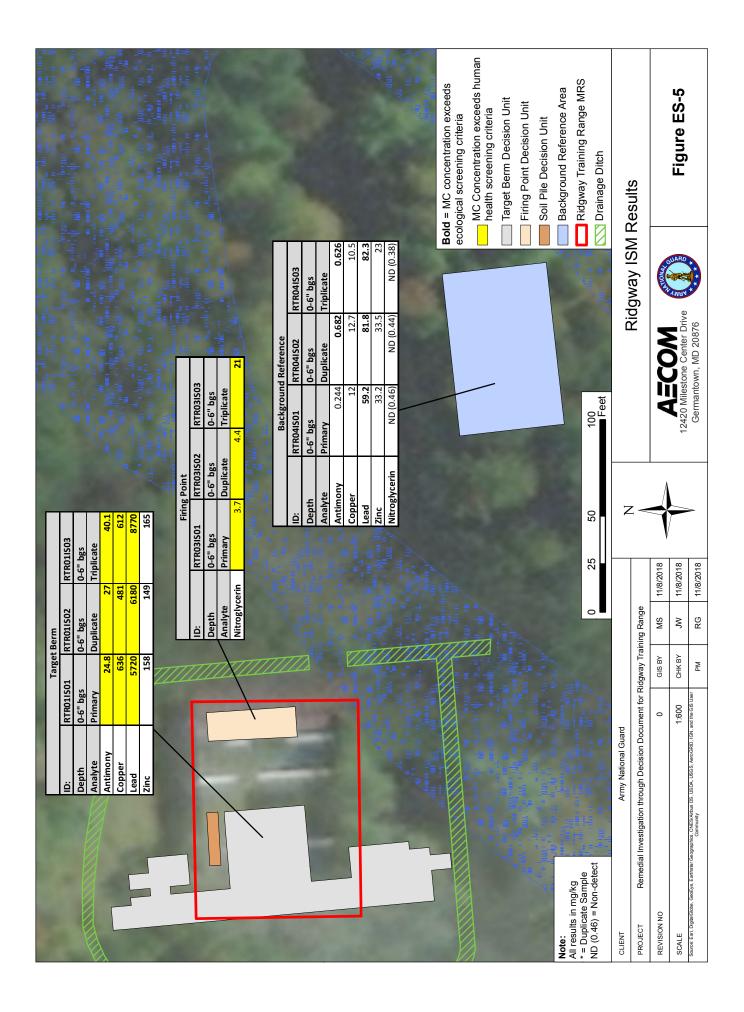

s = surrogate failure

Table ES-2. Human Health Risk Assessment Constituents of Concern for Soil

Receptor	Exposure Medium	Constituent of Concern		
Target Berm DU				
Child Visites	Surface Soil	Lead (a, b)		
Child Visitor	Total Soil	Lead (a, b)		
Outdoor Worker	Surface Soil	Lead (b)		
Outdoor worker	Total Soil	Lead (b)		
Construction/Utility Worker	Surface Soil	Lead (b, c)		
Llungthatical Child Davidant	Surface Soil	Antimony Lead ^(b)		
Hypothetical Child Resident	Total Soil	Antimony Lead ^(b)		
Soil Pile DU				
	Surface Soil	Lead (a, b)		
Child Visitor	Total Soil	Antimony Lead ^(a, b)		
Construction Worker (c)	Total Soil	Antimony Lead ^(b, c)		
Utility Worker (c)	Total Soil	Lead (b, c)		
Outdoor Worker	Surface Soil	Lead (b)		
Outdoor worker	Total Soil	Lead (b)		
Um atherical Ohild Desident	Surface Soil	Antimony Lead ^(b)		
Hypothetical Child Resident	Total Soil	Antimony Lead ^(b)		
Hypothetical Adult Resident	Total Soil	Antimony		
Firing Point DU				
Hypothetical Child Resident	Surface Soil	Nitroglycerin		

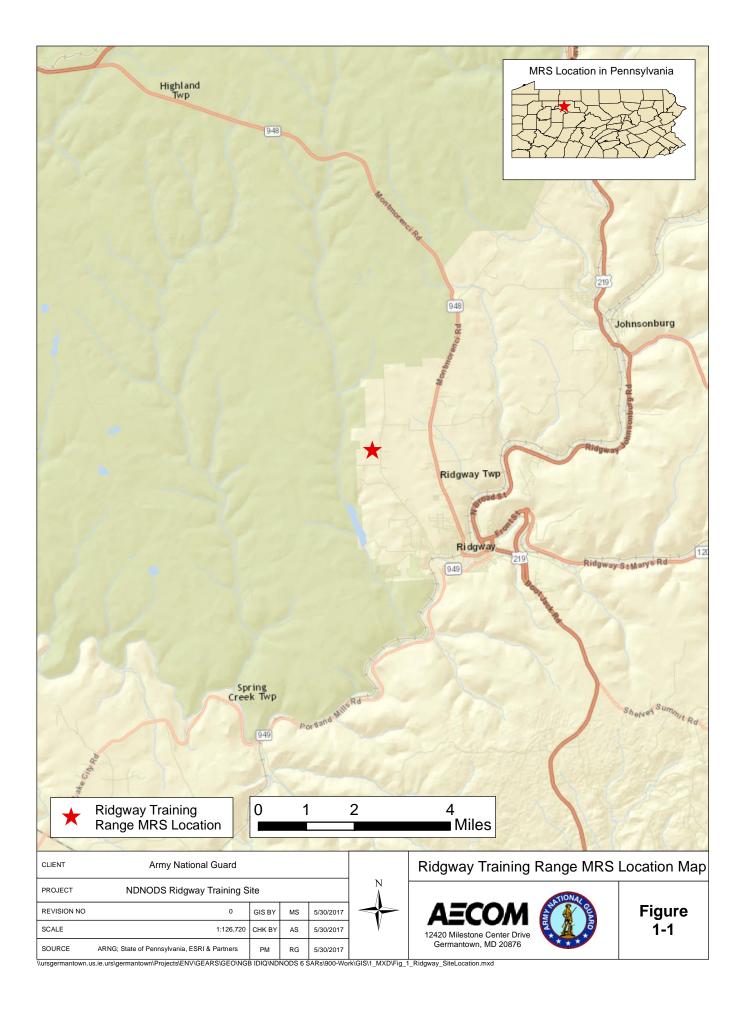
Notes:

- (a) IEUBK model results for the hypothetical child resident were also used to be protective of the child visitor at the MRS.
- (b) Lead modeling results are based on target PbB threshold of 10 micrograms per deciliter (μg/dL).
 (c) If a target PbB threshold of 5 μg/dL was used, then lead would be identified as a surface soil and total soil COC for the construction and utility worker scenarios.

Introduction

This Remedial Investigation (RI) report has been prepared in support of the long-term management of the Non-Department of Defense, Non-Operational Defense Site (NDNODS) Ridgway Training Range Munitions Response Site (MRS; Army Environmental Database Restoration Number PAE40-001-R-01), located in Pennsylvania (PA) (**Figure 1-1**).

1.1 **Project Authorization**


Based on the results of a Site Investigation (SI) (Parsons, 2012), the Army National Guard (ARNG) determined an RI should be conducted at this NDNODS MRS in Pennsylvania under the Military Munitions Response Program (MMRP) Munitions Response Services. The RI is being performed pursuant to the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986

Environmental work is being conducted at the MRS by the ARNG Directorate and the PAARNG. This project is being executed by AECOM Technical Services, Inc. (AECOM), under ARNG Contract Number W9133L-14-D-0001, Delivery Order No. 0006, issued 29 September 2016. Under this delivery order, AECOM is responsible for fully executing the RI and related tasks at the Ridgway Training Range MRS.

1.2 **Project Purpose and Scope**

The overall objectives for the RI of Ridgway Training Range was to collect sufficient information to characterize the nature and extent of munitions constituents (MC) in soil resulting from former PAARNG small arms training activities and to evaluate the associated risks to human health and the environment. The Ridgway Training Range MRS was investigated using several sampling techniques to achieve the project objectives that were specified in the Final RI Work Plan prepared for the Ridgway Training Range (AECOM, 2017).

Soil sampling was performed using incremental and discrete sampling methods in accordance with the RI Work Plan. The information collected during the RI was also used to complete the Munitions Response Site Prioritization Protocol (MRSPP) tables for the MRS to assess the need to evaluate remedial alternatives in an FS and support informed risk management decisions for future remedial decisions.

1.3 **Remedial Investigation Report Organization**

Brief descriptions of the document sections and appendices are as follows:

- **Section 1: Introduction.** Describes the authorization, project purpose and scope, and presents the report organization.
- Section 2: MRS Description. Presents the MRS background, historical use, and environmental setting; summarizes previous MRS investigations relevant to the RI; and describes current and future land use.
- Section 3: Field Investigation Activities. Describes the methodology and procedures followed for the RI field activities.
- Section 4: Data Quality Assessment. Discusses the field collection methods and the laboratory analytical techniques for soil samples to determine data usability.
- **Section 5: Remedial investigation Results.** Presents the soil sampling results for the RI.
- Section 6: Contaminant Fate and Transport. Discusses migration and contaminant persistence for MC at the MRS.
- **Section 7: Risk Assessment.** Presents the evaluation of the potential of MC to pose a risk to human or ecological receptors.
- Section 8: Munitions Response Site Prioritization Protocol. Summarizes the results of the MRSPP modules and score for the MRS.
- Section 9: Summary and Conclusions. Provides an overview of the findings of the RI for the MRS.
- **Section 10: References.** Provides the references used to develop this document.

Appendix A: Field Forms

Appendix B: Photographic Record

Appendix C: Data Validation Report

Appendix D: Laboratory Data Analytical Package (on CD)

Appendix E: MRSPP Tables

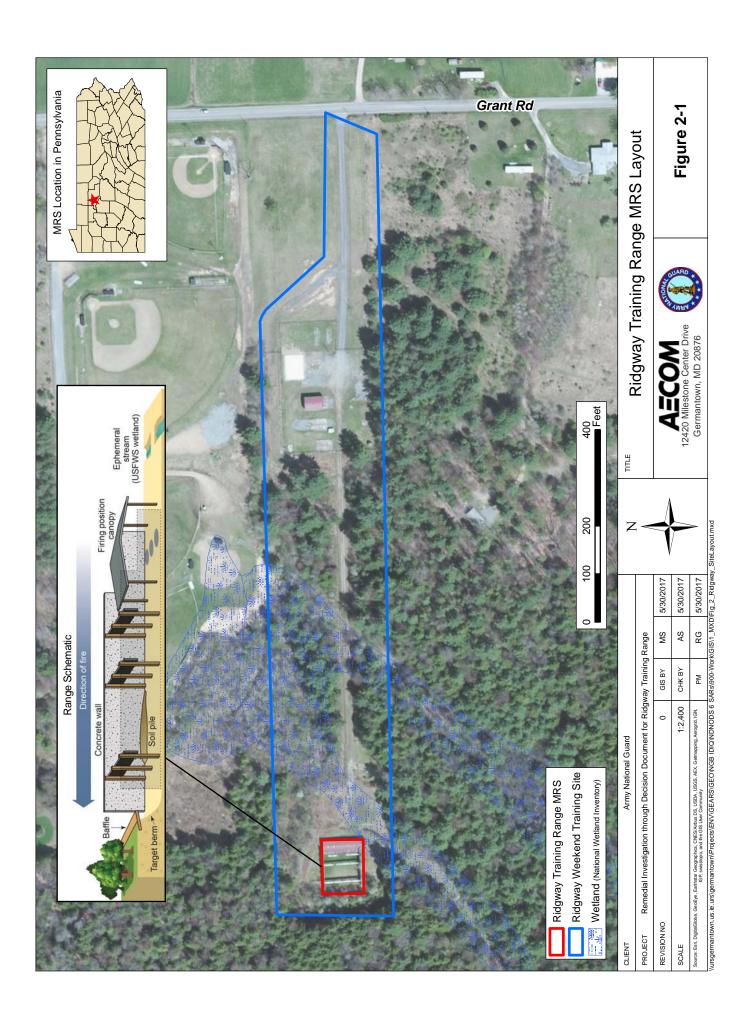
Appendix F: Human Health Risk Assessment

Appendix G: Screening Level Ecological Risk Assessment

2 Munitions Response Site Description

2.1 Location and Setting

The Ridgway Training Range MRS is a 0.22-acre site located in Ridgeway Township, PA, on the west side of Grant Road, approximately 2 miles northwest of Ridgway Borough and 5 miles southwest of Johnsonburg in Elk County, PA. It is surrounded by the 8-acre former Ridgway Weekend Training Site.


The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural, mining, residential, and recreational land (Parsons, 2012). Allegheny National Forest borders the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. A community baseball/athletic field abuts the northern edge of the property. The range is primarily covered in grass, other vegetation, and the structures associated with the former baffled small-arms range. The MRS is located on privately owned property, and access to the range is restricted from public access by a locked gate on two sides of the MRS. The Ridgway Rifle Club, a privately-owned gun club, is located approximately 0.83 miles south of the MRS. The Firing Point at the Ridgway Rifle Club faces west-northwest. Based on the distance from the MRS and the location of and trajectory from firing points, it is not expected that the Ridgway Rifle Club activities would contribute any munitions debris or constituents to the MRS (**Figure 2-1**).

According to the 2012 SI report (Parsons, 2012), PAARNG documentation indicates that the range was constructed in 1987 as a small-arms range with sheltered firing points and a baffle system to control ricochet firing activities. Observations made during the 2012 SI confirmed that the range is a baffled outdoor range that has 15-foot concrete walls on the northern and southern edges of the range. The eastern portion of the MRS contains 12 sheltered firing positions covered by a metal roof; an 8-foot earthen berm is located on the western edge of the MRS. Above the earthen berm is a horizontal wooden baffle supported by large beams installed into the hillside. Within the range, three vertical wooden baffle walls are suspended from the top of the concrete sidewalls and hang down into the range floor area to prevent stray bullets from leaving the range (**Figure 2-1 inset**).

2.2 Historical Use

The NDNODS Ridgway Training Range MRS was used by the PAARNG for small-arms, live-fire weapons training from 1987 to 2005 (Parsons, 2012). Munitions use documentation was not found during the SI, but based on range type, timeframe of range use, and location, AECOM surmised that the following munitions were fired: .22 caliber, .38 caliber, .45 caliber, .50 caliber, 9 millimeter (mm), 5.56mm, and 7.62mm. In 1989, a temporary waiver was granted for one-time firing of 7.62mm machine gun rounds. The extent of the usage is unknown but is expected to be minimal (Earth Resources Technology, 2008).

Live-fire training occurred within the mostly enclosed 25-meter outdoor baffled M-16 rifle range. From 1987 to 1990, the range was used approximately four to five times a year;

range use from 1990 to 2001 is unknown. From 2001 to 2005, the range was used approximately two to three times per year. During that period, AECOM estimated that approximately 64,000 small-caliber rounds were expended at the range. The range was last used in November 2005, and small-arms training was discontinued in March of the following year because it no longer met ARNG requirements (PADMVA, 2011). Request for formal closure occurred on 9 September 2011.

The property was originally purchased by the Commonwealth of Pennsylvania from private owners on 26 September 1969 (PADMVA, 2011). A formal request for closure of the range was requested on 9 September 2011. The property was approved for conveyance from the Commonwealth of Pennsylvania (with approval from the Pennsylvania Department of Military and Veterans Affairs [PADMVA]) through Act 56 of 2013 (House Bill 1112). Transfer of the property to a private owner was completed in 2015.

The MRS is currently used as a staging area for equipment associated with a private landscaping company owned by the property owner. To improve drainage in front of the Target Berm at the MRS, the landowner installed a French drain parallel to the berm. In doing so, the top 12 to 18 inches of soil from the foot of the Target Berm were removed and stored in a pile near the north sidewall. The approximate dimensions of the elliptical Soil Pile are 9 feet (ft) wide by 26 ft long by 3 ft high. The approximate conservative volume of the pile is 551 cubic ft of soil. Since the current landowner has owned the property, the range has been used with homemade small arms ammunition, distinct from historic use, which were fired into a trap. This use has stopped and will not occur again until this site is closed under MMRP.

2.3 **Environmental Setting**

The MRS is located within a fragmented forest that is surrounded on all sides by Ridgway Weekend Training Site (**Figure 2-1**). The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural, mining, residential, and recreational land (Parsons, 2012). Allegheny National Forest is in close proximity to the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. A community baseball/athletic field is north of the property. The range is primarily covered in grass, other vegetation, and the structures associated with the former baffled small-arms range.

2.3.1 Climate

The average maximum temperature ranges from 80 degrees Fahrenheit (°F) in July to 32°F in January. The average minimum temperature ranges from 54°F in July to 14°F in January. The average annual rainfall is 44.1 inches, and average annual snowfall is 48 inches. Average precipitation ranges from 4.84 inches in July to 2.4 inches in February (U.S. Climate Data, 2017).

2.3.2 Geology

The MRS is located in the High Plateau section of the Appalachian Plateaus Physiographic Province. The bedrock in the area of the NDNODS Ridgway Training Range MRS consists entirely of sedimentary rocks of Devonian, Mississippian, and Pennsylvanian age, with lithologies ranging from sandstone and conglomerate to shale, coal, and limestone. The site is underlain by the Pennsylvanian Pottsville Formation, predominantly a gray sandstone and

conglomerate. The rocks are gently folded, and the site lies less than two miles to the southeast of the axis of the northeast-trending Johnson Run Syncline. The rock strata dip slightly to the northwest of the site (PADMVA, 2011).

2.3.3 Surface Topography

Elk County lies within the Appalachian Plateaus Physiographic Province, and the NDNODS Ridgway Training Range MRS lies within the High Plateau Section of the province. Broad, rounded to flat uplands and deep angular valleys characterize the section. The Ridgway Training Range MRS is located on the western edge of one such upland, and Big Mill Creek lies within the valley immediately to the west of the MRS. The site is essentially flat and at an elevation of approximately 1,680 feet above mean sea level. The site drains toward the southwest (PADMVA, 2011).

2.3.4 Hydrogeology and Hydrology

Principal aquifers are permeable sandstones of the Pennsylvanian age Pottsville Formation. Groundwater recharge is from precipitation that infiltrates to weathered bedrock and fractures in un-weathered bedrock. Groundwater flows vertically through fractures and laterally through permeable sandstone. Typical yields from wells range from 30 to 300 gallons per minute (Trapp and Horn, 1997).

As reported in the 2011 Environmental Baseline Survey (EBS), existing boring logs from wells in the area show depths to bedrock varying from 10 to 33 feet below ground surface (bgs). The static groundwater level in a former on-site well (now permanently sealed) was approximately 30 feet bgs as indicated on the driller's log. Static groundwater level data from two other wells located north of the range indicate a potentiometric surface sloping to the south, although there is likely a component of groundwater movement to the west, topographically. Groundwater is likely to emerge at the surface along Big Mill Creek, west of the site. Although there are approximately 40 domestic wells within 4 miles of the site, there are no recorded wells downgradient between the site and Big Mill Creek (PADMVA, 2011).

The MRS lies within the Big Mill Creek watershed. Surface water flows southwest off the MRS to Big Mill Creek located in the valley to the west. The EBS reports that any water flowing from the MRS's berm that can leave the MRS would follow this path to Big Mill Creek (PADMVA, 2011). A surface water feature is located on site approximately 30 ft east of the MRS and flows north to south (per PADMVA, as part of development of the EBS). The surface water feature is a freshwater forested/shrub wetland encompassing approximately 8.73 acres.

The landowner installed a French drain at the base of the berm to assist with drainage at the MRS. The drain daylights about 30 feet north of the north-side wall. During the RI site visit, ponded water was observed at this location. AECOM expects that this water will slowly drain back into the ground. Because water at the MRS tends to drain in a southwesterly direction, any overland flow from this area would drain in the same manner as the rest of the MRS.

2.3.5 Vegetation and Habitat

There are nine terrestrial ecoregions that describe the differing geological and biological communities of Pennsylvania (USEPA, 2010). Some of the features of these ecoregions are unique to the northeastern United States because the landscape is composed of plateau remnants,

steep ridges, rounded hills, low mountains, heavily-wooded terrain, and narrow and fertile valleys. The elevations of these ecoregions range from 500 to 4,300 feet. Vegetation communities among these ecoregions include oak (Quercus spp.), hickory (Carya spp.), walnut (Juglans spp.), elms (Ulmus spp.), birches (Betula spp.), ash (Fraxinus spp.), basswood (Tilia spp.), maple (Acer spp.), locust (Robinia spp.), and pine (Pinus spp.) mixed forests (USEPA, 1999). This MRS is found in the Western Allegheny Plateau ecoregion (USEPA, 2010); however, no trees exist within the walled MRS.

Natural wetlands, those that are not impounded or diked, occur in the vicinity of the Ridgway Training Range. A portion of these wetlands falls within the southeast corner of the MRS:

- PFO1 / EM1A Palustrine, forested and emergent persistent, temporarily flooded
- PEM1A Palustrine, emergent and persistent, temporarily flooded (USFWS, 2017)

There is no federally designated critical habitat located within the site (USFWS, 2017). However, habitat supporting ecological receptors is present within the MRS. A very small portion of a wetland is present within the MRS.

2.3.6 Ecological Receptors

There is no federally designated critical habitat located within the Ridgway Training Range MRS boundary. Rabbitsfoot (Quadrula cylindrica cylindrical) and Northern Long-Eared Bat (Myotis septentrionalis) are federally listed threatened species that are listed wherever found, and have the potential to occur in Elk County, Pennsylvania (USFWS, 2018). Rabbitsfoot primarily inhabit small to medium sized streams and some larger rivers, and as such, are highly unlikely to be found within the MRS. Given the limited size of the MRS, it is unlikely that the Northern Long-Eared Bat would be found within the MRS.

2.3.7 Cultural Resources

According to the National Heritage Areas Program, the National Historic Landmarks Program, the National Register of Historic Districts, and the National Register of Historic Places, no nationally-recognized cultural or archaeological resources are listed within the MRS boundary (National Park Service [NPS], 2018).

2.4 **Previous Investigations**

Prior to official site closure in 2011, a Phase I Qualitative Assessment Report was completed as draft final under the Operational Range Assessment Program in 2007 for the Ridgway Training Range. Based on a review of available documents and observations made during a site visit, the Phase I Assessment recommended that the Ridgway Training Range be carried forward to a Phase II Quantitative Assessment. However, it was officially closed in 2011 and became eligible under the NDNODS MMRP. Two environmental investigations have been completed at Ridgway Training Range since official closure of the MRS in 2011. These include:

- Ridgway Weekend Training Site & Range, Environmental Baseline Survey Report (PADMVA, 2011)
- Final Pennsylvania Site Inspection Report, ARNG MMRP (Parsons, 2012)

The SI approach included both visual survey and biased soil sampling for MC to evaluate the potential presence of munitions. Parsons performed a 0.66-mile magnetometer-assisted visual survey, collected biased composite and discrete surface soil samples, and collected sediment and surface water samples as part of the 2012 SI. A single .45 caliber bullet and a single 5.56mm casing were observed within the MRS. Slight depressions on the berm were also observed to be especially saturated with subsurface anomalies across from the firing points.

Eight soil samples were collected from the firing line, berm, and ambient areas outside of the MRS; two surface water and two sediment samples were collected from an upstream location as well as a downstream location at the confluence of two on-site creeks. Samples were analyzed for small arms metals (antimony, copper, lead, and zinc) and nitroglycerin. Both lead and antimony concentrations exceeded the human health criteria (PADEP Medium Specific Concentrations [MSCs]) at all seven berm sample locations, while copper exceeded its MSC at two berm sample locations. Nitroglycerin was also detected slightly above its MSC at the firing point. There were no MC detections (metals or explosives) in surface water samples. In sediment, no explosives were detected, small arms MC were all detected below screening criteria, and downstream concentrations were equal to or less than the upstream concentrations.

No historical evidence of munitions and explosives of concern (MEC) has been documented or found at the site. It was determined during the SI that no explosive hazards are present at the MRS. As a result of the baseline survey and SI, the size and shape of the MRS were revised. The revised Ridgway Training Range MRS includes the firing points, Target Berm, and range floor in between (0.22 acres). This MRS (AEDB-R No. PAE40-001-R-01) was recommended to be carried forward to RI/FS and is the focus of this Work Plan.

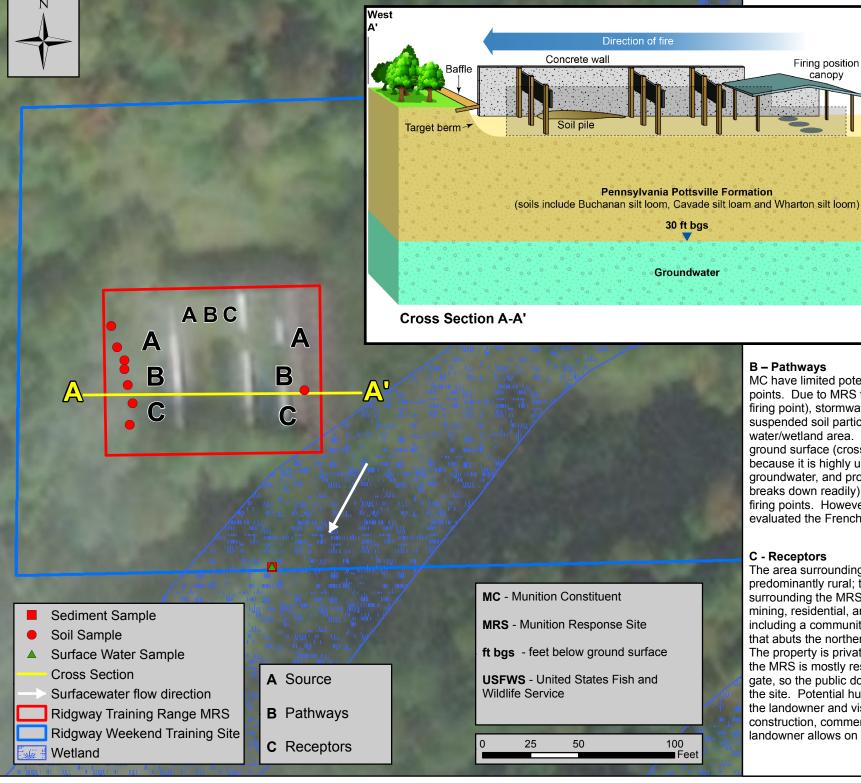
2.5 Current and Future Land Use

The surrounding Ridgway Weekend Training Site (WETS) is currently used as a staging area for equipment associated with a private landscaping company owned by the property owner. The area within the MRS concrete walls is currently unused. Since the current landowner has owned the property, the range has been used with homemade small arms ammunition, distinct from historic use, which were fired into a trap. This use has stopped and will not occur again until this project concludes. Future land use is unlikely to significantly change.

2.6 Preliminary Conceptual Site Model

The preliminary conceptual site model (CSM) was generated based on the information and findings presented in the 2012 SI, environmental baseline survey report, and site visit. The CSM describes the potential physical, chemical, and biological processes that may transport contaminants from sources to receptors and provides the basis for evaluating potential risks to human health and the environment.

MC Sources


Based on a review of the historical records available, former munitions-related training was limited to small arms (rifles and potentially pistols) at the Ridgway Training Range MRS. The MRS includes a 25-meter outdoor baffled M-16 rifle range with a soil Target Berm. Firing at the former range occurred in a western direction toward the soil Target Berm from the covered Firing Point.

Documentation specifying the exact munitions used at the MRS is unavailable; however, based on range type, timeframe of range use, and location, .22 caliber, .38 caliber, .45 caliber, .50 caliber, 9mm, 5.56mm, and 7.62mm may have been fired (Parsons, 2012). Potential MC from small arms projectiles present within berm soil includes primarily lead and secondarily antimony, copper, and zinc. Nitroglycerin was considered a potential MC at the Firing Point, where it was sampled for and slightly exceeded human health screening criterion during the 2012 SI. MC contamination was also confirmed in surface soil at the Target Berm at concentrations above human health screening criteria during the 2012 SI. No soil samples were taken at the Soil Pile near the northern wall during the same study, as it did not exist at that time.

Pathways

MC deposited in surface soil as a result of firing activities at the MRS has limited potential to migrate from source areas (i.e., Target Berm, Soil Pile, Firing Point). Due to MRS topography and range orientation and the enclosing wall structures, stormwater runoff from significant rain events is unlikely to transport suspended soil particles off site or to wetlands that bisect the southeast corner of the MRS. Dislodged soil particles from the berm are likely to remain at the base of the berm where the gravel area and drain were installed. The gravel increases the infiltration at the base of the berm, increasing deposition in this area. These assumptions were confirmed with surface water and sediment samples collected during the SI and with a visual inspection during the April 2017 site visit with stakeholders. Stormwater runoff from the MRS flows southwest but is mostly encumbered by the concrete range walls. Some erosion was observed during the site visit on the Target Berm where vegetation is sparse, but the MRS walls make MC transport via runoff unlikely. The French drain that was installed post-PAARNG use of the MRS promotes infiltration at the base of berm. The drain daylights north of the MRS where a small ponded area detains excess water and allows for ground infiltration. The water coming off the Target Berm is in short contact time with the soil, so particulates are unlikely to be present at this ponded area; however, the area is considered a potential source area.

Figure 2-2 presents a pictorial diagram of the site including the overland flow direction of stormwater. Transport pathways from soil berms to surface water bodies are incomplete.

Target Berm

A - Sources

Metals MC at the target berm and soil pile as well as nitroglycerin at the firing points as a result of historical small arms training.

Firing Point

MC have limited potential to migrate from soil at the target berm, soil pile, and firing points. Due to MRS topography and range features (e.g., walled-in MRS, covered firing point), stormwater runoff from significant rain events is unlikely to transport suspended soil particles off site via the French drain outfall or to the nearby surface water/wetland area. Groundwater at the MRS is approximately 30 feet below ground surface (cross section A-A'). Groundwater pathways are incomplete because it is highly unlikely for MC to migrate based on soil type, depth to groundwater, and properties of MC (relevant metals do not migrate far, nitroglycerin breaks down readily). MC is anticipated to remain at the target berm, soil pile, and firing points. However, the risk assessments (human and ecological) have also evaluated the French drain outfall and the drainage area near the target berm.

East

Ephemeral

stream

(USFWS wetland)

C - Receptors

Firing position

The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural. mining, residential, and recreational land, including a community baseball/athletic field that abuts the northern edge of the property. The property is privately owned. Access to the MRS is mostly restricted via a locked gate, so the public does not have access to the site. Potential human receptors include the landowner and visitors or workers (e.g., construction, commercial/industrial) that the landowner allows on site.

There is no federally-designated critical habitat located within the site. However. habitat supporting ecological receptors is present within the MRS. A tiny portion of a wetland is present within the MRS that could provide habitat for aquatic species. Allegheny National forest borders the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. Although no federally-designated critical habitat is located within the MRS, there are statelisted endangered species in Pennsylvania. Many of these species will not be found on or near the MRS.

12420 Milestone Center Drive

Germantown, MD 20876

Figure 2-2 **Conceptual Site Model** Ridgway Training Range, Pennsylvania Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS **User Community**

> Date.....November 2018 Prepared by.....AECOM

Small arms MC have a strong affinity to sorb to soil particles, particularly soils that are rich in organic matter and usually only migrate via physical transport pathways. Because of these chemical properties, they typically do not leach to groundwater except where shallow groundwater exists less than 5 feet bgs. According to Pennsylvania Department of Military and Veterans Affairs (PADMV) data presented in the 2011 EBS, groundwater at the MRS is approximately 30 feet bgs (Cross Section AA' of Figure 2-2). Surface water bodies at the MRS do not appear to be groundwater-fed. Therefore, groundwater pathways are incomplete for the Ridgway Training Range MRS.

MC within soil at the MRS is anticipated to remain at the Target Berm, Firing Point, and Soil Pile and not be transported off site. Exposure pathways between MC and receptors are restricted to source areas, which is potentially the soil at the Target Berm, the Firing Point, and the Soil Pile. There is a possibility that particulates from the berm are being transported, via the French drain, to the ponded area to the north of the MRS. Since the drain discharges to a ponded area, it is expected that they would settle in the small detention pond and receptors would only potentially be exposed to sediment in this area.

Receptors

The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural, mining, residential, and recreational land (Parsons, 2012) (Figure 2-1). A community baseball/athletic is north of the property. The property is privately owned and is used as a staging area by a landscaping company. Future use is planned to be the same. Access to the MRS is mostly restricted via a locked gate, so the public does not have access to the site. Potential human receptors include the landowner and visitors or workers (e.g., construction, commercial/industrial) that the landowner allows on site. As there is no restriction on the land, there is potential that the site could be used for residential purposes in the future.

There is no federally designated critical habitat located within the site (USFWS, 2018). However, habitat supporting ecological receptors is present within the MRS. A portion of a wetland is present within the MRS that could provide habitat for aquatic species. Allegheny National Forest borders the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. Although no federally designated critical habitat is located within the MRS, the species in the following table are listed as State-endangered species. None of these species are known to be present on or near the MRS. However, based on preferred habitat, there is a low likelihood that some could be present. Preferred habitat is listed in the table to help determine the likelihood of each species being present.

Table 2-1. Pennsylvania State-endangered Species

Species	Preferred Habitat/Location in Pennsylvania
American Bittern	Marshes/wetlands
Least Shrew	Prefer non-forested habitat/grassland habitat found mostly in the southern tier counties in the central and eastern part of the State
Black-crowned Night-Heron	Primarily by rivers and creeks, nesting on forested islands or along wooded streams. Largest distribution in Pennsylvania in the southeastern part of the State.

Species	Preferred Habitat/Location in Pennsylvania
Loggerhead Shrike	Prefer short grass pastures with scattered shrubs/trees for nesting and interspersed perching locations for hunting
Blackpoll Warbler	North America's boreal conifer forest. In Pennsylvania, found in and adjacent to isolated forested wetlands dominated by red spruce and eastern hemlock.
Northern Flying Squirrel	Prefer old-growth, boreal forests that contain a heavy coniferous component, moist soils, and lots of downed, woody debris
Black Tern	Leave winter coastal areas for inland prairies and more extensive deep-water marshes or marsh complexes with extensive cattail beds
Peregrine Falcon	Typically found nesting on bridges and tall buildings within cities and cliffs and other open spaces with expansive views.
Common Tern	Nesting habitat is restricted to sandy shorelines and barren islands of large lakes
Sedge Wren	For nesting, require damp meadows or marshes where sedges and grasses are interspersed with small shrubs
Delmarva Fox Squirrel (also federally listed)	Prefer open stands of forests with little understory, often associated with agricultural fields. Most likely found on sites with larger trees, a low percentage of shrubby ground cover, and lower understory density. Reintroduced in southeastern Pennsylvania, where suitable habitat was present.
Short-eared Owl	Inhabit reclaimed strip mines, open, uncut grassy fields, large meadows, airports, and occasionally marshland
Dickcissel	During migration, dickcissels may be found in grassy fields, but most often at bird feeding stations. During the breeding season, they inhabit large grassy fields, such as hayfields or strip-mines recently reclaimed with grass. In winter, dickcissels are found at bird feeding stations near shrubs, thickets or hedgerows. They are fond of alfalfa fields.
Upland Sandpiper	Prefer open areas and short-grass prairies. May be found in large fallow fields, pastures, and grassy areas (greater than 250 acres) with a variety of grasses (shorter and taller).
Great Egret	Typically found feeding in shallow rivers, streams, ponds, lakes, and marshes. Nests are found in adjacent trees or shrubby growth, preferably on islands.
Yellow-bellied Flycatcher	Found in shady coniferous forests and forested wetlands at higher elevations. In Pennsylvania, nests have been found in mossy, poorly drained areas (swamps, bogs, and old beaver ponds) surrounded by extensive northern hardwood forests.
Indiana Bat (also federally listed)	Hibernation sites have stringent requirements, including noticeable airflow and the lowest non-freezing temperatures possible. Sites also usually have some standing or flowing water. Roosts primarily in trees and within ¾ mile of water.
Yellow-crowned Night-Heron	Primarily feeds along small, shallow streams. Nests in brush or trees, usually sycamores, found on islands or along streams. Most nests in recent years are along the Susquehanna River and its tributaries in suburban and urban areas of Cumberland and Dauphin Counties.

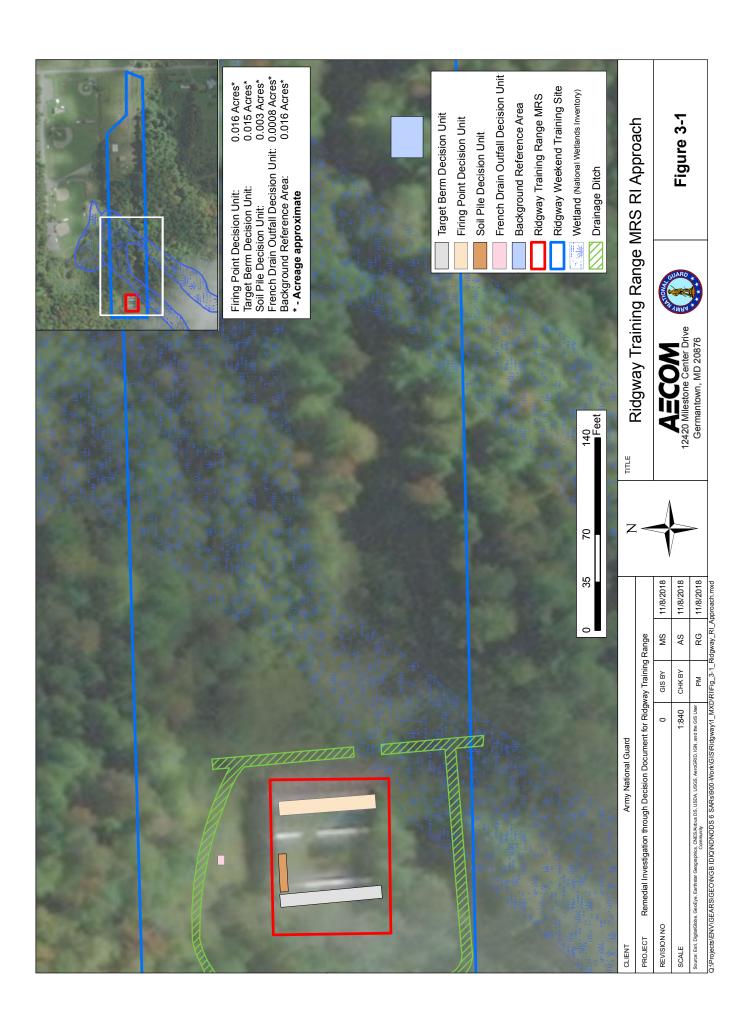
Species	Preferred Habitat/Location in Pennsylvania
King Rail	Lives in freshwater and brackish marches, marshy fields, and roadside ditches in eastern North America, primarily along the Atlantic coast. It is a very rare breeder in the few larger marshes remaining in Pennsylvania.
Piping Plover (also federally listed)	Nest on wide, sand to cobble beaches with little vegetation and a long distance to the tree line. The only breeding habitat for piping plovers in Pennsylvania is along the shoreline of Lake Erie at Presque Isle State Park.
Least Bittern	Thrive in dense marshland ecosystems containing cattails and reeds, along the coast and inland, where they feed primarily on small fish, amphibians, insects, and small mammals.

Some preferential habitat quality exists in the areas surrounding the MRS (e.g. wetlands), and ecological receptors are anticipated to be minimally exposed to MC within the MRS or in surrounding areas.

3 Field Investigation Activities

Soil and sediment samples for MC analysis were collected, identified, handled, and documented following the procedures detailed in the Final Remedial Investigation Work Plan and Unified Federal Policy - Quality Assurance Project Plan (UFP-QAPP; AECOM, 2017). The sampling approach of the RI was designed to characterize the nature and extent of MC contamination in soil and sediment in areas associated with historical small arms training activities conducted at Ridgway Training Range. The SI (Parsons, 2012) indicated that the groundwater exposure pathway was incomplete for human and ecological receptors due to the depth to groundwater and chemical properties of MC; therefore, groundwater was not sampled during the RI. The sampling design rationale for the MRS was based on historical use, range layout, previous sampling results, and the preliminary CSM. Field forms and a photo log are presented in **Appendix A** and **Appendix B,** respectively).

3.1 Soil and Sediment Sampling Methodology


Based on the findings of the SI and site history, the Target Berm (0.015 acres), Firing Point (0.016 acres), Soil Pile (0.003 acres), and French Drain Outfall (0.0008 acres) were identified as individual DUs. Figure 3-1 presents the location of each initial DU. Table 3-1 summarizes the analytical samples collected.

A phased approach was used that included assessing the extent of MC contamination in the field using XRF analysis of discrete samples at the Target Berm. The extent of MC established the final size of the Target Berm DU. XRF analysis was not performed at the Firing Point DU because XRF is not a suitable tool for screening nitroglycerin. Soil samples from the Target Berm and Firing Point DUs were collected using an ISM approach because this method provides data useable in assessing risks. Discrete subsurface soil samples were also collected at select locations at the Target Berm and Firing Point. ISM was not used at the French Drain Outfall and Soil Pile DUs due to the small size of the respective DUs. Discrete soil and sediment were collected from the Soil Pile and French Drain Outfall DUs, respectively, and the analytical results were then screened against small arms MC screening criteria for human and ecological health.

3.1.1 X-Ray Fluorescence Screening

The Target Berm initial DU was screened for lead in the field using an Innov-X Alpha A4000 (model number a-200 A) handheld XRF analyzer. A sampling grid was laid out across the Target Berm DU and discrete samples were taken from 0-6 inches bgs at each grid node. An approximate 10 x 4 foot grid was sampled at the Target Berm DU. Soil samples were collected using clean, dedicated disposable sampling spoons, placed in clear plastic zip-top bags, disaggregated/homogenized in the field by mechanical methods prior to analysis, and percent soil moisture was recorded via a handheld analog soil moisture meter. The volume of each XRF sample was approximately 12 cubic inches of soil with weights varying depending on soil moisture content. Coarse material >2 millimeters in diameter, such as pebbles, were removed from the sample to the greatest extent possible before analysis. If soil moisture content exceeded 20%, samples were dried in the field by sunlight before XRF analysis.

Each sample was analyzed by XRF four times, with each analysis performed on a different portion of the sample, following the guidelines of USEPA Method 6200.

Remedial Investigation Report Ridgway Training Range, PA Contract No. W9133L-14-D-0001 Delivery Order No. 0006

	Sample	Sample		An	alytical Parame		1. Summary of RI Samples
Sample Identification	Collection	Depth (inches bgs)	Media Type	Total Metals ¹	Explosives ²	TCLP ³	Comments
NCREMENTAL		(motaro	1		
Target Berm							
RTR01IS01	7/11/2018	0 - 6	Soil	Х			Primary, used also for MS/MSD
RTR01IS02	7/11/2018 7/11/2018	0 - 6 0 - 6	Soil	X			Duplicate
RTR01IS03 Firing Point	7/11/2016	0-6	Soil	X	l		Triplicate
RTR03IS01	7/12/2018	0 - 6	Soil		Х		Primary
RTR03IS02	7/12/2018	0 - 6	Soil		X		Duplicate, used also for MS/MSD
RTR03IS03	7/12/2018	0 - 6	Soil		Х		Triplicate
Background R			0 "				In:
RTR04IS01 RTR04IS02	7/12/2018 7/12/2018	0 - 6 0 - 6	Soil Soil	X	X		Primary, used also for MS/MSD Duplicate
RTR04IS03	7/12/2018	0-6	Soil	X	X		Triplicate
DISCRETE SAI							
Target Berm							
RTR01DA01A	7/12/2018	12 - 18	Soil	X			Collected at XRF sample RTR01X80 location
RTR01DA01B	7/12/2018	12 - 18	Soil	X			Field Duplicate of RTR01DA01A
RTR01DB01A RTR01DC02A	7/12/2018 7/12/2018	24 - 30 0 - 6	Soil Soil	Х		Х	Collected at XRF sample RTR01X80 location Collected at XRF sample RTR01X06 location
RTR01DA03A	7/12/2018	12 - 18	Soil	Х			Collected at XRF sample RTR01X22 location, MS/MSD
RTR01DB03A	7/12/2018	24 - 30	Soil	X			Collected at XRF sample RTR01X22 location
RTR01DA04A	7/12/2018	12 - 18	Soil	Х			Collected at XRF sample RTR01X91 location
RTR01DB04A	7/12/2018	24 - 30	Soil	X			Collected at XRF sample RTR01X91 location
RTR01DA05A RTR01DS01A	7/12/2018	12 - 18	Soil	X	1		Collected at XRF sample RTR01X45 location
RTR01DS01A	7/12/2018 7/12/2018	0 - 6 0 - 6	Soil Soil	X			Collected from beneath gravel east of XRF sample RTR01X12 location Collected from beneath gravel east of XRF sample RTR01X24 location
RTR01DD01A	7/12/2018	0-6	Sediment	X			Collected from drainage ditch south of XRF sample RTR01X125 location
RTR01DD02A	7/12/2018	0 - 6	Sediment	X			Collected from drainage ditch south of MRS, equidistant between the Firing Point and Target Berm
Soil Pile							
RTR02DS01A	7/9/2018	0 - 12*	Soil	Χ			Collected from the western half of the Soil Pile
RTR02DS01B	7/9/2018 7/9/2018	0 - 12*	Soil	X		Х	Field Duplicate of RTR02DS01A Collected from the western half of the Soil Pile
RTR02DS02A RTR02DS03A	7/9/2018	0 - 12* 0 - 12*	Soil Soil	X		^	Collected from the western half of the Soil Pile Collected from the western half of the Soil Pile
RTR02DS03A	7/9/2018	0 - 12*	Soil	X			Collected from the western half of the Soil Pile
RTR02DS05A	7/9/2018	0 - 12*	Soil	X			Collected from the eastern half of the Soil Pile
RTR02DS06A	7/9/2018	0 - 12*	Soil	Х			Collected from the eastern half of the Soil Pile
RTR02DS07A	7/9/2018	24 - 36*	Soil	Χ			Collected from the western half of the Soil Pile
RTR02DS08A	7/9/2018	24 - 36*	Soil	X			Collected from the western half of the Soil Pile
RTR02DS09A RTR02DS10A	7/9/2018 7/9/2018	24 - 36* 24 - 36*	Soil Soil	X			Collected from the western half of the Soil Pile Collected from the eastern half of the Soil Pile
RTR02DS10A	7/9/2018	24 - 36*	Soil	X			Collected from the eastern half of the Soil Pile
RTR02DS12A	7/9/2018	24 - 36*	Soil	X			Collected from the eastern half of the Soil Pile
Firing Point							
RTR03DS01A	7/9/2018	0 - 6	Soil		X		Collected east of the Firing Point, one quarter of the distance north bewteen the concret pad and the northern MRS wall
RTR03DS01B	7/9/2018	0-6	Soil		X		Field Duplicate of RTR03DS01A
RTR03DS02A RTR03DS03A	7/9/2018 7/9/2018	0 - 6	Soil Soil		X		Collected east of the Firing Point, one half of the distance north bewteen the concret pad and the northern MRS wall Collected east of the Firing Point, three quarters of the distance north bewteen the concret pad and the northern MRS wal
RTR03DA01A	7/12/2018	12 - 18	Soil		X		Collected from the covered Firing Point, adjacent to the southern concrete pad, MS/MSD
RTR03DA02A	7/12/2018	12 - 18	Soil		Х		Collected from the covered Firing Point, equidistant between the southern concrete pad and northern MRS wall
RTR03DA03A	7/12/2018	12 - 18	Soil		X		Collected from the covered Firing Point, adjacent to the northern MRS wall
RTR03DA03B	7/12/2018	12 - 18	Soil		Х		Field Duplicate of RTR03DA03A
RTR03DC01A	7/12/2018	0 - 6	Soil			X	Collected from the covered Firing Point, adjacent to the southern concrete pad, MS/MSD
French Drain RTR05DD01A	7/12/2018	0 - 6	Sediment	Х			Collected from the southwestern corner of the ponded area , MS/MSD
RTR05DD01A	7/12/2018	0-6	Sediment	X			Field Duplicate of RTR05DD01A
RTR05DD02A	7/12/2018	0 - 6	Sediment	X		Х	Collected from the southern half of the ponded area
RTR05DD03A	7/12/2018	0 - 6	Sediment	Χ			Collected from the southern half of the ponded area
RTR05DD04A	7/12/2018	0 - 6	Sediment	X			Collected from the southeastern corner of the ponded area
RTR05DD05A	7/12/2018	0 - 6 0 - 6	Sediment	X	1		Collected from the northwestern corner of the ponded area
RTR05DD06A RTR05DD07A	7/12/2018 7/12/2018	0-6	Sediment Sediment	X			Collected from the northern half of the ponded area Collected from the northern half of the ponded area
RTR05DD07A	7/12/2018	0-6	Sediment	X			Collected from the northeastern corner of the ponded area
RTR05DD09A		0-6	Sediment	X			Collected 10 feet east of the ponded area
RTR05DD10A		0 - 6	Sediment	X			Collected 10 feet west of the ponded area
EQUIPMENT B	LANK						
RTR03IS00	7/12/2018		Water	Х	Х		
Notes:		. LICEDA CIVI OA	C 84-45-4 COOOA				
 Antimony, Coppe 			o ivietnoa 6020A				
Nitronkoorin kuul							
² - Nitroglycerin by U ³ - Metals, Reactivity		,					
 Nitroglycerin by U Metals, Reactivity bgs = below ground 							
³ - Metals, Reactivity bgs = below ground	surface	luplicate					
3 - Metals, Reactivity bgs = below ground MS/MSD = matrix sp TCLP = Toxicity Cha	surface pike/matrix spike d aracteristic Leachi	ng Procedure					
³ - Metals, Reactivity bgs = below ground MS/MSD = matrix sp TCLP = Toxicity Cha USEPA = United Sta	surface pike/matrix spike c aracteristic Leachi ates Environmenta	ng Procedure	су				
- Metals, Reactivity gg = below ground MS/MSD = matrix sp CLP = Toxicity Cha	surface pike/matrix spike o aracteristic Leachin ates Environmenta ascence	ng Procedure al Protection Agen					

The concentration of lead (in parts per million [ppm]) and ± error, as reported by the XRF analyzer, was recorded for each analysis (**Appendix A**). Due to the heterogeneous nature of metals distribution in soil matrices, lead results of the four replicates were averaged in the field to represent the final concentration for a single grid node. The highest recorded error of the four replicates was carried forward to represent the maximum potential error associated with any given replicate of the sample. The Target Berm DU boundary was revised based on exceedances of human health screening criterion for lead (400 milligram per kilogram [mg/kg]) observed along the DU boundary. Additional 101 step-out samples were taken along the same grid pattern as the DU until exceedances were no longer observed. This revised boundary was used for incremental sampling at the Target Berm (0.126 acres).

3.1.2 Incremental Soil Sampling

Incremental samples were collected using ISM from the Target Berm, Firing Point, and Background Reference Area DUs (**Figure 3-1**) using a systematic random approach in accordance with the procedures outlined in the UFP-QAPP standard operating procedures (SOPs; AECOM, 2017). XRF screening grids were used at the Target Berm DU to refine the DU boundary. Random numbers were generated in the field, using a random number generator, to select the location of primary, duplicate, and triplicate ISM samples. All incremental samples (IS) were collected in 100 percent triplicate following the technical guidance outlined in the 2012 *Incremental Sampling Methodology* by the Interstate Technology & Regulatory Council (ITRC) Incremental Sampling Methodology Team (2012). The risk screening analysis is performed with the IS sample results.

Prior to IS collection, vegetation and other debris were cleared from the ground surface. Sample increments were collected using an AMSTM 7/8-inch by 33-inch cylindrical stainless steel soil probe. The IS from the Target Berm DU was comprised of 129 evenly spaced increments and the Firing Point DU was comprised of 36 evenly spaced increments. If individual covered wooden firing positions at the Firing Point DU prohibited sampling at any primary, duplicate, or triplicate locations, those samples were collected on the north side, adjacent to that respective firing position. Increments were collected from approximately 0-6 inches bgs (perpendicular to the ground) and composited into individual 10-gallon plastic zipper-lock bags for laboratory analysis of small arms metals.

Although XRF analysis was not necessary at the Firing Point to refine the boundary for ISM, the projected DU boundary was revised based on its former inclusion of a concrete pad area. The concrete pad area, approximately 14 feet by 20 feet, that was originally included in the Firing Point DU was excluded from the final DU boundary because propellant residues containing nitroglycerin that scatter when firing would not enter the soil beneath the concrete pad area. Additionally, the Background Reference Area DU was expanded to include acreage roughly approximate to the average of the Target Berm and Firing Point DUs. As the Target Berm DU expanded based on XRF analysis, the Background Reference Area DU expanded to account for the increase in size at the Target Berm.

In addition to the Target Berm and Firing Point, IS were collected in 100 percent triplicate from a background reference area southeast of the MRS that was not affected by historical training activities (**Figure 3-1**). The area sampled was representative of undisturbed media and of an

appropriate size to adequately characterize background concentrations and be comparable to investigative samples.

3.1.3 Discrete Soil Sampling

Discrete samples were collected at each DU for the purposes of vertical and/or lateral delineation of MC (Figure 3-2). The vertical extent of contamination was characterized by collecting discrete subsurface soil samples from select areas at the Target Berm where XRF results exceeded the human health screening criterion for lead, and at the Firing Point from areas adjacent to the firing positions. Discrete surface samples were collected at the Firing Point, Soil Pile, and French Drain Outfall DUs to confirm the potential lateral extent of MC contamination in soil and sediment.

At the Target Berm, four locations were selected to represent subsections of the expanded DU: RTR01DA01 (south of the MRS walls), RTR01DA03 (within the MRS walls), RTR01DA04 (north of the MRS walls), and RTR01DA05 (the range floor area). At each location except for RTR01DA05, a discrete sample was collected from two depths: 12-18 inch bgs (DA sample) and 24-30 inches bgs (DB sample). At RTR01DA05 the sample depth of 24-30 inches could not be reached due to refusal at a cobble layer. Each sampling zone was exposed by hand auger and/or shovel, and discrete samples collected with a clean, dedicated, disposable sampling spoon for laboratory analysis of small arms metals. The 24-30 inches bgs samples were held at the laboratory pending the results of the shallow 12-18 inch bgs sample. Of the four discrete sample locations at the Target Berm DU, only samples from locations RTR01DA03 (within the MRS walls) and RTR01DA04 (north of the MRS walls) exceeded the human health screening criterion for lead in the shallow 12-18 inch bgs sample; the deeper 24-30 inch bgs samples were analyzed accordingly. Excess soil was returned to each sampling location at the level removed, and the ground surface returned to original grade. Additionally, a discrete surface soil sample was collected from the Target Berm DU location with the highest XRF lead result (grid #06) for waste characterization analysis (e.g., TCLP).

At the Firing Point DU, three locations were selected for subsurface sampling adjacent to and immediately downrange from the firing positions: RTR03DA01 (southernmost location within the Firing Point DU), RTR03DA02 (central location between the Firing Point concrete pad and northern MRS wall), and RTR03DA03 (northernmost location with the Firing Point DU). At each location, a discrete sample was collected from one depth: 12-18 inch bgs. Across the Firing Point DU, the sample depth of 24-30 inches could not be reached due to refusal at a cobble layer. Each sampling zone was exposed by the same method used at the Target Berm above using a hand auger/shovel and dedicated spoon for laboratory analysis of nitroglycerin. Excess soil was returned to each sampling location at the level removed and the ground surface returned to original grade. Three surface soil samples were also collected east of the covered Firing Point DU with a clean, dedicated, disposable sampling spoon for laboratory analysis of nitroglycerin to determine lateral extent. Additionally, a discrete surface soil sample was collected from surface soil at RTR03DA01 for waste characterization analysis (e.g., TCLP).

Discrete soil samples were also collected from the Soil Pile DU. The Soil Pile is well defined and above ground, so lateral and vertical extents are already defined. Twelve discrete samples were collected at random locations across the DU pile. Six samples were collected from 0-12 inches below the surface of the Soil Pile, and six samples were collected from 12 inches above ground surface to the ground surface. Each sampling zone was exposed by the same method used at the Target Berm above using a hand auger/shovel and dedicated spoon for laboratory analysis of small arms metals. Additionally, a discrete soil sample was collected from the Soil Pile DU for waste characterization analysis (e.g., TCLP).

3.1.4 Discrete Sediment Sampling

Discrete sediment samples were collected at the French Drain Outfall DU to assess potential MC transport from the Target Berm area. Eight sediment samples were collected from 0-6 inches bgs at random locations within the ponded area where the French Drain daylights. Two additional samples were collected beyond the boundary of the ponded area to confirm extent; one sample was collected ten feet to the east of the ponded area, and one sample was collected ten feet to the west of the ponded area. Additionally, a discrete sediment sample was collected for waste characterization analysis (e.g., TCLP).

Two sediment samples were also collected from a drainage ditch south of the MRS due to the expansion of the Target Berm DU south towards the drainage ditch via step-out sampling. Target Berm DU sediment samples were collected to assess if small arms metals are being transported from the Target Berm area. The drainage ditch runs east-west, parallel to the firing direction, south of the southern MRS wall. One sample was collected from the drainage ditch, adjacent to the southern extent of the Target Berm. The second Target Berm DU sediment sample was collected from the drainage ditch, equidistant between the Target Berm and the confluence of the drainage ditch and a flowing steam east of the MRS.

3.1.5 Sample Identification

Soil and sediment samples collected at the MRS were identified using the procedures detailed in the UFP-QAPP (AECOM, 2017). Using indelible ink, each sample was labeled with a nine- to ten-character sampling code. The sampling code consisted of a three-character site identifier, two-digit DU number, one-to two-character sampling method code, two-digit sample location/type number, and one-character sample replicate code. Each component of the sample code as shown in **Table 3-1** is described in the examples below:

RTR01DA02A and RTR02IS02

RTR = Three-character site identifier for the Ridgway Training Range MRS

01 = Decision Unit identifier:

- 01 for the Target Berm DU
- 02 for the Soil Pile DU
- 03 for the Firing Point DU
- 04 for the Background Reference Area
- 05 for the French Drain Outfall DU

DA = One- to two-character sampling method:

- X = discrete XRF surface soil sample
- DA = discrete 12-18 inches bgs subsurface soil sample
- DB = discrete 24-30 inches bgs subsurface soil sample
- DC = discrete 0-6 inches bgs surface sample intended for TCLP analysis
- DS = discrete 0-6 inches bgs surface sample
- DD = discrete sediment sample
- IS = incremental surface soil sample

02 = Sample location/type:

- 01 137 for each discrete sample location
- For IS samples only:
 - 00 = equipment blank
 - \circ 01 = primary sample
 - \circ 02 = duplicate sample
 - o 03 = triplicate sample

A = Discrete sample replicate:

• A – D for each replicate discrete sample

3.1.6 Decontamination of Sampling Equipment

Personnel donned suitable personal protective equipment to reduce personal exposure as required by the Site Safety and Health Plan (Appendix B of the Final RI Work Plan [AECOM, 2017]). Excess soil on sampling equipment was scraped off at the sampling location. Equipment was rinsed at the sampling location with a spray bottle containing a Liquinox solution or low-sudsing non-phosphate detergent along with distilled water and scrubbed with a bristle brush or similar utensil. The equipment was rinsed with distilled water from a separate spray bottle followed by an analyte-free water rinse. Following decontamination, equipment was placed in a clean plastic zipper-lock bag to prevent contact with contaminated soil and/or surfaces.

3.1.7 Investigative Derived Waste

Soil investigation-derived waste was not generated during the sampling activities completed at the MRS. Rinse water generated from equipment decontamination activities was less than 1-liter in volume per DU and discharged directly to the ground within the MRS per the procedures outlined in the UFP-QAPP (AECOM, 2017).

3.1.8 Quality Assurance / Quality Control

Quality Assurance (QA) / Quality Control (QC) samples collected during the RI consisted of duplicate samples, matrix spike / matrix spike duplicate (MS/MSD) samples, and equipment blanks. QA/QC sampling was conducted in accordance with specifications outlined in the UFP-QAPP.

Duplicates

Duplicate samples were collected at a rate of at least 1 per 10 samples per matrix. Duplicate samples were collected simultaneously from the same source under identical conditions,

submitted to the laboratory as indistinguishable samples, and labeled accordingly. Because IS samples were collected in triplicate, duplicate QA/QC samples were unnecessary.

MS/MSD

MS/MSD samples were collected at a rate of 5 percent per mobilization per sample type. Subsamples were pulled from the parent sample by the analytical laboratory for IS samples. Additional volume was collected for discrete subsurface soil samples from the same location as the parent sample. Labels for the extra volume were the same as the parent sample.

Equipment Blanks

Equipment blanks were collected at a rate of 5 percent per mobilization for samples collected with decontaminated, reusable equipment. Equipment blanks were collected by passing analytefree deionized water over a decontaminated soil probe into sampling containers.

3.2 **Laboratory Analytical Methods**

IS and discrete soil samples were submitted to a Department of Defense (DoD) Environmental Laboratory Approval Program-certified laboratory who is also PADEP-certified (Katahdin Analytical Services, Inc.) for all chemical analyses. Each sample was labeled and secured in a shipping cooler filled with ice. Samples were entered on the chain of custody form with the required analyses. Each cooler was sealed with the chain of custody form inside. Custody seals were signed, dated, and placed on opposite corners of the coolers prior to overnight shipment to the analytical laboratory. All laboratory procedures and analyses were conducted in accordance with the UFP-QAPP.

The IS and discrete samples were analyzed by the laboratory for:

- Small arms metals (antimony, copper, lead, and zinc) by USEPA Method SW-846 6020A
- Nitroglycerin by USEPA SW-846 Method 8330B
- TCLP parameters by USEPA Method 1311/6020A/7470A, 1311/8330B, 9012/9034, 9045D, and 1030.

3.3 **Data Evaluation Methods**

Each sample result was compared directly to the screening criteria (Section 3.3.1) for all MC parameters examined. The weight-of-evidence approach used in the assessment helped control decision errors. MC concentrations from all sample results and site conditions were considered to ensure additional information did not provide indications that conclusions may be in error.

All data were reviewed as described in **Section 4** to determine their usability. Sampling locations and field conditions were assessed to ensure all samples were representative of MRS and background area conditions.

3.3.1 Human Health and Ecological Risk Screening Criteria

The human health and ecological risk-based screening levels for soil used for during the RI are presented in **Table 3-2**. Analytical data for this RI were compared to the risk-based screening

levels to determine if past small arms training activities resulted in contamination exceeding human health and/or ecological screening levels.

Site-specific Background Reference Area samples were collected and analyzed during this RI for comparison to investigative samples.

Table 3-2. Remedial Investigation Screening Levels

	Screening Levels			
	Soil	Soil	Sediment	Sediment
	Human Health	Ecological	Human Health	Ecological
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Antimony	3.1 ⁽¹⁾	0.27 ⁽²⁾	880 ⁽³⁾	2 ⁽⁴⁾
Copper	310 ⁽¹⁾	28 ⁽²⁾	81000 ⁽³⁾	31.6 ⁽⁵⁾
Lead	400 ⁽¹⁾	11 ⁽²⁾	5000 ⁽³⁾	35.8 ⁽⁵⁾
Zinc	2300 ⁽¹⁾	46 ⁽²⁾	660000 ⁽³⁾	121 ⁽⁵⁾
Nitroglycerin	0.63 ⁽¹⁾	13 ⁽²⁾	NA	NA

⁽¹⁾ USEPA Residential Soil RSL Value (May 2019), protective of a target hazard quotient of 0.1 and a target cancer risk of 1x10-6

⁽²⁾ USEPA Region 4 Soil Screening Values (Supplemental Guidance for Ecological Risk Assessment, 2015)

⁽³⁾ Sediment human health screening levels are calculated as PADEP Residential MSCs x 10 (Medium-Specific Concentrations for Inorganic Regulated Substances in Soil, 2016).

⁽⁴⁾ EPA Region 3 Biological Technical Assistance Group (BTAG) Freshwater Sediment Screening Benchmarks (USEPA, 2006)

⁽⁵⁾ MacDonald et al. 2000. Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems. Arch. Environ. Contam. Toxicol. 39: 20-31. mg/kg = milligram per kilogram

4 Data Quality Assessment

Field samples were analyzed for small arms metals by SW-846 method 6020A and/or nitroglycerin by SW-846 method 8330B. QA/QC samples were collected to evaluate the field collection methods and the laboratory analytical techniques for soil samples. No deviations from the UFP-QAPP requiring corrective action occurred. The full data validation report is presented in **Appendix C**.

4.1 **Data Validation and Verification**

The following describes data QC parameters and criteria used during the RI, an analysis of the data in terms of precision, accuracy, representativeness, comparability, completeness, and sensitivity (PARCCS) is provided in **Section 4.2**. All laboratory data validation and verification activities were completed by AECOM. As appropriate, the subsections below address the in-field XRF data obtained at Ridgway Training Range MRS

A Tier III Data Validation Report was prepared for each Sample Delivery Group as assigned by the laboratory (**Appendix C**). The validation process used information from the UFP-QAPP (AECOM, 2017) and DoD Quality Systems Manual to define the method quality objectives. Laboratory data were qualified according to protocols defined in the USEPA Contract Laboratory Program National Functional Guidelines for Organic and Inorganic Data (USEPA, 2017a & 2017b). Issues identified during the data validation process resulted in the application of letter qualifiers to the data. These qualifiers were added to concentrations, when appropriate, to ensure reported concentrations were accurately represented. Usability of data for further analysis was based on review of analytical qualifiers and performed in accordance with the guidelines noted previously. A detailed discussion of anomalies can be found in **Appendix C.**

4.2 **Data Usability - PARCCS**

This section addresses data usability for both laboratory-generated data and the in-field analyzed XRF data

Precision

Precision is the degree to which a set of observations or measurements of the same property, obtained under similar conditions, conform to themselves. Field sampling precision is measured with the field duplicate relative percent differences; laboratory precision is measured with calibration verification, laboratory control spike (LCS) and MSD relative percent differences, and serial dilution percent differences.

Precision errors may be the result of one or more of the following: field instrument variation, analytical measurement variation, poor sampling technique, sample transport problems, or spatial variation (heterogeneous sample matrices). For example, if poor precision is indicated in both the field and analytical duplicates/replicates, then the laboratory may be the source of error. If poor precision is limited to the field duplicate/replicate results, then the sampling technique, field instrument variation, sample transport, medium heterogeneity, or spatial variability may be the source of error. To identify the cause of imprecision, the field sampling design rationale and

sampling techniques were evaluated by the reviewer, and both field and analytical duplicate/replicate sample results were compared.

Calibration verifications are performed routinely to ensure that instrument responses for all calibrated analytes are within established control criteria of +/-20% relative standard deviation (RSD). No calibration verification anomalies were encountered.

Field duplicate pairs were collected to assess the overall sampling and measurement error for this sampling effort. The field duplicate sample was analyzed for the same analytes as the primary field sample. Eight field sample results for copper, lead, and zinc were qualified for field duplicate imprecision. These anomalies are considered minor, the positive and non-detect (ND) associated results were qualified as estimate, and the data should be considered usable as qualified.

Laboratory duplicates were prepared for every inorganic batch to demonstrate the laboratory's ability to detect similar concentrations of unknown quantity in the site matrix media. Laboratory duplicates are separate aliquots of a single field sample that are prepared and analyzed concurrently at the laboratory. The primary purpose of the laboratory duplicate is to check the precision of the laboratory analyst, the sample preparation methodology, and the analytical methodology. As per the UFP-QAPP, laboratory duplicates were to be prepared at a frequency of once per inorganic preparatory batch. Acceptable relative percent differences for laboratory duplicates are specified by the laboratory-specific control limits. The laboratory duplicate performed on field sample RTR02DS01A displayed a relative percent difference (RPD) greater than the laboratory QC limits for antimony at 36.3% and lead at 29.7%. Several zinc and copper field sample results were qualified as estimate due to these anomalies, and the data should be considered usable as qualified. These anomalies are considered minor.

Field triplicates of IS were collected at every DU and background location for laboratory analysis to assess imprecision encountered in the sampling process and heterogeneity of sample media. Acceptable RPDs for discretely collected field duplicates are less than 30 percent. Of the single duplicate pair of discrete samples collected during the RI, RPD varied between analytes. The triplicate performed on incremental field samples RTR03IS01, RTR03IS02, and RTR03IS03 displayed an RSD greater than the upper QC limit of 30% for nitroglycerin at 101%. No field sample results were qualified based on these anomalies; they were previously qualified due to LCSs percent recovery anomalies.

A serial dilution is prepared by the laboratory after digestion for the metals analyses for each preparation batch by creating a 1:5 dilution of a digestate in water. The serial dilution result should be within 10% of the neat digest. A serial dilution displayed percent differences greater than the QC limit of 10% for copper at 13% and zinc at 11%. Several zinc and copper field sample results were qualified as estimate due to these anomalies, and the data should be considered usable as qualified. These anomalies are considered minor.

An MS pair was prepared, analyzed, and reported for all preparation batches. MS pairs were analyzed for every analytical batch to demonstrate the laboratory's ability to detect similar concentrations of a known quantity in site matrix media. No field sample results were qualified based on MS/MSD relative percent difference anomalies.

For XRF screening data, each discrete sample was analyzed four times. Due to the natural variability in the distribution of metals in soil media, replicate concentrations of lead were averaged to represent a given grid's sample concentration. The highest recorded \pm error (2-sigma, 95 percent confidence) of the four replicates was used to represent the maximum potential error associated with any given replicate of the sample. The maximum error observed among all sample replicates was \pm 613 ppm at Target Berm location RTR01X20. The concentrations at this location were an order of magnitude above the decision criterion (400 mg/kg); therefore, XRF precision is consistent with the data quality objectives.

Accuracy

Accuracy is the degree of agreement between an observed value and an accepted reference value. The smaller the difference between the measurement of a parameter and its "true" or expected value, the more accurate the measurement. The more precise or reproducible the result, the more reliable or accurate the result. Accuracy is measured through percent recoveries in the LCS, the matrix spike pairs (MS/MSD), surrogates, and internal standard area counts.

LCS are prepared by addition of known concentrations of each analyte in a matrix free media known to be free of target analytes. LCS were analyzed for every analytical batch to demonstrate that the analytical system was in control during sample preparation and analysis. One LCS performed displayed a percent recovery less than the lower OC limit of 73% for nitroglycerin at 55.6%. These anomalies are considered minor, the positive and ND associated results were qualified as estimate, and the data should be considered usable as qualified.

Matrix spikes are prepared by addition of known concentrations of each analyte in one selected investigative field sample per extraction batch. MSs demonstrate that the analytical system was in control for the matrix being tested. The MS/MSD performed on field samples RTR01IS01, RTR04IS01, and RTR05DD01A displayed percent recoveries outside the QC limits for antimony, copper, and zinc. The field sample results associated with the percent recoveries less than the lower QC limit were positive and qualified as estimate with a likely low bias. Field sample results associated with one negative bias and one positive bias were qualified as estimate with an undetermined bias. One positive field sample result was qualified due to an MS percent recovery greater than the upper QC limit for nitroglycerin. These anomalies are considered minor, the positive and ND associated results were qualified as estimate, and the data should be considered usable as qualified. One ND field sample result was associated with percent recoveries less than 30% was qualified R₂m. This is considered a major anomaly, and this data point is not recommended for data use.

LCSs were analyzed for every analytical batch to demonstrate that the analytical system was in control during sample preparation and analysis. All reported percent recoveries were within the accuracy criteria outlined in the UFP-QAPP.

In organic analyses, a surrogate spike is added to every submitted sample and laboratory QC sample prepared in the QC batch. Surrogate spikes are prepared by addition of known concentrations of non-target analytes to all samples in the QC batch. Three positive nitroglycerin results associated with high surrogate percent recoveries were qualified as estimate with a high bias. One ND result associated with a surrogate percent recovery less than the lower control limit

was qualified as estimate with a low bias. These anomalies were considered minor and the data should be considered usable as qualified.

For the XRF data, the measured values are presented with a \pm error reading. For the Target Berm, the higher lead values (above 1000 ppm) were associated with higher \pm errors. In only a few samples with detected concentrations near the 400 ppm action level could the associated error indicate that the true value may or may not exceed the threshold. In these cases (for example, sample RTR01X38, 400 ppm lead with \pm 31 ppm error), it was conservatively assumed that the XRF value exceeded 400 ppm.

Representativeness

Representativeness is the measure of the degree to which data accurately and precisely represent a characteristic of a population, a parameter variation at a sampling point, a process condition, or an environmental condition. In other words, representativeness is the qualitative measurement that describes how well the analytical data characterizes a specific area of interest. Several factors including selection of appropriate analytical procedures, sampling plan, matrix heterogeneity, and the specific procedures and protocols used to collect, preserve, and transport samples can all influence how representative the analytical results are for a given sampled area. It is imperative that field sampling and collection occurs at appropriately designated locations that accurately represent the area of interest. For example, when sampling for MC, visual observances (small metal fragments or munition debris in surrounding area) in combination with designated sampling depths (e.g., 0-6, 12-24, and 24-30 inches bgs) and appropriate sample collection will help to ensure accurate representation of a specific area of interest. Thus, the sampled soil is known to be located within the MRS, at appropriate step out locations, and background area.

Representativeness qualitatively expresses the degree to which data accurately reflect site conditions. Factors that affect the representativeness of analytical data include appropriate sample population definitions, proper sample collection and preservation techniques, analytical holding times, use of standard analytical methods, and determination of matrix or analyte interferences.

No analytes were detected at concentrations greater than the limit of detection (LOD) in the equipment blank. Therefore, the equipment blank measurement performance criterion was met. Equipment blanks were not collected for discrete or XRF samples since these samples were collected using dedicated, disposable single use spoons.

A method blank is a sample of an analyte-free substance similar to the matrix of interest that is subjected to all of the sample digestion and analytical methodology applied to the samples. The purpose of the method blank is to check for contamination from within the laboratory that might be introduced during sample preparation and analysis that would adversely affect analytical results. Some method blanks displayed detections greater than the LOD for barium, copper, lead, and zinc. The positive associated field sample results for lead and copper in sample RTR03IS00 and for barium in sample RTR02DS02A were less than five times the blank detections and were qualified B. These field sample results should be considered likely false positives.

Laboratories establish a method-specific technical holding time from sampling to preparation or analysis where sample results can be considered valid based on site-specific conditions. All

samples must be placed in appropriate containers that are appropriately preserved (as applicable). The holding time for soil from sampling to analysis for SW-846 6020A is six months. Soil samples analyzed for nitroglycerin by SW-846 method 8330B have a holding time of 40 days. Soil samples analyzed for TCLP have a holding time of 28 days for mercury and reactivity. All samples were analyzed within required holding times for their respective method.

XRF analyzers are factory calibrated; field calibration is not appropriate or possible. Calibration checks and analysis of standard reference material were conducted prior to XRF analysis (**Appendix A**). No calibration failures or deviations from expected standard concentrations were observed. Use of the standard sampling protocols at each location ensured representativeness of the medium being sampled (soil) because it allows standardizing sample sizes, reliably achieving the targeted sample depths, and decontamination of samplers was simple, thus minimizing cross contaminating samples.

Field QC samples were collected to assess the representativeness of the data collected. Field duplicates were collected at a rate of 10 percent for all discrete samples. All preservation techniques were followed by the field staff, and all technical and analytical holding times were met by the laboratory. The laboratory used approved standard methods as outlined in the UFP-QAPP for all analyses.

Comparability

Comparability is the degree to which different methods, data sets, and decisions agree or can be represented as similar. Comparability describes the confidence (expressed qualitatively or quantitatively) that two data sets can contribute to a common analysis and interpolation. The results of this study will be used as a benchmark for determining comparability for data collected during any future sampling events using the same or similar sampling and analytical SOPs. It is not anticipated that the data will be compared to past datasets or data using different sampling or analytical SOPs. The data reviewer found that the overall comparability of the dataset was acceptable based on conformance to approved sampling procedures and standard analytical methods.

Data comparability between the background and MRS sampling data is necessary to accurately screen DU concentrations against the background. Comparability was achieved by implementing identical sampling and analytical procedures in both the background area and MRS. Loamy soil types were encountered at the DUs and in the Background Reference Area (see soil sample collection logs, **Appendix A**).

Completeness

Completeness is a quantitative measure of the amount of valid data obtained from a measurement system compared to the amount of data that were expected to be obtained under normal circumstances. Overall completeness is usually expressed as a percentage of usable analytical data. Overall data completeness is greater than 99.9% of the analytical data points collected.

Sensitivity

Sensitivity reflects the ability of the analytical method to discriminate between measurement responses representing different levels and to detect analytes of interest below the level of concern. This goal is achieved by identifying the level of concern, choosing a method with

appropriate method detection limit, and ensuring that the laboratory analyzes calibration standards at or below the level of concern. The laboratory was able to achieve the lowest reporting limits based on the analytical methods employed and the sample matrix encountered. For results with detections, the detected concentration was compared to applicable human health and ecological screening levels. For non-detect results, the LOD was compared to applicable human health and ecological screening levels. Based on these criteria, the data reviewer found all data to be of acceptable sensitivity.

Daily calibration checks and analysis of standard reference material ensured that the Innov-X Alpha 4000 XRF analyzer sensitivity did not drift during the mobilization (Appendix A). No calibration failures or deviations from expected standard concentrations were observed.

4.2.1 Field Audits/Corrective Actions

No independent field audit was conducted given that the field team was comprised of scientists skilled at the specific sampling methodology and had assisted in preparing the UFP-QAPP and SOPs. Site photographs, standard field forms, and Daily Quality Control Reports (DQCR) show that the proper equipment was being used and QC samples were collected. The DQCRs were submitted daily to the AECOM project manager. Additionally, a Non-Conformance Report was created to address the need for additional sediment sampling from the drainage adjacent to the MRS. These documents appear in **Appendix A**. The AECOM project manager reviewed all field documents for completeness and compliance with the UFP-QAPP.

5 Remedial Investigation Results

This section provides the results of the field investigation at the Ridgway Training Range MRS. Data from the RI combined with previous information were used to further develop the CSM and inform recommendations for future site work. A summary of the field activities conducted for this RI is presented first, followed by XRF sampling results, discrete subsurface sampling results, and ISM sampling results broken out by area. The nature and extent of contamination across the entire MRS is presented last.

All data were validated using the procedures outlined in **Section 4.1**. The data validation report and analytical data package are included in **Appendices C** and **D**. Per the Data Usability Assessment in **Section 4**, all collected data are useable for their intended purpose. Field forms are included in **Appendix A**, and the photo log is included in **Appendix B**.

5.1 **Field Activities and Conditions**

Following the methods described in **Section 3**, soil and/or sediment samples were collected from the Target Berm, Soil Pile, Firing Point, and French Drain Outfall DUs at the MRS and an adjacent Background Reference Area. Sampling occurred over a one-week period from 8 July through 13 July 2018. Sampling grids were laid out prior to initiating sampling activities following the planned approach presented in the UFP-QAPP. Grid spacing at the Target Berm was 10 feet long by 4 feet wide (129 nodes); Firing Point grids were 6 feet long by 5 feet wide (36 nodes); and Background Reference Area grids were 15 feet long by 10 feet wide (30 nodes). Deviations from planned sampling at the Target Berm and Firing Point DUs were necessary to capture the entire DU areas. DU dimensions during planning were based on estimates. Field measurements necessitated the modification of the DU sampling strategy.

5.2 **XRF Screening Results**

The Target Berm was screened for lead by handheld XRF prior to ISM sampling to evaluate the lateral extent of MC in soil and refine DU boundaries. Discrete surface soil samples were collected from 0-6 inches bgs along the sampling grid at each DU. Four replicate sample readings were analyzed for each sample; the results were averaged and compared to the human health screening criterion for lead to determine the need for step-out and discrete sampling.

Initially, 32 samples were collected and analyzed for lead by XRF at the Target Berm. All original DU boundary location samples exceeded the human health criterion for lead (400 mg/kg), triggering step-out sampling. An additional 101 samples were collected and analyzed along extended grid nodes until exceedances were no longer observed. In total, 133 samples within and beyond the MRS walls were collected and analyzed to refine the DU boundary. Stepout samples were taken north of the northern MRS wall, east of the Target Berm within the MRS, and south of the southern MRS wall. Lead results ranged from 41 ppm (at grid #130) to 24,543 ppm (at grid #6). XRF analysis was not performed at the Firing Point DU because XRF is not a suitable tool for screening nitroglycerin. Additionally, XRF was not performed at the Soil Pile DU because of anticipated MC contamination in the Soil Pile and its relatively defined extent as an above ground feature. XRF analysis was not performed at the French Drain Outfall DU

AECOM Prepared for: Army National Guard

because XRF analysis is not feasible for wet soils and sediment. A summary of discrete XRF lead results is provided in **Table 5-1** and shown on **Figure 5-1**.

Table 5-1. Summary of Discrete XRF Lead Results - Target Berm

., -,	8 1 22 1		83 X		8 A		8 75 X 18	55 X		8 2		2 % 2 %	8		(8 - S				Н	8 8	H	9 (i) 8 (i)			8 S		S 8		Н		Н		H
Max Error (+/-)*	06	123	68	120	31	215	69	19	165	44	43	83	68	74	91	19	44	20	39	39	32	44	36	43	31	21	38	11	28	24	34	34	23
Average Lead Result (ppm)	3,566	6,938	2,086	4,389	400	5,247	2,381	2,990	4,708	673	868	2,088	2,732	2,402	1,461	2,083	1,280	1,161	465	841	942	1,171	670	1,151	737	338	758	264	428	471	763	717	419
Moisture (%)	12	17	15	18	19	14	10	19	17	10	8	14	19	18	16	14	18	19	12	18	18	18	15	15	19	16	15	18	18	15	16	18	15
Sample ID	RTR01X34	RTR01X35	RTR01X36	RTR01X37	RTR01X38	RTR01X39	RTR01X40	RTR01X41	RTR01X42	RTR01X43	RTR01X44	RTR01X45	RTR01X46	RTR01X47	RTR01X48	RTR01X49	RTR01X50	RTR01X51	RTR01X52	RTR01X53	RTR01X54	RTR01X55	RTR01X56	RTR01X57	RTR01X58	RTR01X59	RTR01X60	RTR01X61	RTR01X62	RTR01X63	RTR01X64	RTR01X65	RTR01X66
Notes				Dried sample before analysis						The second secon	Dried sample before analysis	28 1111 1111 1111 1111 1111																					Dried sample before analysis
Max Error (+/-)*	518	413	358	488	188	499	462	478	219	345	409	317	31	84	354	312	260	411	528	613	265	493	180	333	12	332	478	366	288	400	365	400	53
Average Lead Result (ppm)	16,486	14,327	15,167	18,071	7,608	24,543	6,843	15,820	13,436	17,020	14,400	3,966	200	11,575	15,603	9,943	12,206	19,016	16,572	10,040	13,003	20,661	8,138	6,965	119	16,236	18,337	6,687	8,829	15,640	13,698	14,375	1,532
Moisture (%)	13	20	19	19	13	15	16	LL	14	15	18	11	21	14	12	14	16	12	14	19	17	16	14	48	91	12	16	19	17	16	18	15	18
Sample ID	RTR01X01	RTR01X02	RTR01X03	RTR01X04	RTR01X05	RTR01X06	RTR01X07	RTR01X08	RTR01X09	RTR01X10	RTR01X11	RTR01X12	RTR01X13	RTR01X14	RTR01X15	RTR01X16	RTR01X17	RTR01X18	RTR01X19	RTR01X20	RTR01X21	RTR01X22	RTR01X23	RTR01X24	RTR01X25	RTR01X26	RTR01X27	RTR01X28	RTR01X29	RTR01X30	RTR01X31	RTR01X32	RTR01X33

Dried sample before analysis

Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis

Dried sample before analysis Dried sample before analysis Dried sample before analysis

Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis
Dried sample before analysis

Dried sample before analysis

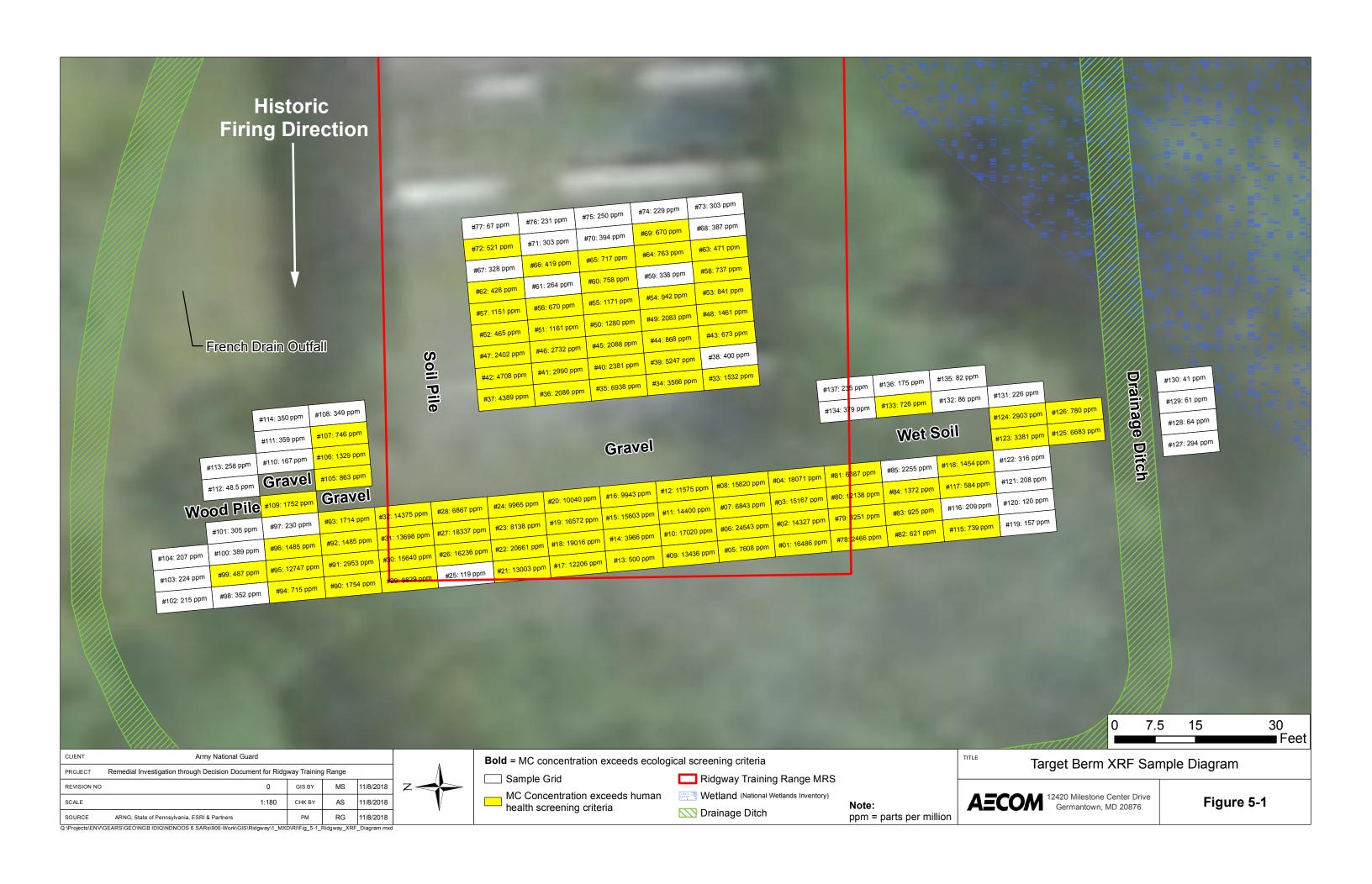
* = Error: 2-sigma, 95% confidence

Sample meets or exceeds residential soil RBSL for lead

ppm = parts per million

Dried sample before analysis

Dried sample before analysis Dried sample before analysis Dried sample before analysis Dried sample before analysis


Table 5-1. Summary of Discrete XRF Lead Results – Target Berm (continued)

Notes	Dried sample before analysis	Dried sample before analysis											Dried sample before analysis	100			Dried sample before analysis	Dried sample before analysis					Dried sample before analysis													
Max Error (+/-)*	18	17	30	42	35	27	09	32	29	10	22	21	25	19	26	47	15	14	20	21	06	117	164	49	18	10	15	10	26	12	24	17	6	15	13	
Average Lead Result (ppm)	224	207	863	1,329	746	349	1,752	167	329	49	258	350	739	209	584	1,454	157	120	208	316	3,381	2,903	6,683	780	294	64	61	41	226	98	726	379	82	175	235	
Moisture (%)	17	18	18	20	10	18	16	17	19	18	19	18	15	10	11	14	16	17	14	12	10	14	19	18	16	19	12	18	18	15	18	18	19	18	16	
Sample ID	RTR01X103	RTR01X104	RTR01X105	RTR01X106	RTR01X107	RTR01X108	RTR01X109	RTR01X110	RTR01X111	RTR01X112	RTR01X113	RTR01X114	RTR01X115	RTR01X116	RTR01X117	RTR01X118	RTR01X119	RTR01X120	RTR01X121	RTR01X122	RTR01X123	RTR01X124	RTR01X125	RTR01X126	RTR01X127	RTR01X128	RTR01X129	RTR01X130	RTR01X131	RTR01X132	RTR01X133	RTR01X134	RTR01X135	RTR01X136	RTR01X137	
Notes																Dried sample before analysis	Duplicate readings of RTR01X82	Duplicate readings of RTR01X83	Duplicate readings of RTR01X84	Duplicate readings of RTR01X85								Dried sample before analysis	Dried sample before analysis	Dried sample before analysis			Dried sample before analysis			
Max Error (+/-)*	21	21	34	56	28	31	19	20	19	16	13	28	87	236	170	23	26	41	50	85	49	45	61	144	98	45	43	31	45	59	16	18	37	22	15	16
Average Lead Result (ppm)	328	387	029	394	303	521	303	229	250	231	29	2,466	3,251	12,138	6,387	621	925	1,372	2,255	3,108	1,762	1,210	2,202	1,754	2,953	1,485	1,714	715	1,277	626	230	352	487	389	305	215
Moisture (%)	12	12	13	18	18	19	16	17	16	18	12	15	15	15	18	18	19	15	18	16	15	15	16	18	15	19	18	18	19	18	19	15	18	18	15	17
Sample ID	RTR01X67	RTR01X68	RTR01X69	RTR01X70	RTR01X71	RTR01X72	RTR01X73	RTR01X74	RTR01X75	RTR01X76	RTR01X77	RTR01X78	RTR01X79	RTR01X80	RTR01X81	RTR01X82	RTR01X83	RTR01X84	RTR01X85	RTR01X86	RTR01X87	RTR01X88	RTR01X89	RTR01X90	RTR01X91	RTR01X92	RTR01X93	RTR01X94	RTR01X95	RTR01X96	RTR01X97	RTR01X98	RTR01X99	RTR01X100	RTR01X101	RTR01X102

* = Error: 2-sigma, 95% confidence

Sample exceeds residential soil RBSL for lead

ppm = parts per million

5.3 Incremental Sampling Results

ISM samples were collected after XRF screening was complete using the revised Target Berm DU boundary. ISM samples were also collected at the Firing Point and Background Reference Area DUs. XRF screening was not needed at the Firing Point or Background Reference Area, but those DUs were revised as described in **Section 3.1.2**. Sample collection logs are included in **Appendix A**. All IS results are summarized in **Table 5-2**, and shown on **Figure 5-2**.

Background Reference Area

An IS was collected from a 0.106 acre Background Reference Area southeast of the MRS within the southwestern portion of the Ridgway Weekend Training Site (**Figure 5-2**). IS were collected in triplicate (RTR04IS01, -02, and -03), with each IS containing 30 increments of equal volume. Soil within the background area was predominantly comprised of silt loam (approximately 60% silt/clay and 40% sand) with organic content and 20% moisture content. No evidence of small arms range impact or debris was observed within the area or samples.

Analytical results showed that nitroglycerin was not detected in any Background IS sample. Antimony ranged from 0.244 to 0.682 mg/kg among triplicate samples. Copper concentrations ranged from 10.5 to 12.7 mg/kg. Lead concentrations ranged from 59.2 to 82.3 mg/kg. Zinc concentrations ranged from 23 mg/kg to 33.5 mg/kg. No results exceeded human health screening criteria (**Table 5-2**). Antimony and lead concentrations exceeded ecological screening criteria.

Target Berm

ISM was applied to the revised Target Berm DU boundary (0.126 acres) established following XRF screening (**Figure 5-2**). IS were collected in triplicate (RTR01IS01, -02, and -03); each IS contained 129 increments of equal volume. Soil at the Target Berm was predominantly a sandy loam (approximately 35% silt/clay, 60% sand, and 5% gravel), with a medium amount organic content (fine roots), and 20% moisture content (**Appendix A**).

Antimony concentrations at the Target Berm ranged from 24.8 to 40.1 mg/kg. Copper concentrations ranged from 481 to 636 mg/kg. Lead concentrations ranged from 5,720 to 8,770 mg/kg. Zinc concentrations ranged from 149 to 165 mg/kg. All MC concentrations exceeded their respective ecological screening value, and all MC constituents except for zinc exceeded their respective human health screening value. All MC concentrations were elevated above their respective background concentrations (**Table 5-2**).

Firing Point

IS were collected from a 0.016-acre area at the Firing Point DU in triplicate (RTR03IS01, -02, and -03); each IS contained 36 increments of equal volume. Soil at the Firing Point was

Remedial Investigation Report Ridgway Training Range, PA

predominantly loamy/sandy loam (approximately 40% silt/clay, 50% sand, 5% gravel, and 5% cobble), significant amounts of silt, a medium amount of organic content, and 15% moisture content. A 5.56mm casing was observed on the concrete platform adjacent to the firing positions at the covered Firing Point DU.

Nitroglycerin concentrations in soil samples at the Firing Point DU ranged from 3.7 to 21 mg/kg in triplicate samples. All nitroglycerin concentrations exceeded the human health screening criteria for soil. One triplicate sample (RTR03IS03) exceeded the ecological screening criteria for soil. All nitroglycerin concentrations were elevated above background concentrations (Table 5-2).

Table 5-2. Incremental Sampling Results Summary

	Sample De	Location: Sample ID: opth (inches bgs): Date Collected:		RTR04IS 0-6 7/12/201				ound R TR04I 0-6 7/12/20	S02	ice		TR04I 0-6 7/12/20		
Analyte	Human Health Screening Level	Ecological Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
	y USEPA SW-846													
Antimony	3.1	0.27	0.244	N	J-	m	0.682		J	m	0.626		J-	m
Copper	310	28	12		J	S	12.7		J	S	10.5		J	S
Lead	400	11	59.2	NA			81.8				82.3			
Zinc	2,300	46	33.2		J	m	33.5		J	m	23		J	m
Explosives by	USEPA SW-846	Method 8330B (ı	mg/kg)				·							
Nitroglycerin	0.63	13	0.460	ULMM	UJ		0.44	UL	UJ		0.38	U	UJ	S

	Sample De	Location: Sample ID: pth (inches bgs): Date Collected:	F	RTR01IS 0-6 7/11/20			R	rget Be TR011: 0-6 7/11/20	S02			TR01I: 0-6 7/11/20		
Analyte	Human Health Screening Level	Ecological Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals b	y USEPA SW-846	Method 6020A	(mg/kg)											
Antimony	3.1	0.27	24.80	NA	J-	m	27		J-	m	40.1		J-	m
Copper	310	28	636	N*EA	J	s	481		J	s	612		J	S
Lead	400	11	5720	NA			6180				8770			
Zinc	2,300	46	158	NEA	J	m	149		J	m	165		J	m

	Sample De	Location: Sample ID: pth (inches bgs): Date Collected:		RTR03IS 0-6 7/12/20			R	ring Po TR03I: 0-6	S02			TR03I: 0-6 7/12/20		
Analyte	Human Health Screening Level	Ecological Screening Level	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Explosives by	USEPA SW-846	Method 8330B (r	ng/kg)											
Nitroglycerin	0.63	13	3.70	L	J		4.4	LMM	J		21	L	J	

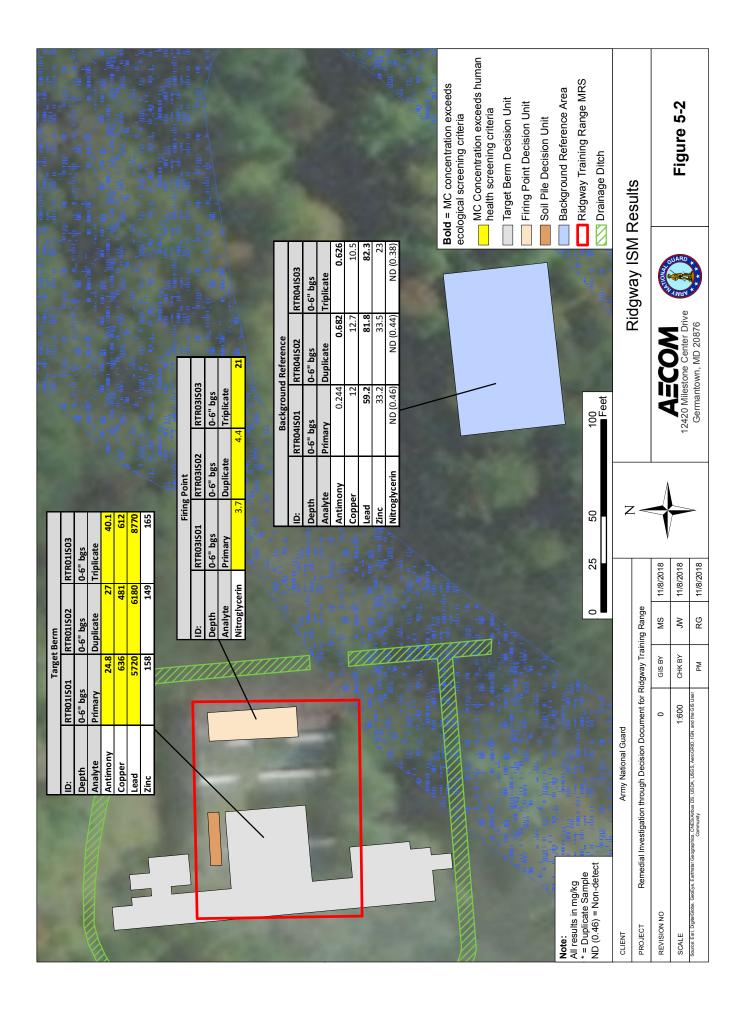
Notes:

Bold = Sample exceeds Ecological Screening Level
Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = Laboratory qualifier (LQ flags available in lab report)

VQ = Validiation qualifier RC = Reason Code U = non-detect J = estimated


J- = estimated, negative bias

UJ= non-detect, estimated detection limit

I = LCS recovery failure

m = MS/MSD percent recovery anomaly

s = surrogate failure

5.4 **Discrete Sampling Results**

Discrete samples were collected from the Target Berm, Soil Pile, Firing Point, and French Drain Outfall DUs. Surface and subsurface samples were collected to assist in delineating the lateral and vertical extent of MC in soil and sediment at the MRS DUs.

Target Berm

At the Target Berm DU, the location with the highest observed concentration of lead in surface soil via XRF analysis was at grid #06 (24,543 ppm lead), located at the southern end of the Target Berm area within the MRS walls (Figure 5-1). This location was selected for the collection of a TCLP sample from 0-6 inches bgs (Figure 5-3a). No subsurface soil sampling for small arms metals occurred at this location due to refusal at a cobble layer before reaching the 12-18 inches bgs soil layer. Two surface soil samples (RTR01DS01A and RTR01DS02A) were collected from beneath the gravel pad at the base of the Target Berm to confirm the migration of MC from the Target Berm to the range floor, where XRF analysis confirmed lead at concentrations exceeding the human health screening criterion. Both samples showed exceedances to human health screening criteria in small arms MC, confirming the pathway from the Target Berm to the range floor.

Subsurface sample locations at the Target Berm were selected to represent subsections of the expanded DU: RTR01DA01 (south of the MRS walls), RTR01DA03 (within the MRS walls), RTR01DA04 (north of the MRS walls), and RTR01DA05 (the range floor area east of the Target Berm). At each location except for RTR01DA05, a discrete sample was collected from two depths: 12-18 inch bgs (DA sample) and 24-30 inches bgs (DB sample). At RTR01DA05 the sample depth of 24-30 inches could not be reached due to refusal at a cobble layer (Figure 5-3a).

Subsurface soil from the 12-18 inches bgs layer at grid #22 (RTR01DA03A) and grid #91 (RTR01DA04A) exceeded the human health criterion for lead (17,500 and 10,600 mg/kg, respectively) and antimony (89.5 and 64.8 mg/kg, respectively). Copper concentrations at grid #22 (1,830 mg/kg) also exceeded the human health criterion. Copper concentrations exceeded their ecological screening levels at grid #91, and zinc concentrations in samples from both grid #22 and grid #91 exceeded the ecological screening criterion for zinc. Analytes detected in subsurface soil from the 24-30 inches bgs layer at grid #22 and grid #91 exceeded human health criterion for lead (6,360 and 824 mg/kg, respectively), and antimony (34.8 and 5.47 mg/kg, respectively). Copper concentrations in subsurface soil from the 24-30 inches bgs layer at grid #22 (961 mg/kg) also exceeded the human health criterion. Copper concentrations exceeded their ecological screening levels in subsurface soil from the 24-30 inches bgs layer at grid #91, and zinc concentrations in subsurface soil from the 24-30 inches bgs layer at both grid #22 and grid #91 exceeded the ecological screening criterion for zinc. No small arms debris (i.e., bullet fragments or casings) were observed in any subsurface samples collected. Table 5-4 and Figure 5-3a present the results of discrete soil sampling at the Target Berm. Sampling at greater depths at grid #22 and grid #91 was prohibited by a cobble layer.

The TCLP sample collected from grid location #6 exhibited waste characteristics of toxicity for lead. The following TCLP metals were detected: arsenic (0.018 mg/L), barium (0.542 mg/L), cadmium (0.00692 mg/L), chromium (0.0035 mg/L), selenium (0.022 mg/L), silver (0.0031 mg/L), lead (720 mg/L), and mercury (0.000021 mg/L). Of these, lead was the only TCLP analyte to exceed its 40 CRF 261.24 Toxicity Characteristic level for solid waste (5.0 mg/L).

Two additional discrete sediment samples were collected from the drainage ditch south of the MRS to assess transport of MC from the southern end of the Target Berm to the drainage ditch sediment (RTR01DD01A and RTR01DD02A). Copper and lead exceeded their ecological screening criteria at concentrations of 79.7 and 242 mg/kg, respectively, in the sample nearest the Target Berm (RTR01DD01A). Figure 5-4 presents the results of discrete sediment sampling at the Target Berm.

Firing Point

At the Firing Point DU, three locations were selected for subsurface sampling adjacent to and immediately downrange from the firing positions to represent the area most likely to be exposed to MC during training: RTR03DA01 (southernmost location within the Firing Point DU), RTR03DA02 (central location between the Firing Point concrete pad and northern MRS wall), and RTR03DA03 (northernmost location with the Firing Point DU).

Subsurface soil from the 12-18 inch bgs layer exceeded the human health criterion for nitroglycerin in all samples, ranging from 0.66 mg/kg to 1.3 mg/kg. Across the Firing Point DU, the sample depth of 24-30 inches could not be reached due to refusal at a cobble layer. Deeper samples were not collected from the Firing Point DU. A TCLP sample was collected from surface soil (0-6 inches bgs) at RTR03DA01. The sample did not exhibit any waste characteristics of toxicity. Nitroglycerin was ND (less than 0.002 mg/kg) in the surface soil sample. Nitroglycerin does not have a federal Toxicity Characteristic level for solid waste.

Surface soil samples were also collected at the Firing Point to determine the lateral extent of MC in DU soil. Samples were collected from three locations east of the covered Firing Point for laboratory analysis of nitroglycerin: RTR03DS01, RTR03DS02, and RTR03DS03. Nitroglycerin ranged from 0.31 mg/kg to 0.55 mg/kg in surface soil samples. Nitroglycerin did not exceed human health or ecological screening criteria in any sample. No small arms debris (i.e., bullet fragments or casings) were observed in any surface or subsurface samples collected. Table 5-4 and Figure 5-3b present the results of discrete soil sampling at the Firing Point.

Soil Pile

At the Soil Pile, 12 discrete soil samples were collected at random locations across the DU. Six samples were collected from 0-12 inches below the surface of the Soil Pile (RTR02DS01A through RTR02DS06A), and six samples were collected from 12 inches above ground surface to

AECOM Prepared for: Army National Guard

the ground surface (RTR02DS07A through RTR02DS12A). Additionally, a discrete soil sample was collected from RTR02DS02A for waste characterization analysis (e.g., TCLP).

Soil from both layers at the Soil Pile DU exceeded the human health criteria for antimony (maximum concentration of 1080 mg/kg [RTR02DS11A]), copper (maximum concentration of 2060 mg/kg [RTR02DS10A]), and lead (maximum concentration of 57,200 mg/kg [RTR02DS11A]). Zinc concentrations did not exceed human health screening criterion, but did exceed ecological screening criterion (46 mg/kg) with a maximum concentration of 443 mg/kg [RTR02DS10A]. No small arms debris (i.e., bullet fragments or casings) were observed in any samples collected.

The TCLP sample collected from RTR02DS02A exhibited waste characteristics of toxicity for lead. The following TCLP metals were detected: barium (0.43 mg/L), cadmium (0.0019 mg/L), chromium (0.02 mg/L), selenium (0.023 mg/L), silver (0.0018 mg/L), lead (6.46 mg/L), and mercury (0.00005 mg/L). Arsenic and chromium were not detected (ND<0.025mg/L, and ND<0.02 mg/L, respectively). Of the TCLP metals detected, lead was the only analyte to exceed its 40 CRF 261.24 Toxicity Characteristic level for solid waste (5.0 mg/L). Table 5-4 and Figure **5-3c** present the results of discrete soil sampling at the Soil Pile.

French Drain

At the French Drain Outfall DU, eight discrete sediment samples were collected at random locations within the ponded outfall area (RTR05DD01 through RTR05DD08). One additional sample was collected approximately ten feet east of the ponded area (RTR05DD09), and one additional sample was collected approximately ten feet west of the ponded area (RTR05DD10). Sediment samples were collected from 0-6 inches bgs. Additionally, a discrete sediment sample was collected from RTR05DD02 for waste characterization analysis (e.g., TCLP).

No sediment samples from the French Drain Outfall DU exhibited MC concentrations exceeding human health screening criteria. Copper concentrations in sample RTR05DD02A (38.7 mg/kg), from within the ponded area, exceeded ecological screening criterion. Lead concentrations in all but one sample (RTR05DD07A) exceeded ecological screening criterion for lead.

The TCLP sample collected from RTR02DS02A was not analyzed due to the lack of human health screening criteria exceedances in French Drain Outfall DU sediment samples. No small arms debris (i.e., bullet fragments or casings) were observed in any samples collected. **Table 5-4** and **Figure 5-4** present the results of discrete sediment sampling at the French Drain Outfall.

AECOM Prepared for: Army National Guard

Table 5-3. Discrete Soil and Sediment Sample Results

		Sample ID:	DTD	1DA01	Δ	RTR0	1ΠΔ0	1R *		RTR0	1DC	.02Δ	DTD	R01DA0	13 Δ	RTR	MDR	በ3Δ	_	RTR0	1DA	04Δ	$\overline{}$	RTR0	1DB0	1Δ
	De	ecision Unit - XRF Location:	Target			Target			0	Target				t Berm		Target			,	Target E			+	Target E		
	20	Media:		Soil			Soil	# U	*+		Soil		range	Soil	# 		Soil		+		Soil	#01			Soil	#01
		Sample Depth (inches bgs):		2 - 18			2 - 18		+) - 6			12 - 18			4 - 30)	+		2 - 18				- 30	
		Date Collected:		2/2018			2/201		+	7/12		18		12/201			2/201		+		2/201				2/2018	
	Urrana Haalth Caraanina							<u> </u>	+										+				十			
	Human Health Screening																									
Analyta	Level (mg/kg) Soil / Sediment	Level (mg/kg) Soil / Sediment	Docult	10 V	O BC	Docult	اما	VO	BC	Docult		VO BC	Docult	10	VO BC	Result	اما	VO	00	Docult	10	VO		Pocult		IO BC
Analyte			Result	LQ V	Q KC	Result	LQ	VQ I	KC	Result	LQ	VQ KC	Result	LQ	VQ KC	Result	LQ	VQ	C	Result	LQ	VQK	C	Result	LQ	Q KC
	PA SW-846 Method 6020A (_			$\overline{}$				
Antimony	3.1 / 880	0.27 / 2	0.336		\bot	0.366			_				89.5	N*A		34.8			_	64.8	\vdash	\longrightarrow	_	5.47	\vdash	\longrightarrow
Copper	310 / 81000	28 / 31.6	17.3	В		16.5	В						1830	N*B		961	В			298	В	$-\!$	┸	65.1	В	
Lead	400 / 5000	11 / 35.8	55.8	BJ	J f	110	В	J	f				17500	N*BA		6360	В			10600	В			824	В	
Zinc	2300 / 660000	46 / 121	81.2			63.4							292	N*A		189				117	Ш			107		
Explosives by USEP	A SW-846 Method 8330B (n	ng/kg)			_								_			_										
Nitroglycerin	0.63 / NA	13 / NA														-										
Toxicity Characterist	tics Leaching Procedure (v	arious methods)			_								_			_										
Arsenic (µg/L)	NA	NA								18	J															
Barium (µg/L)	NA	NA	-							542						-				1						
Cadmium (µg/L)	NA	NA								6.92	J															
Chromium (µg/L)	NA	NA	-							3.5	J		-			-										
Selenium (µg/L)	NA	NA								22	J									-						
Silver (µg/L)	NA	NA								3.1	_									-						
Lead (µg/L)	NA	NA							7	720000																
Mercury (µg/L)	NA	NA								0.021	J															
Nitroglycerin	NA	NA																								

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

		0	DID	MD 400		DID	4000	24.4	DID	0400	2004	DID	040004		DID	04 D.F	2004		DID	0000	044	DIE	00D004D
	D-	Sample ID:		1DA05		RTRO					S02A		01DD01/		RTR					02DS			02DS01B
	De	cision Unit - XRF Location:	Target		#45	Target		I - NA			m - NA		Berm - I	NA .	Target			NA .		Pile -	NA		Pile - NA
	_	Media:		Soil			Soil			Soil		Se	diment			dime	ent			Soil			Soil
		Sample Depth (inches bgs):		2 - 18			0-6		7//	0-6		7/	0-6			0-6	40) - 12			0 - 12
		Date Collected:	//1	2/2018		//1	2/201	8	//	2/20	18	//	12/2018	_	//1	2/20	18	_	11	9/201	<u> </u>	//	9/2018
	Human Health Screening	Ecological Screening																					
	Level (mg/kg)	Level (mg/kg)																					
Analyte	Soil / Sediment	Soil / Sediment	Result	LQ V	Q RC	Result	LQ	VQ R	Result	LQ	VQ RC	Result	LQ VC	RC	Result	LQ	VQ	RC	Result	LQ	VQ RC	Result	LQ VQ RO
Total Metals by USE	PA SW-846 Method 6020A (mg/kg)							_														
Antimony	3.1 / 880	0.27 / 2	0.195			46.2			4.14			0.966			0.18				51.2	N*	J d	4.93	J d
Copper	310 / 81000	28 / 31.6	20.8	В		600			57			79.7			15.3	В			828	NA	J f	145	J f
Lead	400 / 5000	11 / 35.8	41.2	В		7990			1130			242			15.8	В			6940	N*A	J d	999	J d
Zinc	2300 / 660000	46 / 121	62.2			159			93.2			74.9			62.4				266	N	J f	106	J f
Explosives by USEP	A SW-846 Method 8330B (n	ng/kg)							_						_				_				
Nitroglycerin	0.63 / NA	13 / NA	-			-						1							-				
Toxicity Characteris	tics Leaching Procedure (v	arious methods)							_						_								
Arsenic (µg/L)	NA	NA																					
Barium (µg/L)	NA	NA	-																				
Cadmium (µg/L)	NA	NA																					
Chromium (µg/L)	NA	NA	-																				
Selenium (µg/L)	NA	NA																					
Silver (µg/L)	NA	NA	-																				
Lead (µg/L)	NA	NA		\perp						\perp										'	'		
Mercury (µg/L)	NA	NA	-	\perp						\perp										'	'		\bot
Nitroglycerin	NA	NA																					

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

		Sample ID:	DTD)2DS02	۸	DTD	2DS0	2 /	RTR	אחמו	044	_	DTD	02DS0	5 A	RTR	אסטפ	ne v		DTD	02DS0	7.0	DTD	02DS0	9Λ
	Do	cision Unit - XRF Location:		Pile - N			Pile - 1		Soil			\dashv		Pile - I		Soil					Pile - I			Pile - I	
	De				^			<u> </u>			INA	\dashv			<u> </u>			- IVA				NA.			V A
	c	Media:		Soil - 12			Soil - 12			Soil - 12				Soil) - 12			<u>Soil</u>) - 12				Soil 4 - 36			Soil 24 - 36	
	3	Sample Depth (inches bgs): Date Collected:		9/2018			/2018	,)/201		\dashv		9/2018)		9/201				9/2018			/9/2018	
			IIS	7/2016		113	/2010	<u> </u>	113	7/201	•	-	118	7/2010	<u> </u>	113	7/201	0		118	12010		11	9/2010	
	Human Health Screening	Ecological Screening																							
	Level (mg/kg)	Level (mg/kg)																							
Analyte	Soil / Sediment	Soil / Sediment	Result	LQ V	Q RC	Result	LQ	VQ RC	Result	LQ	VQ	RC	Result	LQ	VQ RC	Result	LQ	VQ	RC	Result	LQ	VQ RC	Result	LQ	VQ RC
Total Metals by USE	PA SW-846 Method 6020A (mg/kg)																							
Antimony	3.1 / 880	0.27 / 2	58.5	١,	J d	15.2		J d	10.2		J	d	2.24		J d	7.74		J	d	40.4		J d	97.5		J d
Copper	310 / 81000	28 / 31.6	1740			278			202				76.6			149				733			929		
Lead	400 / 5000	11 / 35.8	8980	٠,	J d	2460		J d	1660		J	d	672		J d	1570		J	d	6340		J d	14100		J d
Zinc	2300 / 660000	46 / 121	314			122			112				211			134				209			214		
Explosives by USEP	A SW-846 Method 8330B (m	ng/kg)				_			_			_				_									
Nitroglycerin	0.63 / NA	13 / NA																						\Box	
Toxicity Characteris	tics Leaching Procedure (va	arious methods)				_			_			_				_									
Arsenic (µg/L)	NA	NA	25	U		-							-												
Barium (µg/L)	NA	NA	430	B	Bz								-												
Cadmium (µg/L)	NA	NA	1.9	J																					
Chromium (µg/L)	NA	NA	20	U																					
Selenium (µg/L)	NA	NA	23	J																					
Silver (µg/L)	NA	NA	1.8	J																					
Lead (µg/L)	NA	NA	6460																						
Mercury (µg/L)	NA	NA	0.05	J																					
Nitroglycerin	NA	NA																							

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

		Camala ID:	DTDA	00000	DTD/	2006404	DTDA	2DS11A		DTD	000040	۸۸	DTDA	20004		RTR0	20.00	1D	DTD	03DS0	0.4
	D-	Sample ID:		2DS09A		DELS NA					02DS12			3DS01A							
	De	ecision Unit - XRF Location:		Pile - NA		Pile - NA		Pile - NA			Pile - N	IA	Firing P		NA .	Firing I		NA	Firing		- NA
		Media:		Soil		Soil		Soil			Soil			oil			Soil			Soil	
	3	Sample Depth (inches bgs):		1 - 36		4 - 36		- 36			4 - 36			- 6			0-6			0-6	
		Date Collected:	718	/2018	118	9/2018	//9	/2018	_	718	9/2018		7191	2018		//9	/2018	—	11	9/2018	
	Human Health Screening	Ecological Screening																		4 1	
	Level (mg/kg)	Level (mg/kg)																		4 1	
Analyte	Soil / Sediment	Soil / Sediment	Result	LQ VQ RC	Result	LQ VQ RC	Result	LQ VQ	RC	Result	LQ V	Q RC	Result	LQ VC	RC	Result	LQ \	/Q RC	Result	LQ	/Q RC
Total Metals by USE	PA SW-846 Method 6020A (mg/kg)			_		_												_		
Antimony	3.1 / 880	0.27 / 2	41.2	J d	226	J d	1080	J	d	36.5	,	J d									
Copper	310 / 81000	28 / 31.6	977		2060		675			947									-		
Lead	400 / 5000	11 / 35.8	6040	J d	25000	J d	57200	J	d	4920	,	J d									
Zinc	2300 / 660000	46 / 121	220		443		165			213											
Explosives by USEP	A SW-846 Method 8330B (n	ng/kg)			_		_			_									_		
Nitroglycerin	0.63 / NA	13 / NA	-										0.31	J J+	S	0.26	J,	J+ s	0.55	U	
Toxicity Characterist	ics Leaching Procedure (v	arious methods)			_		_			_									_		
Arsenic (µg/L)	NA	NA																		\Box	
Barium (µg/L)	NA	NA	-				-												-		
Cadmium (µg/L)	NA	NA																			
Chromium (µg/L)	NA	NA																			
Selenium (µg/L)	NA	NA	-				-												-		
Silver (µg/L)	NA	NA																			
Lead (µg/L)	NA	NA																			
Mercury (µg/L)	NA	NA																			
Nitroglycerin	NA	NA																		$\perp \perp \perp$	

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

		_										•													
		Sample ID:	RTRO	3DS03A		RTR	03DA	01A		RTR0	3DA0	2A	RTR0	3DA0	3A	RTR0	3DA	03B'	k	RTRO	3DC	01A	RTR	05DD0	1A
	De	ecision Unit - XRF Location:	Firing	Point - NA	A	Firing	Point	t - NA	Fi	iring P	oint	- NA	Firing I	Point ·	- NA	Firing	Poin	ıt - N	Α	Firing	Point	t - NA	French	h Drain	- NA
		Media:	•	Soil			Soil			S	Soil		,	Soil			Soil				Soil		Se	edimen	it
	9	Sample Depth (inches bgs):		0-6		1:	2 - 18	}			- 18		12	2 - 18			2 - 18				0-6			0-6	
		Date Collected:	7/9	9/2018		7/1	2/201	8		7/12	2/2018	8	7/12	2/2018	3	7/1	2/20 ⁻	18		7/1	2/201	8	7/	12/2018	8
	Human Health Screening Level (mg/kg)	Level (mg/kg)													(0.00										\\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Analyte	Soil / Sediment	Soil / Sediment	Result	LQ VQ	RC	Result	LQ	VQR	C Res	sult	LQ	VQ RC	Result	LQ	VQ RC	Result	LQ	VQ	RC	Result	LQ	VQ RC	Result	LQ	VQ RC
	PA SW-846 Method 6020A (-									
Antimony	3.1 / 880	0.27 / 2					\perp				\perp												0.253	N	
Copper	310 / 81000	28 / 31.6							-														17.4	NB	
Lead	400 / 5000	11 / 35.8							-							-							106	NBA	J f
Zinc	2300 / 660000	46 / 121							-														48.4		
	A SW-846 Method 8330B (n												_			_						_			
Nitroglycerin	0.63 / NA	13 / NA	0.6	U		0.66	JM	J+ m	າ 1	.2			0.32	J		1.3		J+	S	0.002	U				
	tics Leaching Procedure (v	arious methods)																							
Arsenic (µg/L)	NA	NA							-														-		
Barium (µg/L)	NA	NA																							
Cadmium (µg/L)	NA	NA							-																
Chromium (µg/L)	NA	NA							-																
Selenium (µg/L)	NA	NA							-																
Silver (µg/L)	NA	NA							-																
Lead (µg/L)	NA	NA							-																
Mercury (µg/L)	NA	NA																							
Nitroglycerin	NA	NA	-			-			-				-			-				0.002	U		-		

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

		_										(
		Sample ID:		05DD01E		RTR0					D03A		05DD04A		05DD			R05DD0			05DD07A	
	De	cision Unit - XRF Location:	French	Drain -	NA	French	Drair	ı - NA	Fren	ch Dra	ain - NA	French	Drain - NA	French	Drai	n - NA	Frencl	h Drain	ı - NA	French	Drain - N	IA
		Media:	Sec	diment		Sec	limer	ıt		Sedim	ent	Se	diment	Se	dime	nt	Se	edimen	nt	Se	diment	
	S	Sample Depth (inches bgs):		0-6			0-6			0-6			0-6		0-6			0-6			0-6	
		Date Collected:	7/1	2/2018		7/1:	2/201	8	7	7/12/20	018	7/1	12/2018	7/1	2/201	18	7/	12/2018	8	7/1	2/2018	
	Human Health Screening	Ecological Screening																T				
	Level (mg/kg)	Level (mg/kg)																				
Analyte	Soil / Sediment	Soil / Sediment	Result	LQ V	RC	Result	LQ	VQ R	Resul	t L(Q VQ RC	Result	LQ VQ RC	Result	LQ	VQ RO	Result	LQ	VQ RC	Result	LQ VQ	RC
Total Metals by USE	PA SW-846 Method 6020A (mg/kg)																				
Antimony	3.1 / 880	0.27 / 2	0.362			0.29			0.2	\top		0.264		0.638			0.152	\top		0.092	J	
Copper	310 / 81000	28 / 31.6	25.2	В		38.7	В		20.7	В	3	13.2	В	29.6	В		12.2	В		6.63	В	
Lead	400 / 5000	11 / 35.8	179	B J	f	358	В		81.8	В	3	37.3	В	189	В		58	В		17.6	В	
Zinc	2300 / 660000	46 / 121	56.6			58.2			51			58.8		42.4			34.7			37.7		
Explosives by USEP	A SW-846 Method 8330B (m	ng/kg)				_			_			_		_			_					
Nitroglycerin	0.63 / NA	13 / NA																				
Toxicity Characteris	tics Leaching Procedure (va	arious methods)				_			_			_		_			_					
Arsenic (µg/L)	NA	NA																				
Barium (µg/L)	NA	NA																				
Cadmium (µg/L)	NA	NA																				
Chromium (µg/L)	NA	NA	-																			
Selenium (µg/L)	NA	NA								\perp												
Silver (µg/L)	NA	NA								\perp												
Lead (µg/L)	NA	NA																				
Mercury (µg/L)	NA	NA																				
Nitroglycerin	NA	NA																				

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Remedial Investigation Report Ridgway Training Range, PA Contract No. W9133L-14-D-0001 Delivery Order No. 0006

Table 5-3. Discrete Soil and Sediment Sample Results (continued)

	RTR05DD08A French Drain - NA Sediment 0-6 7/12/2018				RTR0 French Sec	Α	RTR05DD10A French Drain - NA Sediment 0-6 7/12/2018							
Analyte	Human Health Screening Level (mg/kg) Soil / Sediment	Ecological Screening Level (mg/kg) Soil / Sediment	Result	LQ	vq	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEF	PA SW-846 Method 6020A (I	mg/kg)												
Antimony	3.1 / 880	0.27 / 2	0.438				0.36				0.236			
Copper	310 / 81000	28 / 31.6	30.3	В			31.5	В			20.6	В		
Lead	400 / 5000	11 / 35.8	120	В			124	В			67.3	В		
Zinc	2300 / 660000	46 / 121	58.1				53.2				71.1			
Explosives by USEP	A SW-846 Method 8330B (m	ıg/kg)												
Nitroglycerin	0.63 / NA	13 / NA												
Toxicity Characterist	ics Leaching Procedure (va	arious methods)												
Arsenic (µg/L)	NA	NA									-			
Barium (µg/L)	NA	NA	1				-				-			
Cadmium (µg/L)	NA	NA	-											
Chromium (µg/L)	NA	NA	-								_			
Selenium (µg/L)	NA	NA	-											
Silver (µg/L)	NA	NA												
Lead (µg/L)	NA	NA												
Mercury (µg/L)	NA	NA												
Nitroglycerin	NA	NA												

Notes:

* = Field duplicate

Bold = Sample exceeds Ecological Screening Level

Sample exceeds Human Health Screening Level

bgs = below ground surface

LQ = laboratory qualifier (LQ flag descriptions available in lab report)

VQ = validiation qualifier

RC = reason code

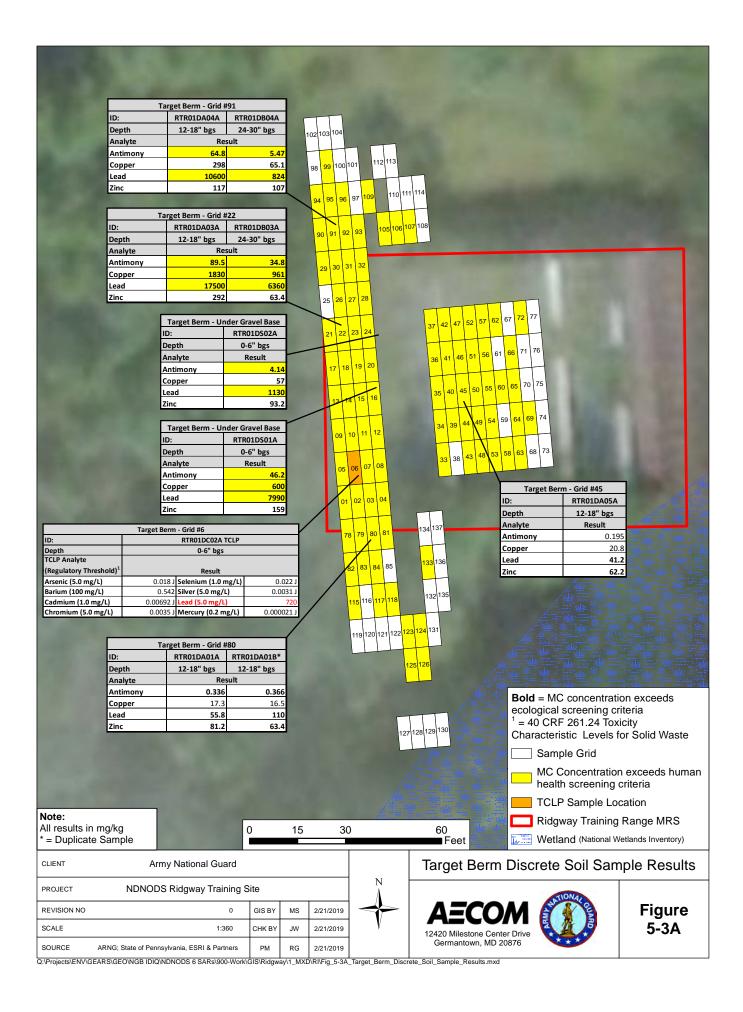
NA = not applicable

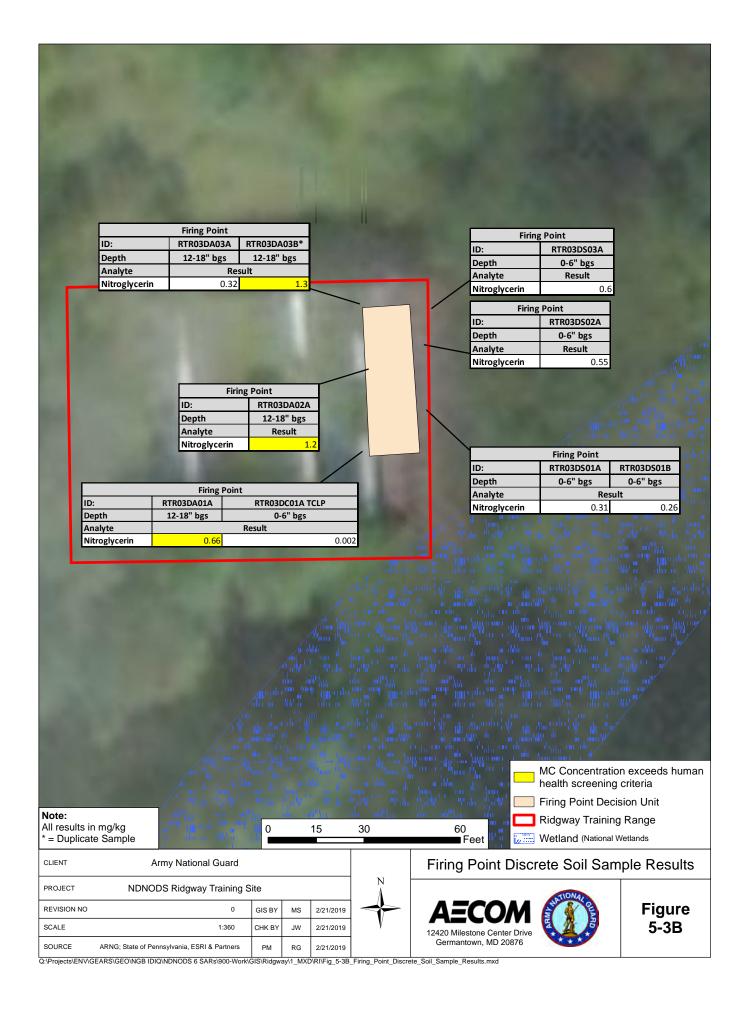
B = associated blank detection

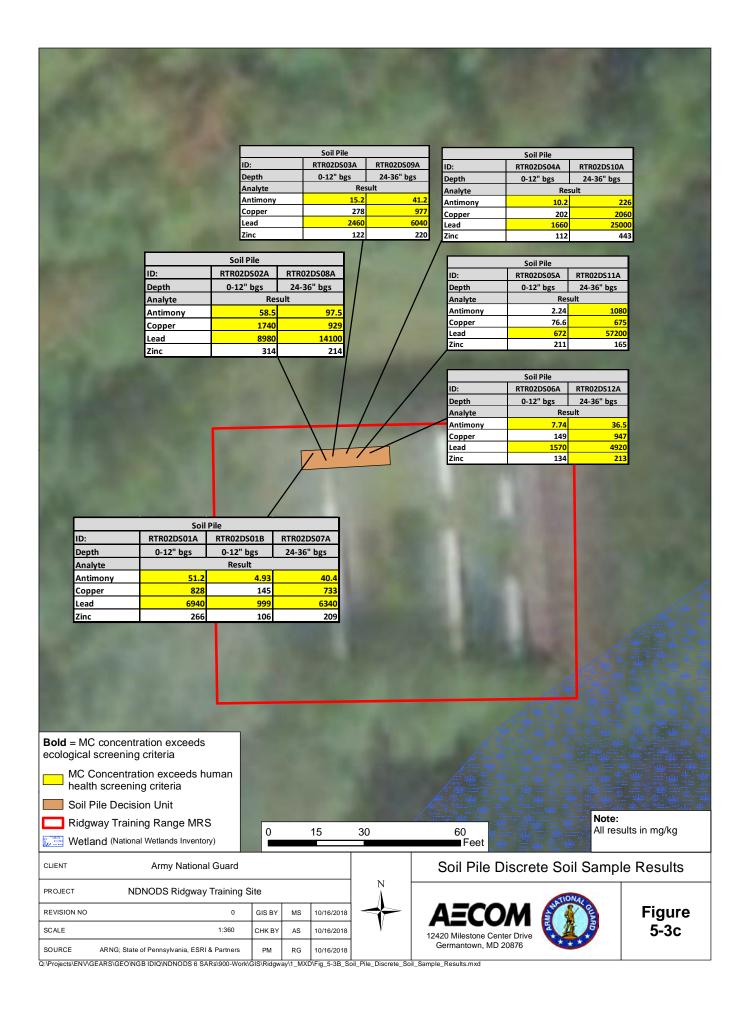
U = non-detect

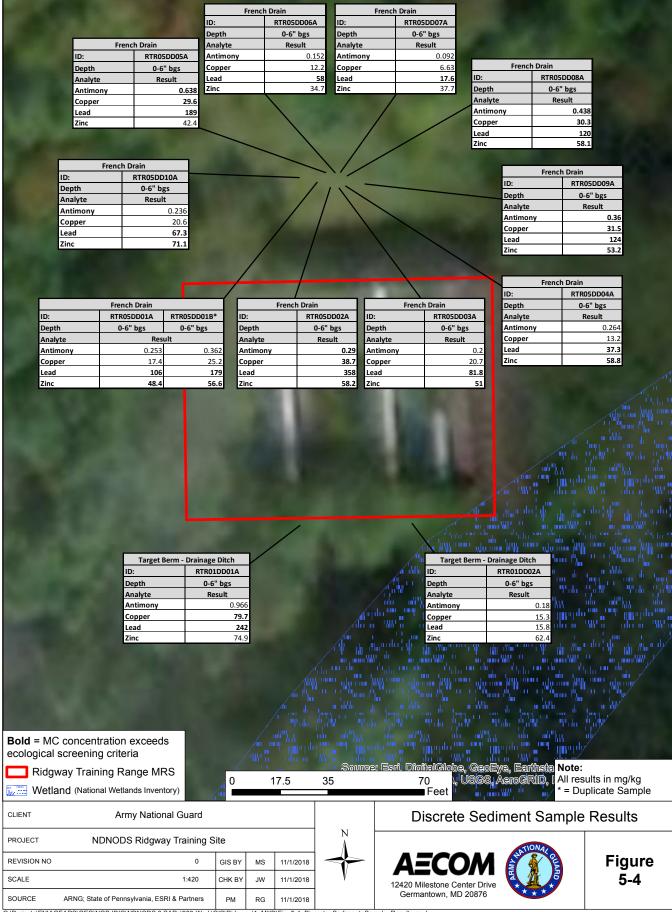
J = estimated

J- = estimated, negative bias


d = MS/MSD imprecision


f = field duplicate imprecision


m = MS/MSD percent recovery anomaly


s = surrogate failure

z = preparation/method blank anomaly

6 Contaminant Fate and Transport

This section discusses routes of migration and contaminant persistence for MC at the Ridgway Training Range MRS (PAE40-001-R-01) investigated during this RI. A preliminary CSM presented in **Section 2.6** and **Figure 2-2** included an analysis of the potential routes of migration and potential receptors.

6.1 Contaminant Migration

Small arms MC have been released directly to berm soil during historical small arms training activities through fragmentation and pulverization of bullets on impact. MC appears to have been transported from berm soil downgradient to the east within the MRS boundary on the range floor, and to the north and south of the MRS boundary via movement of soil by the landowner or runoff via precipitation. A drainage ditch downgradient and south of the MRS connects to a freshwater forested/shrub wetland that may potentially receive suspended MC during heavy rainfall. Additionally, the French drain Outfall area becomes inundated during precipitation and flows towards the same wetland.

Potential disturbance of the DU soil is also possible during maintenance (e.g., landscaping) activities that might occur within the MRS in the future. MC in soil at the Soil Pile and Firing Point is expected to remain in place due to the confining MRS walls.

XRF analysis of soil north of the MRS was able to clearly delineate the extent of small arms MC, verifying that impacted soil was not migrating away from source areas (berm soil) north beyond the French Drain Outfall. Furthermore, all MC concentrations in sediment samples from the French Drain Outfall DU were below their respective human health criteria. Although heavy rain may facilitate standing water in the French Drain Outfall area to flow towards the wetland east of the MRS, MC concentrations are below human health screening criteria, and surface water and sediment samples collected during the SI did not indicate the presence of elevated MC in the wetland area.

XRF analysis of soil south of the MRS exceeded the human health criterion for lead in samples abutting the drainage ditch; however, MC concentrations in sediment samples collected from the drainage ditch south of the MRS were below their respective human health criterion. Furthermore, SI samples indicated that MC concentrations in surface water and sediment in the wetland area downgradient from the MRS that confluences with the drainage ditch are below human health and ecological screening criteria (Parsons, 2011).

Nitroglycerin is present in soil at the Firing Point at levels exceeding human health screening criteria, but based on the absence of nitroglycerin exceedances in samples collected east of the Firing Point and the covered nature of the Firing Point, nitroglycerin is not anticipated to migrate beyond the covered DU. Additionally, nitroglycerin photodegrades over time, making the persistence of any nitroglycerin beyond the covered Firing Point extremely unlikely.

Metals and nitroglycerin MC also have the potential to be released to groundwater through leaching and/or infiltration mechanisms where groundwater is shallow (≤ 5 feet bgs). Groundwater at the MRS is approximately 30 feet bgs (Cross Section A-A', **Figure 2-2**), precluding potential groundwater impacts. Moreover, most lead that is released to the

environment is retained in the soil (Evans, 1989). The primary processes influencing the fate of lead in soil include adsorption, ion exchange, precipitation, and complexation with sorbed organic matter. These processes limit the amount of lead that can be transported to surface water or groundwater. Additionally, MC concentrations in the subsurface samples (24-30 inches bgs layer) from the two locations at the Target Berm DU where MC concentrations from the 12-18 inches bgs layer exceeded human health criterion indicated that subsurface impacts decrease with depth.

Contaminant Persistence 6.2

Metals do not readily weather in the environment. Typically, metals in soil form reaction products that become incorporated into soil minerals, precipitate as oxides or hydroxides, or form coatings on minerals (Oak Ridge National Laboratory, 1989). These forms of metals have low mobility in soils. The inherent insolubility of metals, coupled with their related high soil/water partition coefficients, indicate that the metals would be relatively immobile in DU soil and sediment.

AECOM Prepared for: Army National Guard

7 Risk Assessment

Analytical data generated from ISM samples collected during the RI field investigation were compared with conservative risk-based screening criteria and background reference data, also collected concurrently during the RI, to evaluate whether past small-arms training activities have resulted in contaminant releases exceeding human health or ecological screening criteria. The results of the screening determined whether further risk assessment was necessary.

Each DU was identified as the area over which a receptor is likely to be exposed to potentially contaminated soil within the MRS (exposure area). For this RI, those areas were the Target Berm, the Soil Pile, the Firing Point, and the French Drain Outfall area. The ISM sampling approach used provided a reasonably unbiased and representative estimate of the mean concentrations of MC that receptors would likely be exposed to at the Target Berm and at the Firing Point DUs. ISM sampling was not performed at the Soil Pile or French Drain Outfall DUs due to the small size of the DUs. Discrete samples were collected at the Soil Pile and French Drain Outfall DUs.

As a conservative approach for each DU, the maximum detected concentration of individual small arms MC among the IS triplicates were compared with human health and ecological screening criteria during the RI to determine if an HHRA and/or screening level ecological risk assessment (SLERA) were necessary. The selection of human health and ecological screening criteria used during this RI is presented in **Section 3.3.1** and **Table 3-2**.

Due to small arms MC exceedances of RI screening criteria for human health and ecological health, an HHRA and SLERA were conducted for the MRS. The HHRA and SLERA are presented in sections **7.1** and **7.2**, and **Appendices E** and **F**, respectively.

7.1 Human Health Risk Assessment

The HHRA was conducted as part of the RI to evaluate whether COPCs attributable to past site activities have the potential to cause unacceptable adverse health effects to human receptors at the MRS. Results of the HHRA are used to assess risk management options for the MRS, including possible further actions to address the impacted soils and sediment at the former training range.

The HHRA meets the requirements of CERCLA, as amended by the Superfund Amendments and Reauthorization Act of 1986 as well as the site-specific risk assessment requirements of Act 2 as presented in 25 Pa. Code §250.602(c) and the PADEP 2002 Technical Guidance Manual (PADEP 2002).

The HHRA addressed soil and sediment exposure media only. USEPA residential soil regional screening levels (RSLs; dated May 2018) that are protective of a target cancer risk of 1×10⁻⁶ (1 in 1,000,000; 1E-06) and a target hazard quotient of 0.1 were used to screen soil and sediment USEPA 2018 and PADEP 2002). The PADEP (2002) guidance recommends using RSLs for site-specific HHRA risk-based screening to address direct contact exposure pathways; this differs from the sediment screening criteria that were used for the RI. Risk-based screening results identified antimony, copper, lead, and nitroglycerin as soil COPCs. Detected concentrations of zinc in soil and sediment were below the residential soil RSL; therefore, zinc was eliminated

from further evaluation. Risk-based screening results for sediment were below residential soil RSLs (Table 5-3); sediment was eliminated from further evaluation at the Target Berm and French Drain Outfall DU drainage areas.

The Target Berm and Firing Points DU ISM mean concentrations for the metals were compared with the mean concentrations of metals in the Background Reference DU to evaluate whether the metal concentrations were potentially naturally occurring; the site mean concentrations were higher (i.e., at least one order of magnitude higher) than the background mean concentrations, therefore the metals were determined to be site-related.

Potential off-site receptors were not identified for the MRS because site access is restricted via a locked gate. However, an on-site trespasser scenario was evaluated in the HHRA to address potential breaches in security. On-site vegetation, the concrete wall, and other structures inhibit windblown particulates from leaving the MRS; besides, inhalation exposure pathways are incomplete because antimony, copper, and nitroglycerin do not have inhalation toxicity values per the PADEP (2018) on-line toxicity database. Inhalation of lead was handled separately using USEPA's IEUBK and ALM models, where the inhalation of windblown particles exposure pathway was evaluated. Also, sediment COPCs were not identified in the surface water drainage areas of the French Drain Outfall and Target Berm DUs where surface water leaves the MRS.

Figure 7-1 presents the exposure pathway analysis that identifies the soil exposure pathways that were quantified in the HHRA; the HHRA evaluated the following human health on-site receptors: outdoor worker, teen trespasser, child and adult visitor, child and adult hypothetical resident, construction worker, and utility worker. The current scenarios represent exposure to existing site conditions, which are assumed to remain the same in the future (i.e., no land redevelopment that disturbs the subsurface soil). Current receptors are assumed to be exposed to surface soil (0 to 24 inches bgs). The future scenarios are used to address site conditions that have changed due to land re-development involving excavation activities that bring the subsurface soil to the surface, thus "mixing" the soils together. Future receptors are exposed to total soil (0 to 36 inches bgs).

Soil-related exposure pathways that were evaluated in the HHRA include incidental ingestion and dermal contact with soil. The inhalation exposure pathways were identified as incomplete (i.e., antimony, copper, and nitroglycerin do not have inhalation toxicity values).

Cancer risk and non-cancer hazard calculations were conducted for the soil exposure medium. USEPA ALM and IEUBK models were used to estimate (PbB) concentrations for receptors exposed to lead in soil.

The PA Act 2 regulations have established a target cumulative excess lifetime cancer risk (ELCR) (i.e., from all pathways for a single receptor group) of 1×10^{-4} (1 in 10,000; 1E-04) for carcinogenic risks. USEPA (1991) also states that where the cumulative current or future ELCR to an individual is less than 10-4 (1E-04), action generally is not warranted unless there are adverse environmental impacts. Both the Pennsylvania Act 2 regulations and USEPA accept a non-cancer hazard target level, or hazard index (HI), of 1.

Lead exposure was evaluated by comparing the estimated PbB to the USEPA's target PbB of 10 microgram per deciliter (µg/dL) for the receptor population (USEPA 2016). The Centers for Disease Control and Prevention (CDC) Advisory Committee on Childhood Lead Poisoning

Remedial Investigation Report Ridgway Training Range, PA

Prevention has revised its recommended target blood lead level to 5 µg/dL (CDC 2012). At the present time, USEPA has not formally adopted this blood lead level and continues to use a target level of 10 µg/dL. However, a sensitivity analysis was performed in the HHRA as part of the lead evaluation to determine how the lead modeling results would change if a target blood lead level of 5 µg/dL were used.

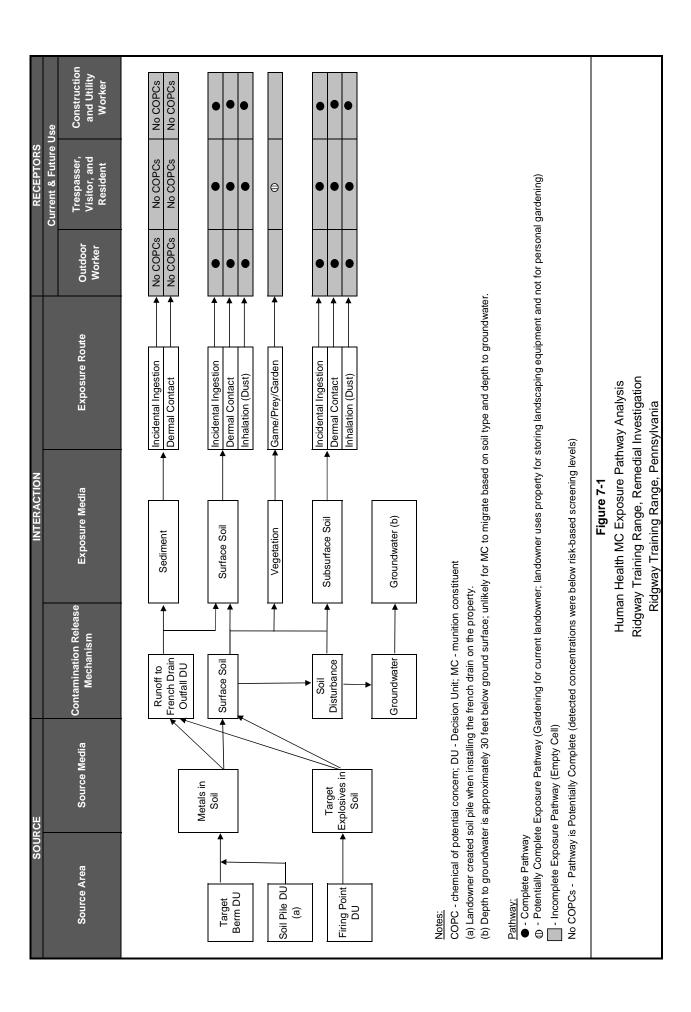


Table 7-1 identifies the COCs that exceeded the PADEP and USEPA's risk thresholds in the HHRA. The ELCR results for all the on-site receptors were below the target ELCR threshold of 1×10-4 (1E-04). However, antimony and nitroglycerin produced non-cancer HI results above 1 for some of the receptors and DUs. Also, lead was identified as a COC based on the target PbB threshold of 10 μ g/dL (**Table 7-1**).

Table 7-1. Human Health Constituents of Concern

Receptor	Scenario Timeframe and Exposure Medium	Constituent of Concern
Target Berm DU		
Child Visitor	Current: Surface Soil	Lead (a, b)
Crilia visitor	Future: Total Soil	Lead (a, b)
Outdoor Worker	Current: Surface Soil	Lead (b)
Outdoor worker	Future: Total Soil	Lead (b)
Construction/Utility Worker	Current: Surface Soil	Lead (b, c)
Hypothetical Child	Current: Surface Soil	Antimony Lead ^(b)
Resident	Future: Total Soil	Antimony Lead ^(b)
Soil Pile DU		
	Current: Surface Soil	Lead (a, b)
Child Visitor	Future: Total Soil	Antimony
	Tuture. Total Soil	Lead (a, b)
Construction Worker (c)	Future: Total Soil	Antimony Lead ^(b, c)
Utility Worker (c)	Future: Total Soil	Lead (b, c)
0 / 1 W 1	Current: Surface Soil	Lead (b)
Outdoor Worker	Future: Total Soil	Lead (b)
Hypothetical Child	Current: Surface Soil	Antimony Lead ^(b)
Resident	Future: Total Soil	Antimony Lead ^(b)
Hypothetical Adult Resident	Future: Total Soil	Antimony
Firing Point DU		
Hypothetical Child Resident	Current: Surface Soil	Nitroglycerin
Notes:		

- (a) IEUBK model results for the hypothetical child resident were also used to be protective of the child visitor at the MRS.
- Lead modeling results are based on target PbB threshold of 10 µg/dL.
- If a target PbB threshold of 5 μ g/dL was used, then lead would be identified as a surface soil and total soil COC for the construction and utility worker scenarios.

The HHRA recommends further evaluation of the soil COCs in an FS for the Ridgway Training Range MRS.

7.2 **Ecological Risk Assessment**

The purpose of the SLERA was to identify the potential risks to ecological receptors exposed to Site-related COIs in environmental media at the Site and determine which COPECs, if any, were exerting adverse effects to potential ecological receptor populations. The list of COPECs was refined consistent with the initial stage of a Baseline Ecological Risk Assessment (BERA) Step 3 to reduce uncertainty in the SLERA Step 1 and 2 conclusions.

Guided by an ecological CSM, a conservative screening evaluation was conducted to assess potential risks related to on-Site soil and off-Site sediment for soil invertebrates, benthic macroinvertebrates, terrestrial wildlife, and aquatic and semi-aquatic wildlife. If COIs were detected above wildlife-specific benchmarks, dose rate models (DRMs) were prepared to assess potential adverse effects to selected ecological receptors.

Although the Site is small and receptors can freely move between areas, exposure units (EU) were selected based on 1) type of data available (incremental versus discrete); 2) COI source (nitroglycerin vs metals); and 3) DU designation provided in the RI (AECOM, 2018). Receptors with larger ranges and limited substrate intake (e.g. red fox and red-tailed hawk) were evaluated conservatively at a Site-wide level. During BERA Step 3, refinements were made to EU selection and datasets were pooled to assess only Site-wide effects.

After Step 2 of the SLERA, the results of the risk characterization determined the following scientific management decision points (SMDPs):

- 1. Exposure to COPECs in on-Site soil resulted in substantial impact (de manifestis) to both soil invertebrate and terrestrial wildlife populations; action should be taken that can eliminate or reduce exposure to an acceptable level.
 - a. Maximum concentrations of nitroglycerin (Firing Point DU) and copper, lead, and zinc (Target Berm and Soil Pile DUs) exceeded ecological screening values (ESVs) protective of soil invertebrates.
 - b. Wildlife DRMs indicated that NOAEL TRVs (protective of either mammalian or avian wildlife) were exceeded by maximum concentrations of antimony, copper, lead, and zinc in soil at the Target Berm and Soil Pile DUs and by antimony, copper, and lead for all on-Site soil.
 - c. Refinements made in BERA Step 3 would reduce uncertainty in both the direct contact evaluation and DRMs, but, ultimately, COPECs would still exceed benchmarks protective of either soil invertebrates or wildlife.
- 2. Exposure to COPECs in off-Site sediment indicated that the SLERA should be continued to BERA Step 3 to reduce uncertainty in the evaluation of risk and impact.
 - a. Maximum concentrations of copper and lead exceeded ESVs protective of benthic macroinvertebrates in both the French Drain Outfall DU and Drainage Ditch.
 - b. Wildlife DRMs indicated that maximum concentrations of copper exceeded NOAEL TRVs protective of mammalian wildlife in all off-Site sediment.

c. For both the direct contact evaluation and DRMs, exposure estimates will be refined using more representative EPCs and more realistic benchmarks.

Following BERA Step 3 and evaluating uncertainties within the SLERA process, the following SMDPs were made regarding off-Site sediment:

- 1. The potential for adverse effects to the benthic macroinvertebrate community is de minimus due to the following:
 - a. Although the refined direct contact evaluation indicated a lead HQ = 1, the median concentration for lead (109 mg/kg) was below the refined ESV.
 - b. Small-scale, spatial variability was very high for sediment samples.
 - c. Although individuals may experience some adverse effects locally, population level effects are unlikely.
- 2. The potential for adverse effects to the aquatic and semi-aquatic wildlife community is de minimus due to the following:
 - a. Refined DRMs indicated no exceedances of TRVs for the little brown bat.

8 Munitions Response Site Prioritization Protocol

This section discusses application of the MRSPP for the Ridgway Training Range MRS (PAE40-001-R-01). The MRSPP was applied in accordance with 32 Code of Federal Regulations (CFR) Part 179 and the guidance provided in the DoD MRSPP Primer (DoD, 2007). The MRSPP worksheet tables for the MRSs are included in **Appendix G**. In 2005, DoD published the MRSPP as a Federal Rule (32 CFR Part 179) to assign a relative risk priority to each defense site in the MMRP Inventory for response activities. These response activities are based on the overall conditions at the MRS, taking into consideration various factors related to explosive safety and environmental hazards. The application of the MRSPP applies to all locations:

- That are or were owned, leased to, or otherwise possessed or used by DoD
- That are known to or are suspected of containing MEC or MC
- That are included in the MMRP Inventory

In assigning a relative priority for response activities, DoD generally considers MRSs posing the greatest hazard as being the highest priority. In the MMRP, the MRSPP priority will be one factor in determining the sequence in which munitions response actions are funded. The following sections are a brief summary of the modules of the MRSPP and the results of the evaluations for the Ridgway Training Range MRS (PAE40-001-R-01).

8.1 Explosive Hazard Evaluation Module

The Explosive Hazard Evaluation (EHE) Module assesses the explosive hazards of a site based on the known or suspected presence of an explosive hazard, including small arms ranges. The EHE Module is composed of three factors, each of which has two to four data elements that are intended to assess the specific conditions at an MRS. Based on site-specific information, each data element is assigned a numeric score, and the sum of these values is the EHE Module score and is used to determine the corresponding EHE Module rating. The data elements are as follows:

- **Explosive Hazard Factor.** Has the data elements Munitions Type and Source of Hazard and constitutes 40 percent of the EHE Module score.
- Accessibility Factor. Has the data elements Location of Munitions, Ease of Access, and Status of Property and constitutes 40 percent of the EHE Module score.
- **Receptor Factor.** Has the data elements Population Density, Population Near Hazard, Types of Activities/Structures, and Ecological and/or Cultural Resources and constitutes 20 percent of the EHE Module score.

The Ridgway Training Range MRS (PAE40-001-R-01) received the alternative EHE Module rating of No Known or Suspected Explosive Hazard. This module rating was based on the MRS being a small arms range and no MEC being identified at the MRS during the SI (Parsons, 2012) or RI field work. The MRS contains a block target storage building, a downrange backstop, and a shelter building over twelve firing positions. The firing positions are recessed into the ground surface via culvert type material. Wooden covers enclosed the firing positions, and the range configuration consisted of 12-foot high concrete side and impact walls; a 5.56 mm bullet was

observed during RI sampling activities. The EHE Module rating is preliminary and is awaiting stakeholder input. The EHE Module worksheet tables are presented in **Appendix G** and summarized in **Section 8.4**.

Chemical Warfare Material Hazard Evaluation Module 82

The Chemical Warfare Materiel (CWM) Hazard Evaluation (CHE) Module provides an evaluation of the chemical hazards associated with the physiological effects of CWM. The CHE Module is used only when CWMs in the form of MEC or MC are known or suspected of being present at an MRS. Like the EHE Module, the CHE Module has three factors, each of which has two to four data elements that are intended to assess the conditions at an MRS. These factors are as follows:

- CWM Hazard Factor. Has the data elements CWM Configuration and Sources of CWM and constitutes 40 percent of the CHE score.
- Accessibility Factor. Focuses on the potential for receptors to encounter the CWM known or suspected to be present on an MRS. This factor consists of the data elements Location of CWM, Ease of Access, and Status of Property and constitutes 40 percent of the CHE score.
- **Receptor Factor.** Focuses on the human and ecological populations that may be impacted by the presence of CWM. It has the data elements Population Density, Population Near Hazard, Types of Activities/Structures, and Ecological and/or Cultural Resources and constitutes 20 percent of the CHE score.

Similar to the EHE Module, each data element is assigned a numeric value, and the sum of these values is the CHE Module score, which is used to determine the corresponding CHE Module rating. If CWM is not known or suspected, then the CHE Module rating is No Known or Suspected CWM Hazard.

The MRS received the Alternative CHE Module rating of No Known or Suspected CWM Hazard. This was due to the fact that no historical or physical evidence was found during SI or RI activities that indicated CWM is present at the MRS. The worksheet tables are presented in Appendix G and summarized in Section 8.4.

Health Hazard Evaluation Module 8.3

The Health Hazard Evaluation (HHE) Module provides a consistent DoD-wide approach for evaluating the relative risk to human health and the environment posed by contaminants (i.e., MC) present at an MRS. The module has three factors that are as follows:

- Contamination Hazard Factor (CHF). Evaluates potential risk posed by contaminants and contributes a value of High (H), Medium (M), or Low (L) based on Significant, Moderate, or Minimal contaminants present, respectively.
- Migration Pathway Factor (MPF). Assesses the potential for MC or incidental contaminants to migrate from an MRS and contributes a value of H, M, or L based on Evident, Potential, or Confined pathways, respectively.

Receptor Factor (RF). Evaluates the presence of receptors that may be exposed and contributes a value of H, M, or L based on Identified, Potential, or Limited receptors, respectively.

The HHE builds on the DoD Relative Risk Site Evaluation framework that is used in the Installation Restoration Program. The CHF, MPF, and RF are based on quantitative evaluation of MC and/or CERCLA hazardous substances and a qualitative evaluation of pathways and human and ecological receptors in surface soil, groundwater, surface water, and sediment. The HHE does not address subsurface soils. In addition, the HHE does not consider air as a pathway, because the risk through this medium from DoD MMRP sites with soil contamination is generally minimal.

The H, M, and L levels for the CHF, MPF, and RF are combined in a matrix to obtain composite three-letter combination levels that integrate considerations of all three factors. The three-letter combination levels are organized by frequency and the combination of the frequencies results in the HHE Module rating.

The Ridgway Training Range MRS (PAE40-001-R-01) received the LLM media combination level for sediment/human endpoint, the MHM media combination level for sediment/ecological endpoint, the HMM media combination for surface soil, and the HHE Module Rating of C. The HHE Module rating is based on concentrations of MC in surface soil exceeding respective screening levels. The HHE Module worksheet tables are presented in **Appendix G** and summarized in **Section 8.4**.

Munitions Response Site Prioritization Protocol Scores 8.4

In accordance with the DoD MRSPP Primer (DoD, 2007), the MRS is assigned an MRSPP Priority ranging from 1 to 8. Priority 1 indicates the highest potential hazard and Priority 8 indicates the lowest potential hazard. Only a site with a potential Chemical Warfare Hazard can receive a Priority of 1. The priority is determined by selecting the highest rating from among the EHE, CHE, and HHE Modules. For example, if the EHE rating is 2, the CHE rating is 5, and the HHE rating is 4, the priority assigned would be 2. An alternative rating may be selected for the MRS if it meets the criteria. The priority will be used to determine the future funding sequence of the MRS for further munitions response action.

The overall MRSPP priority for the Ridgway Training Range MRS (PAE40-001-R-01) is assigned a 4. The EHE and CHE, module ratings were each No Known or Suspected Hazard, but the HHE rating was C, indicating an HMM media combination. A summary of the MRSPP scores for each module is provided in **Table 8-1**.

Table 8-1. Munitions Response Site Prioritization Protocol Summary

	Factors				
MRSPP Module	Accessibility/ Hazard Migration Receptor		Module Total	Module Rating	
EHE Module	3	11	14	28	NKSH
CHE Module	0	0	0	0	NKSH
HHE Module	Н	М	М	HMM	C (4)

Notes:

MRSPP priority

NKSH = No Known or Suspected Hazard

Summary and Conclusions

This section summarizes results obtained and conclusions reached as a result of the RI activities completed at the Ridgway Training Range MRS (PAE40-001-R-01). The conclusions are general and comparative interpretations of the findings in terms of the general objectives of the RI.

This RI compiled and evaluated information and data for the MRS relating to the potential contamination associated with its historical use for small arms training activities conducted at Ridgway Training Range MRS. The sampling approach was designed to characterize the nature and extent of MC contamination in soil and/or sediment at the Target Berm and Firing Point, and areas where MC contamination could have potentially migrated. For data interpretation purposes and for assessing risks, the MRS was divided into four DUs (the Target Berm, Firing Point, Soil Pile, and French Drain Outfall area) that reflect the source areas of potential contamination as indicated by site history and remaining physical evidence of the target areas, as well as post-use construction by the landowner. Field investigation activities included XRF screening of the Target Berm DU to evaluate the lateral extent of MC, the collection of surface soil samples using ISM at the Target Berm and Firing Point for evaluating risks, and collecting discrete soil and/or sediment samples from all four DUs to delineate lateral and vertical extent of MC contamination.

This information was evaluated and used to interpret the nature and extent of MC, evaluate potential exposures of receptors to MC, complete a risk-based screening for MC, and complete the MRSPP for the MRS.

9.1 **Summary of Remedial Investigation Results**

Tables 9-1 and **9-2** summarize the results of the human health screening level comparisons to soil and sediment samples collected as part of the Ridgway Training Range MRS RI. Tables 9-3 and 9-4 summarize the results of the ecological screening level comparisons to soil and sediment samples. The human health and ecological small arms MC screening results identified exceedances in the affected media.

Table 9-1. RI Human Health Screening Summary (ISM)

	Soil Human Health Screening	Minimum Background	(mg/kg)			
Analyte	Level (mg/kg)	Concentration (mg/kg)	Target Berm	Firing Point		
Metals						
Antimony	3.1	0.244	40.1	NA		
Copper	310	10.5	636	NA		
Lead	400	59.2	8770	NA		
Zinc	2,300	23.0	165	NA		
Explosives						
Nitroglycerin	0.63	0.38	NA	4.4		
Notes:						

Bold = Exceeds Background Exceeds Screening Criteria

Table 9-2. RI Human Health Screening Summary (Discrete)

	Soil Human Health	Sediment Human Health	Minimum Background Concentration		Detected tion (mg/kg)
Analyte	Screening Level (mg/kg)	Screening Level (mg/kg)	(mg/kg)	Soil Pile	French Drain*
Metals					
Antimony	3.1	880	0.244	1080	0.638
Copper	310	81,000	10.5	2060	38.7
Lead	400	5,000	59.2	57200	358
Zinc	2,300	660,000	23.0	443	71.1

Notes:

Bold = Exceeds Background Exceeds Screening Criteria

* Sample media is sediment

Table 9-3. RI Ecological Screening Summary (ISM)

	Soil Ecological Screening Level	Minimum Background Concentration (mg/kg)	Maximum Detected Concentration (mg/kg)	
Analyte (mg/kg)		Target Berm		Firing Point
Metals				
Antimony	0.27	0.244	40.1	NA
Copper	28	10.5	636	NA
Lead	11	59.2	8770	NA
Zinc	46	23.0	165	NA
Explosives		•		*
Nitroglycerin	0.63	0.38	NA	4.4

Notes:

Bold = Exceeds Background

Exceeds Screening Criteria

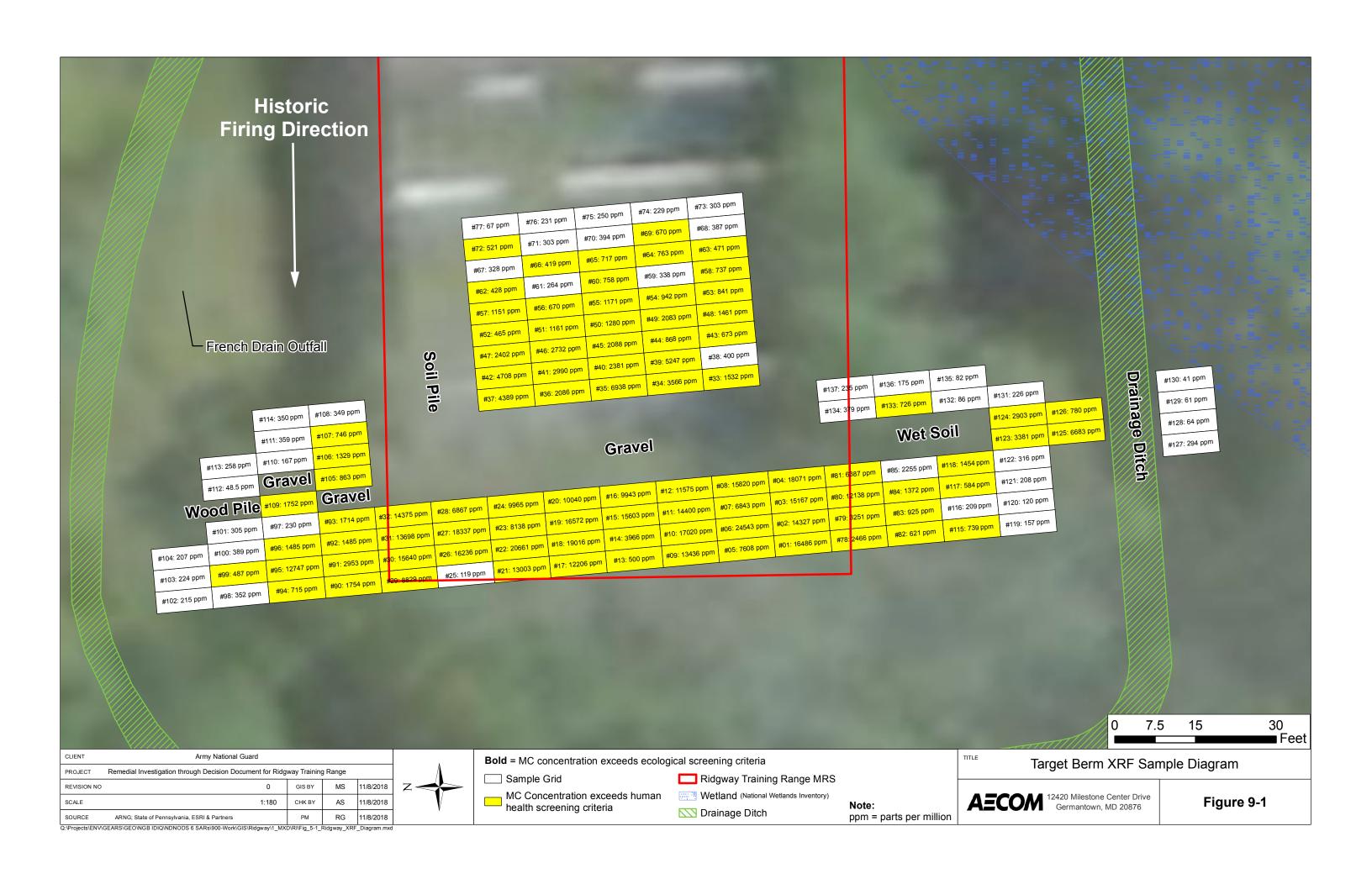
	Soil Ecological	Sediment Ecological	Minimum Background	Maximum Detected Concentration (mg/kg)	
Analyte	Screening Level (mg/kg)	Screening Level (mg/kg)	Concentration (mg/kg)	Soil Pile	French Drain*
Metals					
Antimony	0.27	2	0.244	1080	0.638
Copper	28	31.6	10.5	2060	38.7
Lead	11	35.8	59.2	57200	358
Zinc	46	121	23.0	443	71.1

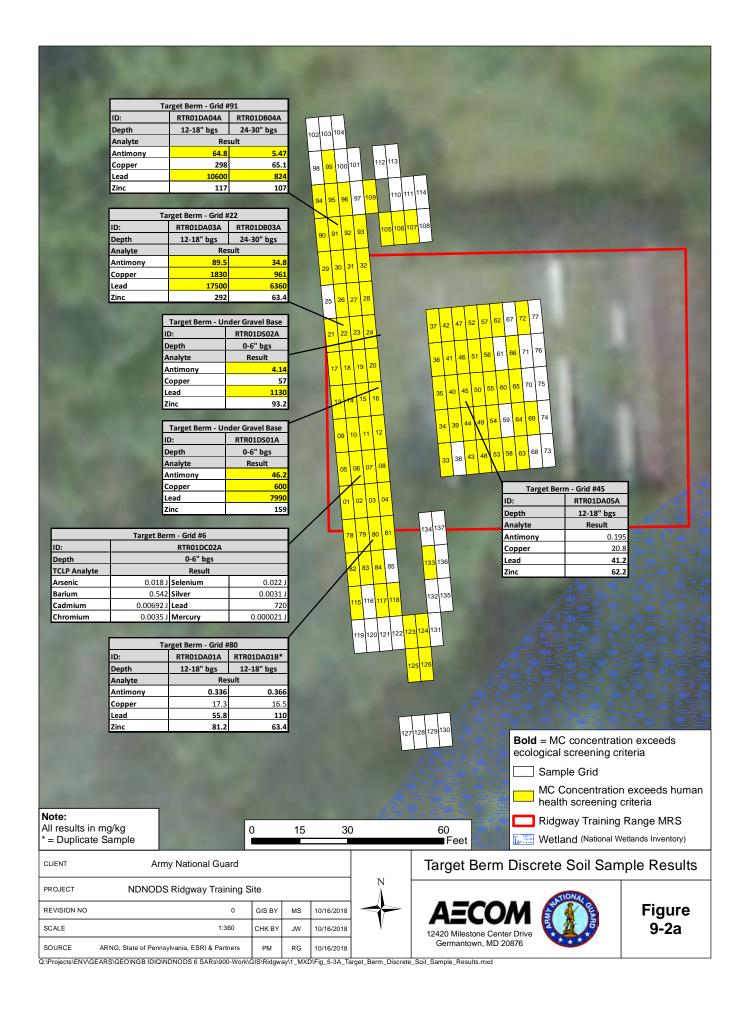
Table 9-4. RI Ecological Screening Summary (Discrete)

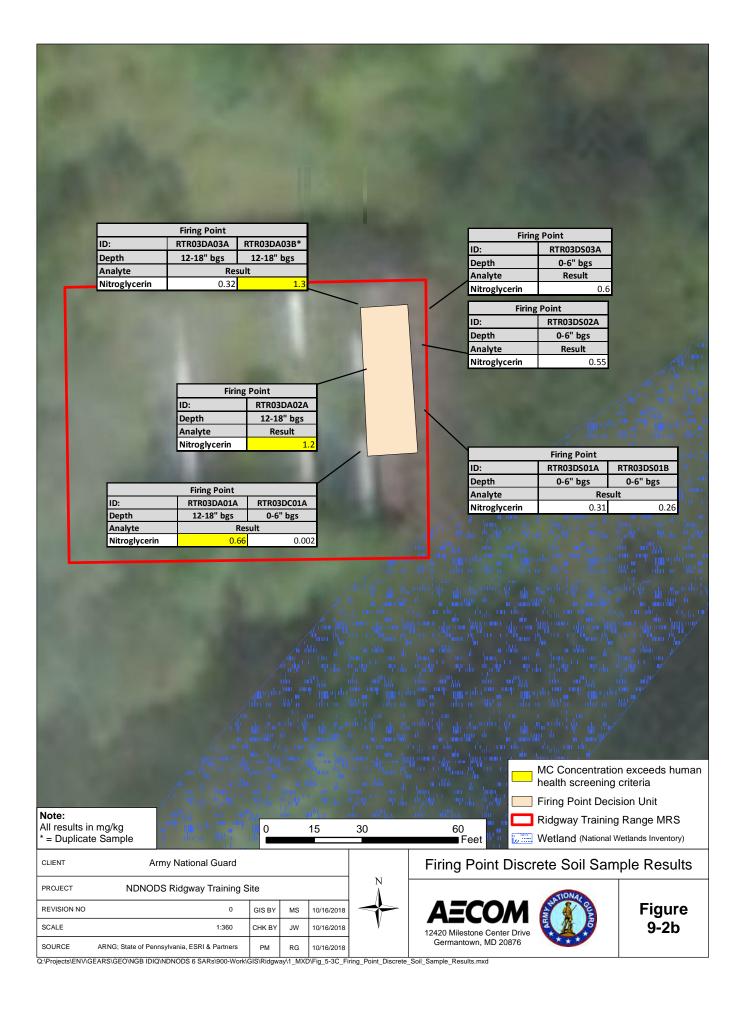
Notes:

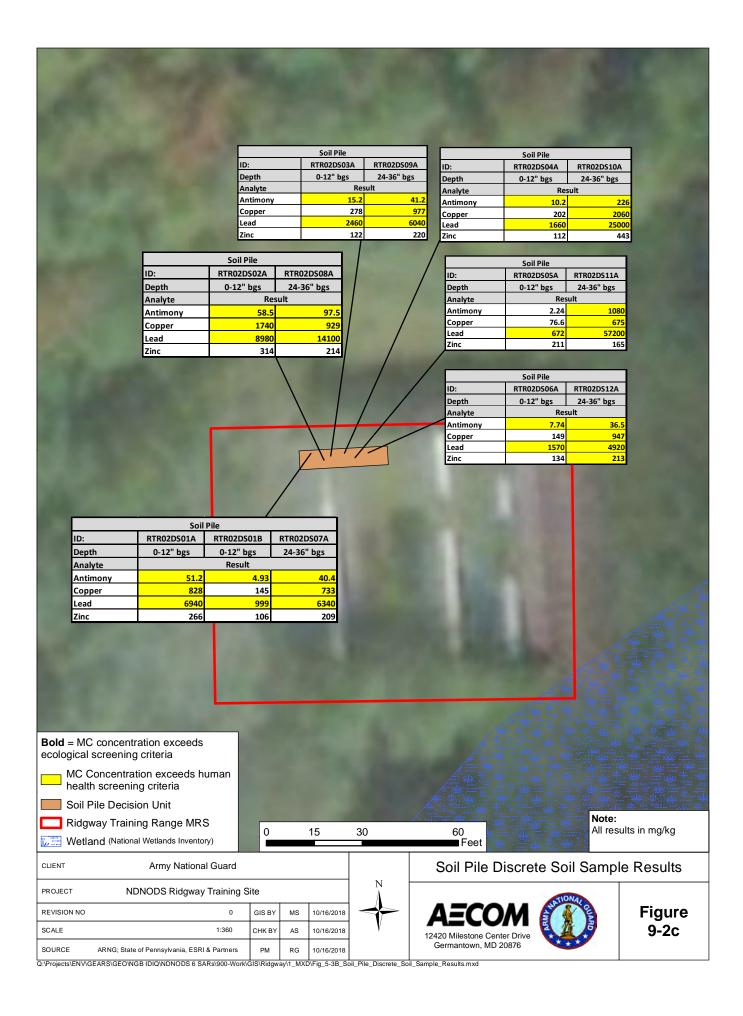
Bold = Exceeds Background Exceeds Screening Criteria

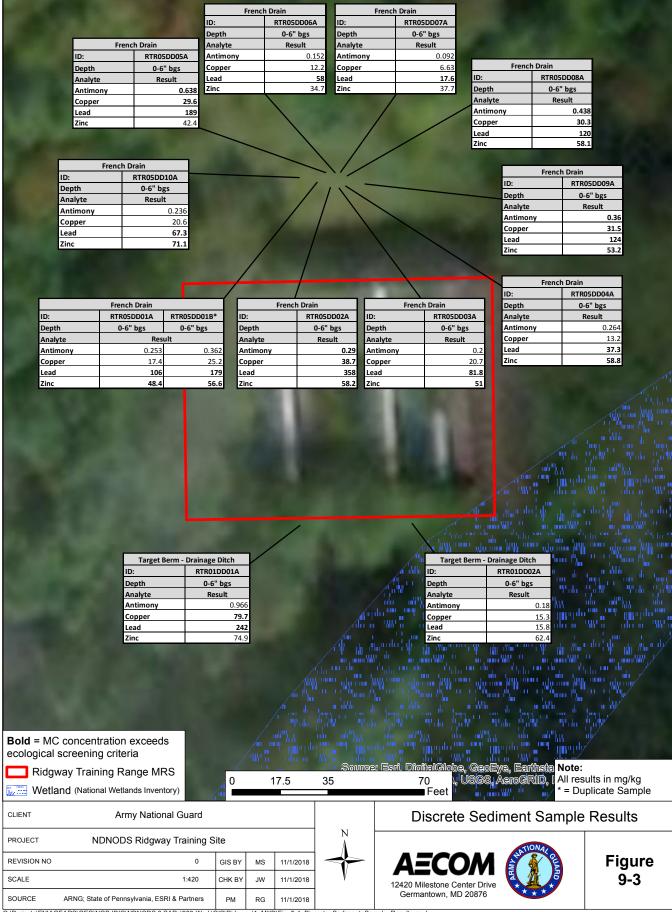
The data collected at the MRS were sufficient to delineate the extent of site-related MC contamination (antimony, copper, lead, zinc, and nitroglycerin). Exceedances of the human health criterion for lead were observed in XRF screening results at the Target Berm (**Figure 9-1**) and resulted in step-out sampling that extended the DU boundary to 0.126 acres. The extent of elevated lead concentrations indicates MC transportation by movement of soil by the property owner and via potential overland runoff during rain events. The DU extended beyond the enclosed firing range walls and the current extent of the MRS. ISM sample results at the Target Berm indicate that antimony, copper, and lead are present in soil above human health screening criteria. Four locations at the Target Berm (location #80 #22, #91, and #45) were selected to represent distinct areas at the DU for discrete subsurface soil sampling based on XRF results exceeding human health criterion for lead. Discrete subsurface sampling at locations #22 and #91 indicated that antimony, copper, and lead at the Target Berm are present above their risk-based screening levels at the 12 to 18-inches below ground surface (bgs) depth interval and the 24 to 30-inch bgs interval (**Figure 9-2a**), although MC concentrations generally decreased with depth. Deeper samples at these locations could not be collected due to refusal at a gravel layer within the berm. XRF data showed that lead is migrating from the Target Berm, but does not extend into intermittently inundated areas to the north and south of the MRS.

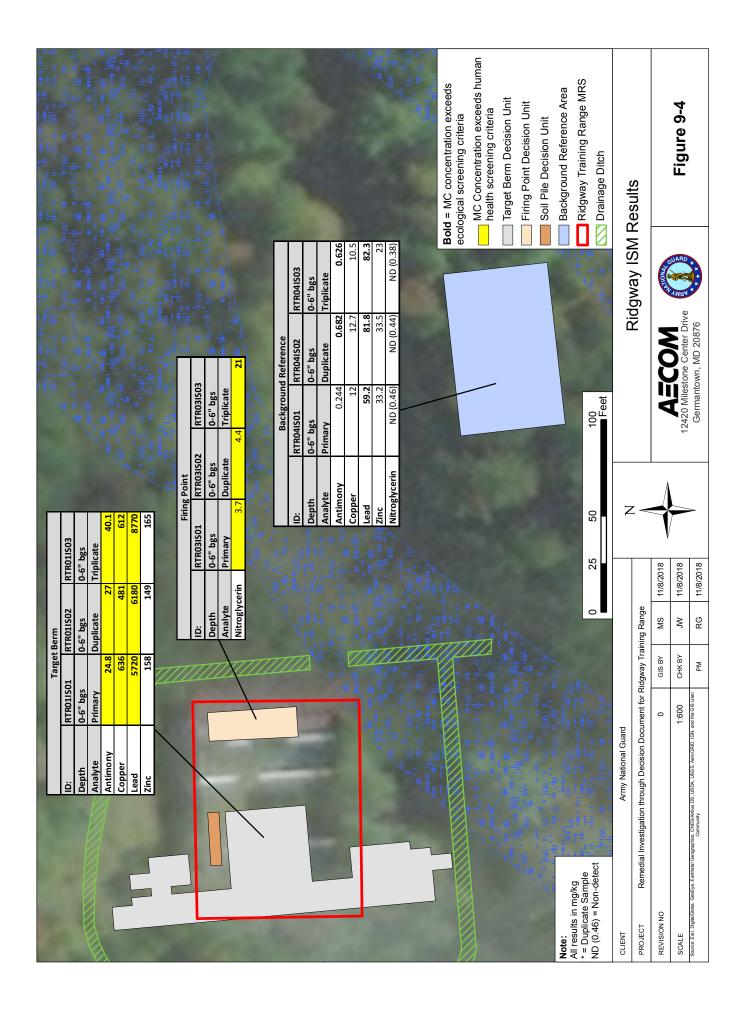

The data collected at the Firing Point were sufficient to delineate the extent of nitroglycerin contamination at the DU. Surface soil samples collected adjacent to the DU from uncovered soil east of the firing positions showed no exceedances for nitroglycerin, indicating that nitroglycerin is not being transported outside of the MRS (Figure 9-2b). ISM sample results at the Firing Point indicate that nitroglycerin is present in soil above human health screening criteria. Three locations at the Firing Point selected for discrete subsurface soil sampling showed Nitroglycerin was elevated above human health screening criterion at depths from 12 to 18-inches bgs (Figure **9-2b**); the 24 to 30-inch bgs interval could not be sampled due to refusal at a gravel layer. Although nitroglycerin is elevated above human health screening criterion in Firing Point soil, it is not being transported beyond the MRS boundary.


^{*} Sample media is sediment


Discrete soil and sediment samples from the Soil Pile DU and French Drain Outfall DU, respectively, were collected to assess the potential spread of small arms MC contamination as a result of the installation of the French drain parallel to the Target Berm. Discrete soil samples from the Soil Pile DU showed antimony, copper, and lead elevated above human health screening criteria (Figure 9-2c). Small arms MC in the Soil Pile may be transported to the range floor via runoff due to precipitation, but is not anticipated to be transported beyond the MRS due to its confining concrete walls. Discrete sediment samples from the French Drain Outfall DU did not exhibit antimony, copper, lead, or zinc above human health screening criteria, but did exhibit all four analyte levels elevated above ecological screening criteria (Figure 9-3).


ISM provided high quality data that are an unbiased estimate of the mean concentration of small arms MC in Target Berm and Firing Point soil and suitable for risk screening. IS collected from the both DUs showed elevated concentrations of small arms MC (metals and explosives, respectively) compared to human health screening criteria (Table 9-1 and Figure 9-4). Soil at the Soil Pile DU exceeded human health screening criteria for antimony, copper, and lead, as expected. Sediment from the French Drain Outfall DU were elevated only above ecological screening criterion for lead. Based on these results, there is evidence of unacceptable risk to human receptors visiting or working at the MRS. Furthermore, small arms MC concentrations exceed human health screening criteria in soil beyond the current extent of the MRS; however, MC concentrations do not exceed human health screening criteria beyond the MRS's immediate surroundings and exceedances do not reach the wetland east of the MRS. Furthermore, discrete soil sampling data showed small arms MC concentrations (metals and explosives) elevated at depths of up to 24-30 inches bgs, indicating an elevated risk to maintenance workers (e.g., landscaper).


The ecological screening criteria for copper and lead was exceeded in sediment at the French Drain Outfall DU. A SLERA was performed to assess ecological risk due to small arms MC at the MRS.



9.2 **Summary of Risk Assessment Results**

Analytical results from RI samples showed that small arms MC are present at the Target Berm, Soil Pile, and Firing Point at elevated levels above USEPA RSLs for Residential Soil (USEPA, 2018). MC levels in sediment at the French Drain Outfall are not elevated above USEPA RSLs for Residential Sediment; however, it is elevated above Background concentrations and ecological screening criterion.

Due to MC concentrations in soil at multiple DUs exceeding human health screening criteria, an HHRA was conducted. Cancer risk and non-cancer hazard calculations were conducted for the following scenarios: outdoor worker, teen trespasser, child and adult visitor, child and adult hypothetical resident, construction worker, and utility worker. Also, USEPA's ALM and IEUBK models were used to estimate PbB concentrations from exposure to lead in soil. Table 9-5 presents the human health COCs for soil that are likely to cause adverse health effects at the MRS.

Since MC concentrations in soil at all DUs exceeding ecological screening criteria, a SLERA was conducted. The purpose of the SLERA was to identify the potential risks to ecological receptors exposed to Site-related COIs in environmental media at the Site and determine which COPECs, if any, were exerting adverse effects to potential ecological receptor populations. The results of the risk characterization determined the following SMDPs:

1. Exposure to COPECs in on-site soil resulted in substantial impact (de manifestis) to both soil invertebrate and terrestrial wildlife populations; action should be taken that can eliminate or reduce exposure to an acceptable level.

The potential for adverse effects to the benthic macroinvertebrate community is de minimus, and the potential for adverse effects to the aquatic and semi-aquatic wildlife community is de minimus.

Conclusions and Recommendations 9.3

Based on the results of the RI, the MRS has been sufficiently characterized. It is recommended that the MRS boundary be revised to include the furthest extent of lead concentration exceedances of its human health screening criterion based on XRF data; the revised acreage is 0.27 acres (Figure 9-5). The presence of unacceptable risks to human health warrants an FS for the Ridgway Training Range MRS. The next step after an FS would be to prepare a proposed plan to convey this finding to the public, followed by a decision document to formally conclude work at the MRS.

Table 9-5. Human Health Risk Assessment Constituents of Concern for Soil

Receptor	Exposure Medium	Constituent of Concern
Target Berm DU		
Child Visites	Surface Soil	Lead (a, b)
Child Visitor	Total Soil	Lead (a, b)
Outdoor Worker	Surface Soil	Lead (b)
Outdoor worker	Total Soil	Lead (b)
Construction/Utility Worker	Surface Soil	Lead (b, c)
Lhypothotical Child Davidant	Surface Soil	Antimony Lead ^(b)
Hypothetical Child Resident	Total Soil	Antimony Lead ^(b)
Soil Pile DU		
	Surface Soil	Lead (a, b)
Child Visitor	Total Soil	Antimony Lead ^(a, b)
Construction Worker (c)	Total Soil	Antimony Lead ^(b, c)
Utility Worker (c)	Total Soil	Lead (b, c)
Outdoor Worker	Surface Soil	Lead (b)
Outdoor worker	Total Soil	Lead (b)
Um otherical Obild Desident	Surface Soil	Antimony Lead ^(b)
Hypothetical Child Resident	Total Soil	Antimony Lead ^(b)
Hypothetical Adult Resident	Total Soil	Antimony
Firing Point DU		
Hypothetical Child Resident	Surface Soil	Nitroglycerin

Notes:

- (a) IEUBK model results for the hypothetical child resident were also used to be protective of the child visitor at the MRS.
- (b) Lead modeling results are based on target PbB threshold of 10 μg/dL.
 (c) If a target PbB threshold of 5 μg/dL was used, then lead would be identified as a surface soil and total soil COC for the construction and utility worker scenarios.

10 References

- AECOM, 2017. Final Remedial Investigation Work Plan and UFP-QAPP, Ridgway Training Range, Pennsylvania. June.
- AECOM, 2018. *Draft Final Remedial Investigation Report*. Ridgway Training Range, Pennsylvania. Munitions Response Site PAE40-001-R-01. Pennsylvania Army National Guard. October 2018.
- Centers for Disease Control and Prevention (CDC). 2012. Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. Report of the Advisory Committee on Childhood Lead Poisoning Prevention, Centers for Disease Control and Prevention. January 4, 2012.
- DoD. 2007. Munitions Response Site Prioritization Protocol (MRSPP) Primer. June 2007.
- Earth Resources Technology, Inc., 2008. Draft Final Operational Range Assessment Program, Phase I Qualitative Assessment Report, Ridgway Training Site, March.
- Evans, L.J. 1981. Chemistry of Metal Retention, Environmental Science Technology, 23:1046-1056.
- Interstate Technology Regulatory Council (ITRC). 2012. *Incremental Sampling Methodology*. Technical and Regulatory Guidance. February.
- National Park Service (NPS), 2018. *National Heritage Areas Program*. http://www.cr.nps.gov/heritageareas/vst/index.htm.
- Oak Ridge National Laboratory. 1989. *The Installation and Restoration Program Toxicology Guide*. Harry G. Armstrong Aerospace Medical Research Laboratory. Air Force Systems Command. Volumes I through IV.
- Pennsylvania Department of Environmental Protection (PADEP). 2002. Land Recycling Program Technical Guidance Manual Environmental Quality Board, 25 Pa. Code § 250, Administration of the Land Recycling Program (Act 2), June 8, 2002.
- PADEP. 2018. Land Recycling Program Toxicity Database, Summary of Toxicity Values online check conducted October 30, 2018.
- Pennsylvania Department of Military and Veterans Affairs (PADMVA), 2011. Ridgway Weekend Training Site (WETS) & Range, Environmental Baseline Survey Report (EBS). August.
- Parsons Infrastructure and Technology (Parsons), 2012. *Final Pennsylvania Site Inspection Report*, Army National Guard Military Munitions Response Program, September.

- Trapp, Jr., Henry, and Horn, Marilee A., 1997. Groundwater Atlas of the United States, Delaware, Maryland, New Jersey, North Carolina, Pennsylvania, Virginia, West Virginia, HA 730-L, USGS.
- U.S. Army. 2009. Final Military Munitions Response Program, Munitions Response Remedial Investigation/Feasibility Study Guidance. November 2009.
- U.S. Climate Data, 2017. http://www.usclimatedata.com/climate/ridgway/pennsylvania/united-states/uspa1378 Accessed February 22, 2017.
- U.S. Environmental Protection Agency (USEPA). 1988. Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA. Office of Solid Waste and Emergency and Remedial Response, OSWER Directive 9234.1-01. August.
- USEPA. 1991. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-30. April 22, 1991. https://www.lm.doe.gov/cercla/documents/rockyflats_docs/SW/SW-A-005200.pdf
- USEPA, 1999. Level III and IV Ecoregions of Delaware, Maryland, Pennsylvania, Virginia, and West Virginia. Prepared by Alan J. Woods, James M. Omernik, Douglas D. Brown. July. http://www.epa.gov/wed/pages/ecoregions/reg3 eco.htm.
- USEPA, 2010. Western Ecology Division. Ecoregions of the United States. ftp://ftp.epa.gov/wed/ecoregions/us/Eco Level III US.pdf.
- USEPA. 2016. Memorandum: Updated Scientific Considerations for Lead in Soil Cleanups. From Mathy Stanislaus, Assistant Administrator of the office of Land and Emergency Management to USEPA Regional Administrators, I-X. December 22, 2016.
- USEPA, 2017a. National Functional Guidelines for Inorganic Superfund Methods Data Review (ISM02.4), January 2017, EPA-540-R-2017-001.
- USEPA, 2017b. National Functional Guidelines for Organic Superfund Methods Data Review (SOM02.4), January 2017, EPA-540-R-2017-002.
- USEPA, 2018. Regional Screening Level (RSL) Table and User's Guide Dated May 2018. http://www.epa.gov/risk/regional-screening-table.
- U.S. Fish and Wildlife Service (USFWS), 2017. National Wetlands Inventory: Wetlands *Mapper*. http://www.fws.gov/wetlands/Data/mapper.html.
- USFWS, 2018. Environmental Conservation Online System (ECOS). https://ecos.fws.gov/ecp0/reports/species-by-current-range-county?fips=42047. Accessed June 2018

Appendix A:

Field Forms

Soil Sample Collection Logs

				Sit	e ID:	
				Arrival '	Time: _	0700
				Departure	Time:_	1900
Soil	Sample	Colle	ection Lo	ıσ		
	_			O		
Site Name/Location: On-Site Personnel:	way	PA			Date:	67/11/18
						<i>N</i>
Sample ID: PTRO	ISC	1				
Soil Sample Characterization						
Grain Size (%)						
Silt/Clay (<0.06 mm)			35			
Sand (0.06 – 2 mm)			60			
Gravel (2.64 mm)			5			
Cobble (64 – 256 mm)			41			
Organic Content		L	DW / M	ED) / H	HIGH	
Color	-	-	7.5	5 YR	3/	6
Moisture (%)			208			
Bullets or Bullet Fragments?			YES	/ (10))	
Sample Collection Tools Used:	Se.'l	Pro	be			A ^t
Sample Types						
Incremental (always taken Tripli	cate)– No.	of Incre	ments:	133		
Discrete – Depth interval:						
XRF Result:						
XRF Error:						
N N						
Quality Control Samples						
□Duplicate ☑MS/MSDs □I	ield Blank	i ∏Eq	uipment Bl	ank 🔲 N	/A	
Notes:						
Ta	get B	er	- ISM			
	-					
	2250 C					
			-			
					200	

				Sit	te ID:	
				Arrival	Time:	0700
				Departure	: Time:_	1900
Soi	l Sample	Collec	tion L	og		
Site Name/Location:	de way	PA.			Date:	7/11/18
On-Site Personnel:	ZN		Lo	g Preparer:	2	N
Sample ID: 2TRO						_
Soil Sample Characterization						
Grain Size (%)				·		
Silt/Clay (<0.06 mm)			35	ē.		
Sand (0.06 – 2 mm)			60			
Gravel (2.64 mm)			5			
Cobble (64 – 256 mm)			41			
Organic Content		LO	W / (N	ИЕD) / 1	HIGH	
Color		7.5	IR :	3/6		
Moisture (%)			20%			
Bullets or Bullet Fragments?			YES	S / NO		
Sample Collection Tools Used:	Sail	Dech	و			50
Sample Types				122		
Incremental (always taken Tripl		of Increm	nents:	137		
Discrete – Depth interval:						
XRF Result:						
XRF Error:						
Ouglity Control Consults						
Quality Control Samples	D' 11D1 1			🚄		
Duplicate MS/MSDs	Field Blank	∐Equi	pment B	lank 🗹 N	I/A	
Notes:	. 10 - 11	2	4	- 40		
(a	get 1	serre	ر بلد	37 °L		
		2				
				7.45		
						1-07/0100

Arrival Time: __________ Departure Time: 1900 Soil Sample Collection Log Site Name/Location: PA Date: 7/1/18 On-Site Personnel: ______ Log Preparer: _____ 2v Sample ID: PTROI ISC3 Soil Sample Characterization Grain Size (%) 35 Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)60 Gravel (2.64 mm) 41 Cobble (64 – 256 mm) LOW / MED / HIGH Organic Content 7.5 4R 3/6 Color Moisture (%) 20 Bullets or Bullet Fragments? YES / NO Sample Collection Tools Used: Soil Probe Sample Types Incremental (always taken Triplicate)—No. of Increments: 133 Discrete – Depth interval: XRF Result: _____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A ■ Duplicate Notes: Taget Berm

Site ID:

			Arrival	Time: _	0700
	1900				
Soi	l Sample	Collec	ction Log		
Site Name/Location:	idguay.	DA		Date:	7/3/18
On-Site Personnel:	ZN	**	Log Preparer:		21
Site Name/Location: On-Site Personnel: Sample ID: 216-6	DAC	014			
Soil Sample Characterization		-			
Grain Size (%)					
Silt/Clay (<0.06 mm)			30		
Sand (0.06 – 2 mm)			50		
Gravel (2.64 mm)			10		
Cobble (64 – 256 mm)			10		
Organic Content		(Lo	W / MED / F	HIGH	
Color			7.5 42	4/6	
Moisture (%)					
Bullets or Bullet Fragments?			YES / NO		
Sample Collection Tools Used:	D;	sp.	Span		
Sample Types					
☐ Incremental (always taken Trip)		of Incren	nents:		
Discrete – Depth interval:	-18"				
XRF Result:					
XRF Error:					
Quality Control Samples		_			
D Duplicate ☐MS/MSDs ☐	Field Blank	∐Equ	ipment Blank □N	/A	
Notes:	amet.	Dane			
	J'	1341	4		
DUP:	RTRC	10	401B		
•		1			
*					

Site ID: _

			Site ID:	
			Arrival Time:	
			Departure Time:	(900
	-	Collection L	O	
Site Name/Location: On-Site Personnel: 54	dguery,	p4	Date:	7/2/18
On-Site Personnel: 5	21/	Lo	og Preparer:	N
Sample ID: 2TR C				
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)		20		
Sand $(0.06 - 2 \text{ mm})$		50	,	-
Gravel (2.64 mm)		15		
Cobble (64 – 256 mm)		15		
Organic Content			MED / HIGH	
Color		7.5	4K 4/6	
Moisture (%)		ľ	5	
Bullets or Bullet Fragments?		YE	s / (NO)	
Sample Collection Tools Used:	Disp	Spaan		-
Sample Types				
☐ Incremental (always taken Tripli	cate)– No. of	Increments:		
Doiscrete - Depth interval:	1-30" bg	5		
XRF Result:				
XRF Error:				
Quality Control Samples				
Duplicate MS/MSDs	Field Blank	☐Equipment I	3lank □N/A	
Notes:				
	587			
	-	1000		

Site ID:
Arrival Time: Departure Time: 1900 Soil Sample Collection Log Site Name/Location:

On-Site Personnel:

Date: 7/3/8

Log Preparer:

Note: 1/4/8 Sample ID: PTP OIDC 02A Soil Sample Characterization Grain Size (%) 35 Silt/Clay (<0.06 mm) 60 Sand (0.06 - 2 mm)5 Gravel (2.64 mm) Cobble (64 - 256 mm)LOW / (MED) / HIGH Organic Content Color Moisture (%) YES / NO Bullets or Bullet Fragments? Disp Spoon Sample Collection Tools Used: Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: _____ Discrete – Depth interval: 0-6 bys XRF Result: 34, 543 ng/49 XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □Duplicate Notes:

Departure Time: 1900 **Soil Sample Collection Log** Site Name/Location: Pidgia, PA Date: 7/13/18 On-Site Personnel: Log Preparer: ZN Sample ID: 2TROIDA 63 A Soil Sample Characterization Grain Size (%) 30 Silt/Clay (<0.06 mm) 50 Sand (0.06 - 2 mm)Gravel (2.64 mm) 10 Cobble (64 - 256 mm)10 (OW / MED / HIGH **Organic Content** Color Moisture (%) Bullets or Bullet Fragments? YES / QO Sample Collection Tools Used: _______ Sisp. Spoon Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: Discrete - Depth interval: 12-18" XRF Result: XRF Error: _____ **Quality Control Samples** ☑MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Duplicate **Notes:** Taget Berm

Site ID:
Arrival Time: 0700
Departure Time: 1900

Soil Sample Collection Log

Site Name/Location: 2.6	Log Preparer: 2N
On-Site Personnel:	Log Preparer: 2N
Sample ID: 27RC	
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	20
Sand (0.06 – 2 mm)	50
Gravel (2.64 mm)	15
Cobble (64 – 256 mm)	15
Organic Content	LOW / MED / HIGH
Color	7.5 YR 4/6
Moisture (%)	15
Bullets or Bullet Fragments?	YES / 😡
Sample Types ☐ Incremental (always taken Tripli ☐ Discrete – Depth interval: 24-	cate)— No. of Increments:
XRF Result:	
XRF Error:	
2 8 1	
Quality Control Samples	
□Duplicate □MS/MSDs □I	Field Blank ☐Equipment Blank ☑N/A
Notes	
Notes:	aget Bern

Site ID:
Arrival Time: 0700
Departure Time: 1900

Soil Sample Collection Log

Site Name/Location:	Date: 7/3/18 Log Preparer: 24
On-Site Personnel:	Log Preparer:
Sample ID: PTI	20104044
Soil Sample Characterization	1
Grain Size (%)	
Silt/Clay (<0.06 mm)	3c
Sand (0.06 – 2 mm)	Se
Gravel (2.64 mm)	10
Cobble (64 – 256 mm)	10
Organic Content	LOW / MED / HIGH
Color	7.5 4R 4/6
Moisture (%)	15
Bullets or Bullet Fragments?	YES / NO
Sample Collection Tools Used: _ Sample Types	
Discrete – Depth interval:	plicate)— No. of Increments:
XRF Result:	
XRF Error:	-
Quality Control Samples	
□Duplicate □MS/MSDs □	JField Blank ☐ Equipment Blank ☑ N/A
Notes:	Target Berm
	3

	Site ID:
	Arrival Time: 0700
	Departure Time: 1900
Soil	Sample Collection Log
	•
Site Name/Location:	Date: 7/13/18 Date: 7/13/18 Date: 2N Date: 2N
On-Site Personnel:	Log Preparer: 2N
Sample ID: PTRO	IDBOHA
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	20
Sand (0.06 – 2 mm)	50
Gravel (2.64 mm)	15
Cobble (64 – 256 mm)	15
Organic Content	OW / MED / HIGH
Color	7.5 4R 4/6
Moisture (%)	15
Bullets or Bullet Fragments?	YES / 🔞
Sample Collection Tools Used:	Disp Spoon
Sample Types	
	cate)- No. of Increments:
Discrete – Depth interval:	-30"
XRF Result:	
XRF Error:	
Quality Control Samples	
	Field Blank □Equipment Blank ☑N/A
Notes:	
	Target Berm

		Sit	e ID:				
		Arrival	Time: <u>0760</u>	,			
		Departure	Time: 1900				
Soil	Sample Colle	ection Log					
			7/10/	: رسان			
Site Name/Location:	9 604, 174		Date:	8			
On-Site Personnel:	21	Log Preparer:	20				
Sample ID: 2T/20	I DA OSZ	+					
Soil Sample Characterization							
Grain Size (%)							
Silt/Clay (<0.06 mm)		30					
Sand (0.06 – 2 mm)		50					
Gravel (2.64 mm)		10					
Cobble (64 – 256 mm)		_10					
Organic Content	(HIGH				
Color		7.5 4R	4/6				
Moisture (%)		15					
Bullets or Bullet Fragments?		YES / NO					
Sample Collection Tools Used:	Disa.	Sacon					
	101315	37-07-					
Sample Types							
Incremental (always taken Tripli	_	ements:					
Discrete – Depth interval: 12 –1	8" 695						
XRF Result:							
XRF Error:							
Quality Control Samples							
□Duplicate □MS/MSDs □I	Field Blank ☐Eq	uipment Blank	/A				
Notes:							
Tag	get Bern	• •					
				_			
	-	The second second					

Site ID:
Arrival Time:
Departure Time:

Soil Sample Collection Log

Site Name/Location: 2	dalay, PA Date: 3/13/18
On-Site Personnel:	v. 2v Log Preparer: 2v
	20105014
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	70
Sand (0.06 – 2 mm)	25
Gravel (2.64 mm)	5
Cobble (64 – 256 mm)	0
Organic Content	LOW / MED / HIGH
Color	7.5 4R 3/2
Moisture (%)	25
Bullets or Bullet Fragments?	YES / NO
Sample Collection Tools Used: Sample Types Incremental (always taken Tripli Discrete – Depth interval:	cate)— No. of Increments:
XRF Result:	
XRF Error:	<u> </u>
Quality Control Samples □Duplicate □MS/MSDs □F	Field Blank □Equipment Blank ☑N/A
Notes:	1 Area - Target Berm

Site ID: _	
Arrival Time:	0700
Departure Time:	1900

Soil Sample Collection Log

Site Name/Location:	ay PA		Date:	2/12/18
On-Site Personnel:	21	Log Preparer	2	N
Sample ID: RTR	D5 02	A		
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)		70		
Sand (0.06 – 2 mm)		25		
Gravel (2.64 mm)		5		
Cobble (64 – 256 mm)	-	0		
Organic Content	10	/ MED /	HIGH	
Color		7.5 YR	3/2	
Moisture (%)		25		
Bullets or Bullet Fragments?		YES / WO		
Sample Types Incremental (always taken Triplical Discrete – Depth interval:	" bebu			
XRF Result:				
XRF Error:	_			
Quality Control Samples				
□Duplicate □MS/MSDs □Fie	ld Blank □Equ	ipment Blank	√A	
Notes:	de Arca	- Target	B	erm
	i i			

Arrival Time: 0700 Departure Time: 1900 Soil Sample Collection Log Date: 7/13/18 Site Name/Location: On-Site Personnel: ___ RIR OI DOGIA Sample ID: Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) 70 Sand (0.06 - 2 mm)30 Gravel (2.64 mm) Cobble (64 - 256 mm) LOW / MED / HIGH Organic Content Color Moisture (%) 50 Bullets or Bullet Fragments? YES / NO Sample Collection Tools Used: Sample Types ☐ Incremental (always taken Triplicate) – No. of Increments: Discrete – Depth interval: XRF Result: XRF Error: ____ **Quality Control Samples** ☐Field Blank ☐Equipment Blank ☑N/A Duplicate ☐MS/MSDs Notes: Drainage Area - South

Site ID:

			Site ID: _	
			Arrival Time:	0700
			Departure Time:	1900
	l Sample Co			
Site Name/Location: On-Site Personnel:	dallay	PA	Date	3/12/18
On-Site Personnel:	, 2N	Log	g Preparer:	2N
Sample ID: 27	ROIDD	024		
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)		70	·	
Sand (0.06 – 2 mm)		30		
Gravel (2.64 mm)		C		
Cobble (64 – 256 mm)		C	,	
Organic Content		LOW / M	ED / HIGH	
Color		7.5	4R 5/	8
Moisture (%)			50	
Bullets or Bullet Fragments?		YES	1 0	
Sample Collection Tools Used:	Disp	Spoon		
Sample Types				
☐ Incremental (always taken Triplication)		crements:		
Discrete – Depth interval:	6			
XRF Result:				
XRF Error:				
Quality Control Samples				
	Field Blank 🔲	Equipment Bl	ank N/A	
Notes:				
Draid	lage /	froa -	South	
	edina	/		
		•		

Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Ridgway, PA Date: 07/09/18

On-Site Personnel: 500 Witte, Zach Neigh Log Preparer: Zach Neigh

Sample ID: RTRO2DSO1A Dup: RTRO2DSO1B) Soil Sample Characterization Sandy Loam Grain Size (%) Silt/Clay (<0.06 mm) 60% Sand (0.06 - 2 mm)56 Gravel (2.64 mm) 06-18 Cobble (64 - 256 mm)LOW / (MED) / HIGH Organic Content Color 7.5 YR 3/6 Moisture (%) 20% Bullets or Bullet Fragments? YES / (NO) Sample Collection Tools Used: Disposable Spoon, Hand Auger Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: Discrete - Depth interval: 0-1 bps (below pile surface) XRF Result: XRF Error: **Quality Control Samples** Duplicate ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Notes: Dyplicate: RTRO2DSO1B

Site ID: ______Arrival Time: ______

Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Ridging, PA Date: 07/09/18 On-Site Personnel: Joe Wiffe Zah Neigh Log Preparer: Zah Neigh Sample ID: RTRODDSODA Soil Sample Characterization Grain Size (%) Sandy Loam 35% Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)60% Gravel (2.64 mm) 5% Cobble (64 - 256 mm)0% LOW / (MED) / HIGH **Organic Content** Color 7.5 YR 3/6 Moisture (%) 20% **Bullets or Bullet Fragments?** YES / (NO) Sample Collection Tools Used: Disposable Speen, Hand Auger Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: _____ Discrete – Depth interval: 0-1 .605 XRF Result: _____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A □ Duplicate Notes: Soil Pile

			Site	e ID:		
			Arrival 7	Γime: _	07	
			Departure	Time:_	190	<i>C</i>
Soil	Sample Co	ollection I	∟og			
Site Name/Location: Rdg On-Site Personnel: See With	way PA			Date:	07/0	19/18
On-Site Personnel: Tec Wit	k, Zach	Neigh L	og Preparer:	2	ach	Neigh
Sample ID: <u>RTR 02</u>					-	
Soil Sample Characterization						
Grain Size (%)		Sandy	Loans			
Silt/Clay (<0.06 mm)			5			
Sand (0.06 – 2 mm)		608	8			
Gravel (2.64 mm)		5%	2			
Cobble (64 – 256 mm)		08				
Organic Content		LOW /	MED / H	lIGH		
Color		7.	5 4R	3/6	5	
Moisture (%)			20 8		-	
Bullets or Bullet Fragments?		YE	S/NO			
Sample Collection Tools Used: Sample Types	Disposeble	. Span,	Hand Au	eger		
☐ Incremental (always taken Tripli	cate)– No. of I	ncrements:				
Discrete – Depth interval:						
XRF Result:	•					
XRF Error:						
Quality Control Samples				,		
□Duplicate □MS/MSDs □I	Field Blank]Equipment l				
Notes:	1 011					
	:/ P:1					
		-	-			
	ř.		_			

Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Pidguay PA Date: 07/09/18 On-Site Personnel: Je with Zah Neigh Log Preparer: Zach Neigh Sample ID: RTR02 D504A Soil Sample Characterization Sondy Loam Grain Size (%) 35% Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)60% Gravel (2.64 mm) Cobble (64 - 256 mm)02 (LOW) / MED / HIGH Organic Content 10 4R 3/6 Color 328 Moisture (%) YES / (NO) Bullets or Bullet Fragments? Sample Collection Tools Used: Disposable Span, Hand Auger Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: _____ Discrete - Depth interval: O-1 bos XRF Result: ____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □ Duplicate Notes: Soil Pile

Site ID: _____Arrival Time: ___________

	Departure Time: 1900	
Soil	l Sample Collection Log	
Site Name/Location: P. 191	vy, PA Date: 03/09/18	
On-Site Personnel: 500 Wifte	z, Zach Neigh Log Preparer: Zach Neigh	
Sample ID: RTRO	_	
Soil Sample Characterization		
Grain Size (%)	Sond Loam	
Silt/Clay (<0.06 mm)	35%	
Sand (0.06 – 2 mm)	60 %	
Gravel (2.64 mm)	5%	
Cobble (64 – 256 mm)	04	
Organic Content	LOW / MED / HIGH	
Color	10 YF 3/6	
Moisture (%)	32 %	
Bullets or Bullet Fragments?	YES / NO	
Sample Types	cate)- No. of Increments:	
Discrete – Depth interval:		
XRF Result:	•	
XRF Error:		
AIG Elloi.		
Quality Control Samples	,	
□Duplicate □MS/MSDs □I	Field Blank □Equipment Blank ☑N/A	
Notes:	oil Pile	
E	¥),	

Site ID:
Arrival Time: 0700
Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Ridguay, PA Date: 07/09/18
On-Site Personnel: See Witte, Zach Neigh Log Preparer: Zach Neigh Sample ID: RTR 02 DS06A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)60% Gravel (2.64 mm) Cobble (64 - 256 mm) 0% (LOW / MED / HIGH Organic Content Color 10 4R 3/6 Moisture (%) 328 Bullets or Bullet Fragments? YES / (NO) Sample Collection Tools Used: Disposable Spron, Hand Auger **Sample Types** ☐ Incremental (always taken Triplicate)—No. of Increments: Discrete – Depth interval: 0-1 6/5 XRF Result: _____ XRF Error: _____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A □ Duplicate Notes: Sal Pile

Site ID:
Arrival Time:
Departure Time:

1900 **Soil Sample Collection Log** Site Name/Location: Ridgray, PA Date: 07/09/18
On-Site Personnel: De With, Zach Neigh Log Preparer: Zach Neigh Sample ID: RTRO2D 507A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)60 Gravel (2.64 mm) Cobble (64 - 256 mm)LOW / (MED) / HIGH Organic Content Color 7.5 4R 3/6 Moisture (%) 20% YES / NO Bullets or Bullet Fragments? Sample Collection Tools Used: Disposable Span Hand Auger Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: ___ Discrete - Depth interval: 0-1 ags (above grand surface) XRF Result: ____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Duplicate Notes: Soil Pile

Arrival Time: 0700 Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Pidgway, PA Date: 07/09/18

On-Site Personnel: Joe Witte, Zach Neigh Log Preparer: Zach Noigh Sample ID: RTR 02 D508 A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm)0 LOW / (MED) / HIGH **Organic Content** Color 7.5 YR 3/6 Moisture (%) 20% YES / NO Bullets or Bullet Fragments? Sample Collection Tools Used: Disposable Span, Hand Auger Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: Discrete - Depth interval: 0-1 ags XRF Result: XRF Error: **Quality Control Samples** □Duplicate □MS/MSDs □Field Blank □Equipment Blank ☑N/A Notes: Soil pile

Site ID:

	Site ID:	
	Arrival Time: 0700	
	Departure Time: 1900	
Soil	Sample Collection Log	
Site Name/Location: Ligh	Date: 07/09/18 Zach Neigh Log Preparer: Zach Neigh	
On-Site Personnel: Jee Witte	Zach Neigh Log Preparer: Zach Neigh	
Sample ID: RTR 02	DS 09 A	
Soil Sample Characterization		
Grain Size (%)	Sandy Learn	
Silt/Clay (<0.06 mm)	35	
Sand (0.06 – 2 mm)	60	
Gravel (2.64 mm)	5	
Cobble (64 – 256 mm)	0	
Organic Content	LOW / MED / HIGH	
Color	7.5 4R 3/6	
Moisture (%)	20%	
Bullets or Bullet Fragments?	YES / 🐠	
Sample Collection Tools Used: Sample Types	Disposable Span, Hand Auger	
☐ Incremental (always taken Tripli	cate)- No. of Increments:	
Discrete – Depth interval:	ags	
XRF Result:		
XRF Error:		
Quality Control Samples		
□Duplicate □MS/MSDs □I	Field Blank ☐ Equipment Blank ☑ N/A	
Notes:	Soil pile	
II .		
	0	
	3. 000 TE 2000 TE	

	Site ID:	
	Arrival Time:	
	Departure Time: 1900	
Soil	Sample Collection Log	
	-	
Site Name/Location: 2.dgu	Zach Neigh Log Preparer: Zach Neigh	
Sample ID: RTROA	D SIOA	
Soil Sample Characterization		
Grain Size (%)	Sendy / com	
Silt/Clay (<0.06 mm)	Sondy Loan 35	
Sand (0.06 – 2 mm)	60	
Gravel (2.64 mm)	5	
Cobble (64 – 256 mm)	0	
Organic Content	LOW / MED / HIGH	
Color	10 4R 3/6	
Moisture (%)	328	
Bullets or Bullet Fragments?	YES / NO	
Sample Collection Tools Used:	Disposable Spoon, Hand Auger	
	cate)— No. of Increments:	
Discrete – Depth interval: 0-1		
XRF Result:		
XRF Error:		
- N		
Quality Control Samples		
□Duplicate □MS/MSDs □F	ield Blank □Equipment Blank ☑N/A	
Notes:		
	oil Pile	
	*	

Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Kigy, PA Date: 07/09/18
On-Site Personnel: 5c Witte, 2sh Meigh Log Preparer: Zach Neigh Sample ID: RTR 02 DS 11 A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm)0 Organic Content (OW / MED / HIGH Color Moisture (%) 32 % YES / NO Bullets or Bullet Fragments? Disposable Span, Hand Auger Sample Collection Tools Used: Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: Discrete – Depth interval: 0-1 495 XRF Result: _____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □Duplicate Notes: Soil pile

Arrival Time: 0700 Departure Time: 1900 **Soil Sample Collection Log** Site Name/Location: Ridgway, PA Date: 07/09/18
On-Site Personnel: Tec Wither Zach Neigh Log Preparer: Zach Neigh Sample ID: RTRO2D512A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm)(LOW) / MED / HIGH Organic Content Color 10 4R 3/6 Moisture (%) YES / NO Bullets or Bullet Fragments? Sample Collection Tools Used: Disposable spoon, Hand Auger Sample Types ☐ Incremental (always taken Triplicate)—No. of Increments: Discrete - Depth interval: 0-1' 95 XRF Result: XRF Error: _____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □Duplicate Notes:

Site ID:

	Site ID:			
	Arrival Time: <u>6766</u>			
	Departure Time: 1900			
Soil	Sample Collection Log			
Site Name/Location:	de 1 a . n 4			
On Site Personnels TL	ds way , PA Date: 3/13/18			
	Log Preparer: 2N			
Sample ID:	3 1501			
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)	40			
Sand (0.06 – 2 mm)	50			
Gravel (2.64 mm)	5			
Cobble (64 – 256 mm)	5			
Organic Content	LOW / MED)/ HIGH			
Color	7.5 42 2/4			
Moisture (%)	15			
Bullets or Bullet Fragments?				
Sample Collection Tools Used:	Soil Proble			
Sample Types				
Incremental (always taken Tripli	cate)– No. of Increments: 3 6			
Discrete – Depth interval:				
XRF Result:				
XRF Error:				
Quality Control Samples				
Duplicate MS/MSDs Field Blank Equipment Blank N/A				
	•			
Notes:				
Firing Point.				
	4			

		Sit	e ID:	
		Arrival	Time: _	0700
		Departure	Time:_	1900
Soil	Sample Co	llection Log		
	1	O		
Site Name/Location:	way, PA		Date:	7/13/18
On-Site Personnel:	2N	Log Preparer:	Z	1
Sample ID: PTR03	1503			
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)		40		
Sand (0.06 – 2 mm)		50		
Gravel (2.64 mm)		5		
Cobble (64 – 256 mm)		5		
Organic Content		LOW / MED / H	HIGH	
Color		7.5 YR	2/4	
Moisture (%)		15		
Bullets or Bullet Fragments?		YES / NO		-
Sample Collection Tools Used:	C. 1	Probe		
Sample Collection Tools Used:	3011	1900		
Sample Types				
✓ Incremental (always taken Triplic	cate) – No. of In	crements: 36		
☐Discrete – Depth interval:				
XRF Result:				
XRF Error:				
Quality Control Samples				
□Duplicate □MS/MSDs □F	ield Blank	Equipment Blank N	/A	
Notes:		,		
Fire	ny Poil	17		
			-	

		Site	ID:	
		Arrival T	ime:	0700
		Departure T	Րime:	1900
Soil	Sample Col	lection Log		
	-			- 0. 10
Site Name/Location: 2.ds	way, DA		Date:	2/12/18
Site Name/Location: 2.ds On-Site Personnel: 54	, 21	Log Preparer:_		.N
Sample ID: RTR	03 IS C	3		
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)		40		
Sand (0.06 – 2 mm)		50		
Gravel (2.64 mm)		5	-	
Cobble (64 – 256 mm)		5_		
Organic Content	1	LOW / MED / H	IGH	
Color		7.5 YR 2/	2/	
Moisture (%)		15	1	
Bullets or Bullet Fragments?	YES / NO			
Sample Collection Tools Used:	5.1	probe		
Sample Types				
Incremental (always taken Tripli	cate)– No. of Inc	rements: 36_		
Discrete – Depth interval:				
XRF Result:				
XRF Error:				
Quality Control Samples				
□Duplicate □MS/MSDs □I	Field Blank	quipment Blank N/A	A	
Notes:	10 10	1		
	ing Pah			
			,	
a.			15	

Departure Time: 1900 **Soil Sample Collection Log** Sample ID: RTR03DS01A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm)LOW / MED / (HIGH) Organic Content 7.54R Color Moisture (%) 187-Bullets or Bullet Fragments? YES / NO Sample Collection Tools Used: ___ Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: Discrete – Depth interval: 0-6 XRF Result: XRF Error: ____ **Quality Control Samples V**Duplicate ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Notes: Firing Print - Nite only Dup: RTR03DS01B

Site ID: ______Arrival Time: ________________

Departure Time: 1900 Soil Sample Collection Log Site Name/Location: Ridgway PA Date: 07/09/18
On-Site Personnel: Sac Witte, Zach Neigh Log Preparer: Zach Neigh Sample ID: RTR 03 DS 02A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)45 Gravel (2.64 mm) IC Cobble (64 - 256 mm)0 Organic Content LOW / MED / (HIGH) Color 7.5 42 34 Moisture (%) 18% **Bullets or Bullet Fragments?** YES / NO Sample Collection Tools Used: Disposable Spoon Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: _____ Discrete - Depth interval: 0-6" XRF Result: _ ¬ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □ Duplicate Notes: Nitroglycerin only

Site ID: ______Arrival Time: O/OC

Departure Time: 190C **Soil Sample Collection Log** Site Name/Location: Ridgway, PA Date: 07/09/18

On-Site Personnel: Soc Witter Zoch Neigh Sample ID: RTRO3 D503A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) 45 Sand (0.06 - 2 mm)45 Gravel (2.64 mm) 10 Cobble (64 - 256 mm)0 Organic Content LOW / MED / (HIGH) 2.5 4R Color 208 Moisture (%) Bullets or Bullet Fragments? YES / NO Disposable Spoon Sample Collection Tools Used: ___ Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: ☑Discrete – Depth interval: _ 0 - 6" XRF Result: XRF Error: ____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Duplicate Notes: Nitroglycerin only

Site ID: _______Arrival Time: ________

Site ID:
Arrival Time:
Departure Time:

Soil Sample Collection Log

Site Name/Location:	Date: 7/13/18			
On-Site Personnel:				
Sample ID: PTR	03 DAOLA			
Soil Sample Characterization				
Grain Size (%)				
Silt/Clay (<0.06 mm)	46.30			
Sand (0.06 – 2 mm)	45			
Gravel (2.64 mm)	5"			
Cobble (64 – 256 mm)	20			
Organic Content	OW / MED / HIGH			
Color	7.5 4R 2/4			
Moisture (%)	15			
Bullets or Bullet Fragments?	YES / NO/			
Sample Collection Tools Used: Disp Spoon				
Sample Types				
☐ Incremental (always taken Triplicate)— No. of Increments:				
Discrete - Depth interval:	18" bg 5			
XRF Result:				
XRF Error:				
Quality Control Samples				
Duplicate MS/MSDs F	ield Blank ☐Equipment Blank ☐N/A			
Notes: Firing Point				
	2			

Soil Sample Collection Log Ridguay PA Date: 7/2/18 Site Name/Location: ___ JW. 21/ Log Preparer: 2 N On-Site Personnel: Sample ID: PIRO3 DA 62A Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) 30 Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm) 20 (OW) / MED / HIGH Organic Content Color Moisture (%) 15 Bullets or Bullet Fragments? YES / NO Sample Collection Tools Used:_ Sample Types ☐ Incremental (always taken Triplicate)— No. of Increments: _____ Discrete - Depth interval: 12-18" XRF Result: XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □ Duplicate Notes: Firing Paint

Site ID:
Arrival Time: 07cc
Departure Time: 19co

Arrival Time: 070 Departure Time: 190 Soil Sample Collection Log Pido way PA Date: 2/13/18 Site Name/Location: 2 Log Preparer: 2 On-Site Personnel: RTR 0304034 Sample ID: __ Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 – 256 mm) LOW / MED / HIGH Organic Content Color Moisture (%) **Bullets or Bullet Fragments?** YES / NO Sample Collection Tools Used:_ Sample Types ☐ Incremental (always taken Triplicate) – No. of Increments: _____ Discrete - Depth interval: 12-18 " by 5 XRF Result: XRF Error: **Quality Control Samples** Duplicate ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Notes:

Site ID:

	Site ID:
	Arrival Time: <u>7700</u> Departure Time: 1900
	Departure Time.
Soi	Sample Collection Log
Site Name/Location:	idgling PA Date: 7/2/8
On-Site Personnel:	Cg PA Date: 7/13/18
	RO3DCOIA
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	45
Sand (0.06 – 2 mm)	45
Gravel (2.64 mm)	5
Cobble (64 – 256 mm)	5
Organic Content	LOW / MED / HIGH
Color	7.5 4R 2/4
Moisture (%)	15
Bullets or Bullet Fragments?	YES / NO
Sample Collection Tools Used:	Dip Space
Sample Types	
☐ Incremental (always taken Tripli	cate)- No. of Increments:
Discrete - Depth interval:	
XRF Result:	
XRF Error:	
Quality Control Samples	
□Duplicate □MS/MSDs □F	Field Blank ☐ Equipment Blank ☑ N/A
Notes:	
- tiri	ng po.ht p conly
Tal	0 000
1 4	r unu

	Site ID:	967
	Arrival Time:	0700
	Departure Time:_	1900
Soil	Sample Collection Log	
W #3	•	
Site Name/Location:	Date: Log Preparer: Z	7/14/18
On-Site Personnel:	Log Preparer: 2	N
Sample ID: PTRO	FDDOIA	-
Soil Sample Characterization		90
Grain Size (%)		
Silt/Clay (<0.06 mm)	80	
Sand (0.06 – 2 mm)	20	
Gravel (2.64 mm)	0	
Cobble (64 – 256 mm)		
Organic Content	LOW / MED / HIGH	
Color	5 4R 6/10	
Moisture (%)	7 50	
Bullets or Bullet Fragments?	YES / NO	
Sample Collection Tools Used:	Dip. spean	
Sample Types		
☐ Incremental (always taken Triplic	cate)- No. of Increments:	
Discrete – Depth interval: _0-6	- 19	
XRF Result:		
XRF Error:	<u> </u>	
Quality Control Samples		
☑Duplicate ☑MS/MSDs ☐F	ield Blank	
Notes:		
	h Drain	
- 11	rat	
Sedi	The T	
NUO. DT	ROSDDOIB	e.
0000		

			Site	e ID:	
					0700
			Departure '		
S-21	C1-	Calland's	T		
5011	Sample	Collection	on Log		
Site Name/Location: 2.6	lguay,	PA		Date:	7/12/18
On-Site Personnel: TW	,21		_ Log Preparer:	2	N
Sample ID: 272	05	DDOS	<u> </u>		-
Soil Sample Characterization					
Grain Size (%)					
Silt/Clay (<0.06 mm)			80		
Sand (0.06 – 2 mm)		19	20		
Gravel (2.64 mm)			0		
Cobble (64 – 256 mm)			0		
Organic Content		LOW	/ MED / H	IIGH	
Color		5	4R 6/10	,	
Moisture (%)			502		
Bullets or Bullet Fragments?			YES / 🕡		
Sample Collection Tools Used:	n:	0 50			
Sample Collection Tools Used:	دا ليا	p. 300	on		
Sample Types					
☐ Incremental (always taken Tripli	cate)– No.	of Incremen	ts:		
Discrete – Depth interval:	6"				
XRF Result:					
XRF Error:					•
Quality Control Samples			,		
□Duplicate □MS/MSDs □I	ield Blank	Equipm	ent Blank	'A	
Notes:	,	1			
Free Sc	reh	Drain			
		1			
	ails	1			
	(4)				

Departure Time: 1,900 Soil Sample Collection Log Ridgway, pA Date: 3/13/18 Site Name/Location: 2N Log Preparer: 2N On-Site Personnel: RTR 05 DD 03A Sample ID: Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) 80 20 Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 – 256 mm) (OW / MED / HIGH Organic Content Color Moisture (%) 7 50 YES / WO Bullets or Bullet Fragments? Disp Spoon Sample Collection Tools Used: _ Sample Types ☐ Incremental (always taken Triplicate) – No. of Increments: ____ Discrete - Depth interval: 6-6" XRF Result: _____ XRF Error: _____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A □ Duplicate Notes: Sediment

Site ID:
Arrival Time: 0700
Departure Time: 1900

Soil Sample Collection Log

Site Name/Location:	Ridguay, PA Date: 7/12/18
	Log Preparer: ZN
	-C5DD04A
Soil Sample Characterization	on .
Grain Size (%)	
Silt/Clay (<0.06 mm)	80
Sand (0.06 – 2 mm)	20
Gravel (2.64 mm)	0
Cobble (64 – 256 mm)	C
Organic Content	LOW / MED / HIGH
Color	5 412 6/10
Moisture (%)	7 50
Bullets or Bullet Fragments?	YES / WO
XRF Result:XRF Error: Quality Control Samples Duplicate	

Soil Sample Collection Log

Site Name/Location:	ilvay Y.	1		Date:	7/12/1
On-Site Personnel: 51	21	Log	Preparer:	2	·N
Sample ID: PTR C	S DD	054			
Soil Sample Characterization					
Grain Size (%)					
Silt/Clay (<0.06 mm)		8	0		
Sand (0.06 – 2 mm)		20	2		
Gravel (2.64 mm)		C	2		
Cobble (64 – 256 mm)					
Organic Content		LOW / MI	ED / HI	GH	
Color		5	YR	6/1	0
Moisture (%)		75	_		
Bullets or Bullet Fragments?		YES	/ NO		
Sample Types ☐ Incremental (always taken Triplic ☐ Discrete – Depth interval:	<u> </u>	ncrements:			
XRF Result:					
XRF Error:					
Quality Control Samples					
Duplicate MS/MSDs Fi	eld Blank	Equipment Bla	nk 🔲 N/A	A	
Notes:	rench	Drain			
	sedin	614			
-					
		*			

					Site ID: val Time:	
				Depar	ture Time:	1900
	Soi	I Sample	Collectio	n Log		
Site Name/Location:	12:	danay	PA		Date:	7/12/18
Site Name/Location: On-Site Personnel:	51	v 2.	N	Log Prepa	rer: Z	·N
Sample ID: 2	TR	US D	006	4		
Soil Sample Character						
Grain Size (%)						
Silt/Clay (<0.06 mm	1)			er,		
Sand (0.06 – 2 mm)	-/		-	20		
Gravel (2.64 mm)				0		
Cobble (64 – 256 m	m)			0		
Organic Content			(LOW)	/ MED /	HIGH	
Color				5 412	6/10	
Moisture (%)				> 50	2	
Bullets or Bullet Fragme	ents?			YES / NO	$\overline{\mathcal{D}}$	
Sample Collection Tools (Jsed:	Disp	Spoor	<u> </u>		g ••
Sample Types			_			
☐ Incremental (always tal			fIncrement	s:		
Discrete – Depth interva						
XRF Result						
XRF Error:						
Quality Control Sampl	es					
□Duplicate □MS/MS		Field Blank	□Equipme	ent Blank [N/A	
- · ·	:					
Notes:	·	•				
	Fren	eh D	(A)			
		1.	,			
	Se	dimen.				
			2			***************************************
		<u></u>				10 1

	Site ID: Arrival Time:	
	Departure Time:_	1900
Soil	Sample Collection Log	
Site Name/Location: D.	Date: Log Preparer:	7/2/18
On-Site Personnel: 54	Log Preparer: 2	2N
	05 00074	
Soil Sample Characterization		
Grain Size (%)		
Silt/Clay (<0.06 mm)	80	
Sand (0.06 – 2 mm)	20	
Gravel (2.64 mm)	0	
Cobble (64 – 256 mm)	0	
Organic Content	(OW) / MED / HIGH	
Color	5 4R 6/10	2
Moisture (%)		
Bullets or Bullet Fragments?	YES / NO	
Sample Collection Tools Used:	Disp Spoon	
Sample Types		
☐ Incremental (always taken Tripli	cate) – No. of Increments:	
Discrete – Depth interval:	<u>6 ''</u>	
XRF Result:		
XRF Error:		
Quality Control Samples		
□Duplicate □MS/MSDs □F	rield Blank □Equipment Blank ☑N/A	
Notes:	French Drain	
	Propert De In	
	Sediment	

Site ID:
Arrival Time: 0700 Departure Time: 1900 Soil Sample Collection Log Rigua, PA Date: 7/13/18
The 2N Log Preparer: 2N Site Name/Location: On-Site Personnel: RTROSDD 08 Sample ID: Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 – 256 mm) Organic Content (OW / MED / HIGH Color 4R Moisture (%) 750 Bullets or Bullet Fragments? YES / NO Sample Collection Tools Used: Disp Spoon Sample Types ☐ Incremental (always taken Triplicate) – No. of Increments: _____ Discrete - Depth interval: 0-6 XRF Result: XRF Error: ____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A Duplicate Notes:

Arrival Time: 700
Departure Time: 1900 Soil Sample Collection Log 12 dg Lay DA Date: 7/13/18 Site Name/Location: 5 k, 2N Log Preparer: 2N On-Site Personnel: RTROSDD094 Sample ID: Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm) Organic Content (LOW) MED / HIGH Color Moisture (%) Bullets or Bullet Fragments? YES / QO Disp Spoon Sample Collection Tools Used:_ **Sample Types** ☐ Incremental (always taken Triplicate) – No. of Increments: Discrete – Depth interval: ____6 " XRF Result: XRF Error: _____ **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☐N/A ■ Duplicate Notes:

	Site ID:
	Arrival Time: <u>C7CO</u> Departure Time: <u>(9CC</u>
Co.il	
	Sample Collection Log
Site Name/Location:	vay, PA Date: 7/14/18
On-Site Personnel:	Log Preparer: 2V
Sample ID: 2 TR	205 DDIOA
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	&C
Sand (0.06 – 2 mm)	20
Gravel (2.64 mm)	O
Cobble (64 – 256 mm)	0
Organic Content	LOW / MED / HIGH
Color	5 4R 6/10
Moisture (%)	750
Bullets or Bullet Fragments?	YES / NO
Sample Collection Tools Used: Sample Types	Disp Span
	cate)- No. of Increments:
Discrete – Depth interval:	•
XRF Result:	
XRF Error:	
	_
Quality Control Samples	
□Duplicate □MS/MSDs □F	ield Blank □Equipment Blank ☑N/A
Notes:	
	rech Drain
	Sediment

Notes:

	Site ID:
	Arrival Time:
	Departure Time: 1900
Soil Sai	mple Collection Log
Site Name/Location: 2.654	21/ Log Preparer: 2N
On-Site Personnel:	2N Log Preparer: 2N
Sample ID: PTRO41	
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	60
Sand (0.06 – 2 mm)	40
Gravel (2.64 mm)	0
Cobble (64 – 256 mm)	0
Organic Content	LOW / MED / (HIGH)
Color	7.5 4R V2
Moisture (%)	50
Bullets or Bullet Fragments?	YES / NO
Sample Collection Tools Used:	Seil Probe
Sample Types	
Incremental (always taken Triplicate)	– No. of Increments: <u>30</u>
Discrete – Depth interval:	
XRF Result:	
XRF Error:	
Quality Control Samples	
□Duplicate □MS/MSDs □Field	Blank

Background

Departure Time: 1900 20

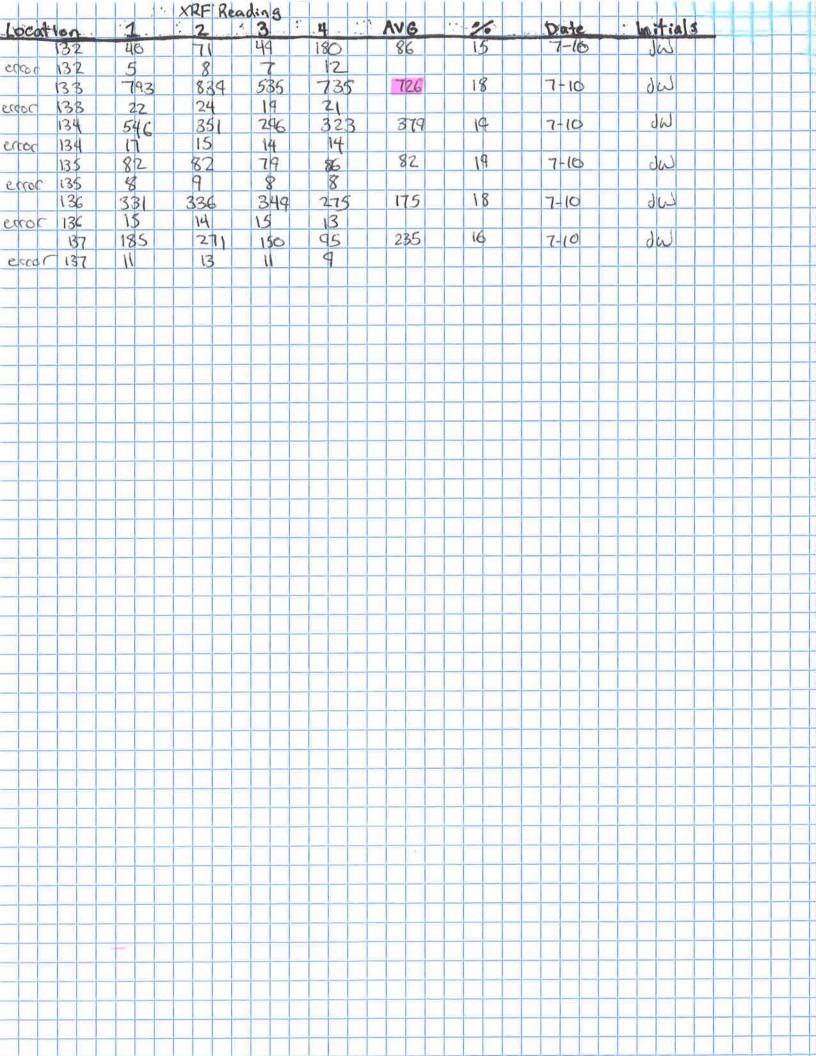
Soil Sample Collection Log Site Name/Location: P.idg Lay PA Date: 7/2/18 On-Site Personnel: Log Preparer: 2N Sample ID: <u>PTR 04 I502</u> Soil Sample Characterization Grain Size (%) Silt/Clay (<0.06 mm) 60 40 Sand (0.06 - 2 mm)Gravel (2.64 mm) Cobble (64 - 256 mm)LOW / MED / (HIGH) Organic Content Color Moisture (%) YES / NO Bullets or Bullet Fragments? Sample Collection Tools Used: Sil Probe Sample Types Incremental (always taken Triplicate)—No. of Increments: ______ Discrete – Depth interval: XRF Result: ____ XRF Error: **Quality Control Samples** ☐MS/MSDs ☐Field Blank ☐Equipment Blank ☑N/A Duplicate Notes: Background

Site ID:
Arrival Time: 0760
Departure Time: 1900

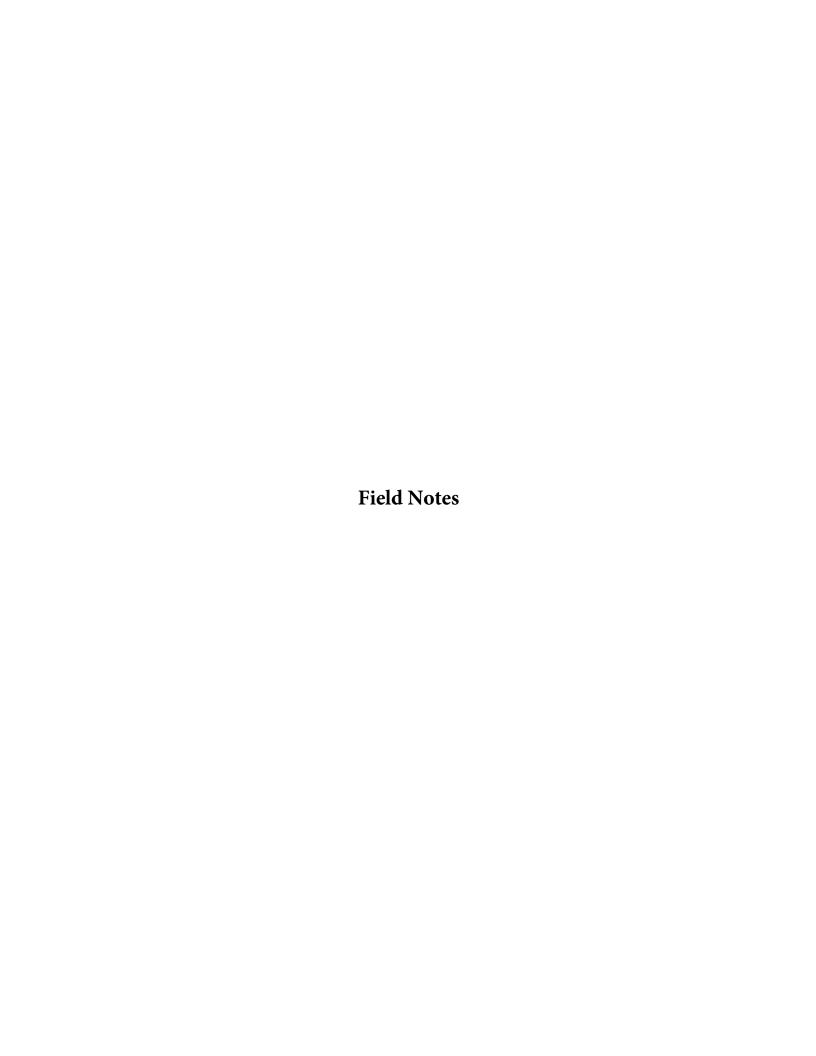
Soil Sample Collection Log

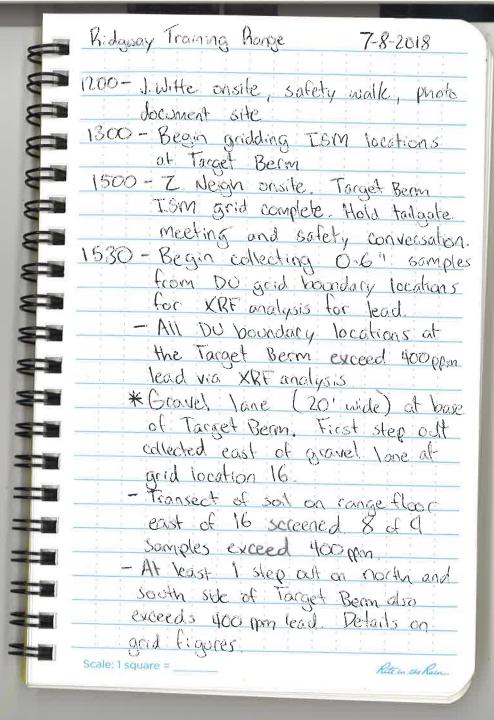
Site Name/Location:	Ridguy PA Date: 7/12/18
On-Site Personnel:	
Sample ID: 272	
Soil Sample Characterization	
Grain Size (%)	
Silt/Clay (<0.06 mm)	60
Sand (0.06 – 2 mm)	40
Gravel (2.64 mm)	C
Cobble (64 – 256 mm)	0
Organic Content	LOW / MED / HIGH
Color	7.5 4R 1/2
Moisture (%)	ac
Bullets or Bullet Fragments?	YES / NO
	licate) – No. of Increments:
Discrete – Depth interval:	
XRF Result:	
XRF Error:	
Quality Control Samples	
□Duplicate □MS/MSDs □	Field Blank Equipment Blank N/A
Notes:	elig round.

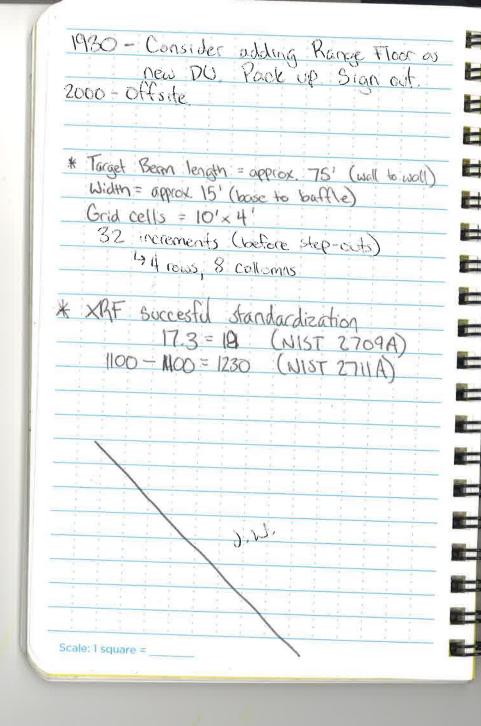
Soil Sample Collection Logs - XRF Analysis


Sam	de		XRF Rec	adings		M	surki			
Local		1	2	3	A AV	G	%	Date	instrats	
RTROI	LOX	16865	15084	17865	The second secon	486	\3	7-3	ZN	
error	OZ.	508	382	518	409					
	02	12837	15468	13477	15527	4327	20	7-8	ZN	
error	04	269	356	302	413					
	03	11869	16268	17389	15140	51671	19	7-8	ZN	
error	03	249	357	358	322					
	104	23262	12930	15702	20287	18071	19	7-8	ZN	
error	04	488	257	302	361					
	05	6271	6694	8016	9452	7608	13	7 10	343	
error	05	140	188	122	156					
	06	19088	24077	27325	27680	24,943	15	7-16	247	
emen	06	408	487	499	462					
CILO	07	2886	6170	9350	27690	6843	16	7-10	200	
error	01	57	93	176	462					
19(0)	08	8977	16438	18613	19252	15,820	y 11	7-8	JW	
error	08	302	418	470	478					
qia	09	12150	10994	15601	14999	13,436	14	7-10	3W	
emot	00	200	213	219	209	10,100				
CALOL	10	16403	19057	160as		7020	15	7-10	32	
error	10	284	345	220	259	(OLC)		110		
CHOL	11	18131	18401	19174		4460	18	7-10	dha	
error	11	355	409	366	341	1,100	18			
	12	4236	3463	4198	3965	11575	17	7-10	34	
error	1219	84	68	84	79	100		1710		
arol	13	349	769	438	442	500	18	7-10	360	
ena	13	16	31	23	20	70.0		1910		
12		10211	10553	13027	12510	396	9 14	7-8	المال	
error	12	269	232	317	299		171	1 0	900	
MA		11645	15451	16206	19109	1560	13 12	7-10	لىل ا	
ena	15	219	269	281	354	117,00	16	1-10		
GIG	16	12818	8452	10'295	8206	994	3 14	7-8	لهن	
CROT	16	787	312	226	203		17	1-0	- Que	
		12264	13461	10646	12457	1220	6 16	7-10	دنه	
	17	237	230	760	240	1600	1/3	-1-10	840	
ecros	17	20933	17563	18174	18793	1904	12	7-10	14	
2000	18	321	361	411	349	1100	12	7-10	900	
	18	17917	14094	19064	15214	16,57	114	7-10	dw	
	19	327	528	339	388	(0)12	14	1-10	gw.	
error		9859				100	0 19	7-8	· w	
	20		17116	5819	7365		19	7+8	Qu -	
शला	20	276	613	317	1472		3 17	7-10	Ju	
	21	13808	12487	13821	11894	13,0	1	1+10		
emor	21		227	265	23088	201	61/ 16	7-10	سان	
	22	20899	17130	20928		20,6	10	1-(0		
enol	22	364	340	401	49.3	0.2	9	710	JN W	
	23	8125	7930	8002	8495	8,13	8 14	7-10	0,0	
ിത്വാ	23	116	168	178	180	2 00	65 19	2 - 6		
	24	98011	9741	11871	844		165 19	3 7-8	ZN	
eccor	24	233	237	333	181		17		ي المال	
	25	(03	156	106	111	IA	16	7-(0) orp	
enor	25	11	1/2	10	12		126 10			
	26	16886	15776	16878			136 12	7-10	Jtv J	
error	16	326	320	382	32	(

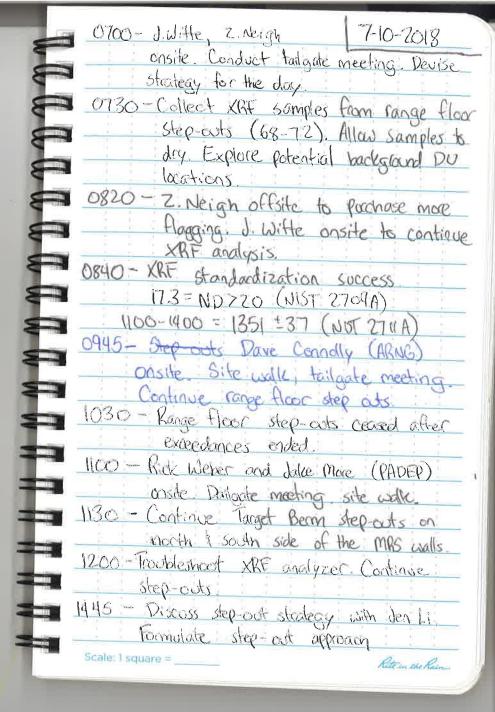
		X	= Anglys	is								
Local	tron	1	2 Amalys	3 2	4 1	Wa		%	Date	initials		1 1 1
	27	17603	21921	13344 2	0481	8 337		16	7-101	J.W		
error	27	331	478	319	450							
	28	7836	3597	988 5	472	0,687		19	7-8	ZN		
chor	28	191	94	366	138							
	29	9322	9262	7503		8,829		17	7-8	العال		
error	29	288	739	186	221							
	30	16459	16143	14888	15071	15,640) /	16	7-8	100		
error	30	400	392	374	369							
	3)	12551	14898	15265	12016	13,69	8	18	7-8	ZN		
error	31	308	347	365	356							
	32	18089	14698	15429	14283	14,31	51	15	7-8	ZNS		
error	32	331	400	358	344							
	33	1228	1811	2047	1043	1,532	7	18	7-9	ZN		
error	33	33	43	5.3	29							
	34	2511	3698	4669	3387	3,56	61	18	7-9	TH		
emor	34	57	66	90	62							
	35	7085	5748	8203	6714	6,93	81	N	7-9	ZN		
error	35	102	81	123	116							
	36	1713	3456	1336	1838	12,08	6	15	7-9	Ju		
error	36	50	89	56	64							
	37	4728	4008	4060	4541	4,389	1	18	7-9	in		
ecror	37	104	109	103	120							
	38	205	619	287	488	400		19	7-9	JW		
eccor		24	31	25	25							
	39	4034	7374	3744	5831	5,24	7	14	7-9	ZN		
error	39	65	114	215	100							
	40	474	1211	3283	355	2,381	7	10	7-9	ZN		
error	40	12	31	54	64							
	41	3456	2868	2777	2905	2,990	DI	19	7-9	ZN		
error		67	61	58	51		1					
	42	6725	2218	6658	3230	47	087	17	7-9	des		
enor		152	69	165	87							
	43	768	443	188	599	67	3	10	7-9	dW		
enor		33	20	41	49							
	44	729	812	1015	914	865	3	8	7-9	24		
error		31	32.	43	36							
	45	310	1762	4376	1902	2,08	387	14	7-9	dus		
error		2.(64	83	55							
	46	3710	3082	1873	2314	27	32	19	7-4	JW		
error		89	7	55	67							
	47	2170	2485	1525	3426	24	02/	18	7-9	dw		
ener		58	68	50	74							
	48	3371	11/22	804	54	5 44	6V	16	7-9	Ju		
error		76	39	34	27							
	49	2040	1973	2319	199		083	14	7-10	du		
enor		57	53	84	57							
	50	863	1310	1512			280	18	7-10	ال ال		
error	50	30	40	44	40							
	51	1095	1076	1307			161	19	7-10	, del		
error		39	35	50								
	52	151	1068	132			65	12	7-10	5 JW		
error	52	13	39	16	20							


			XRF	Analysis						444
Locati		30	2	3	H		%		nitials	
	53	887		954	553	846	18	7-10	203	
enoc	53	32	39	34	25			7-10-		
	54	955	1044	887	881	942	18	7-10	9m	
eccoc	54	33	35	32	35		1.22			
	55	1422	743	1083	1435	4171	18	7-10	9m	
quoi	55	41	24	33	44		1 00			
	56	672	811	983	211	670/	15	7-10	Jul	
error		28	29	36	14			- 15		
	51	1116	589	1800	1599	1/15//	15	7-10	200	
arror	57	36	25	42	43		10	- In	W	
_	58	742	855	587	764	737/	19	7-10	0.10	
woo		78	31	24	28	20.0	17	7 14		
	59	326	219	407	389	338	16	7-10	311	
eccor		177	171	21	17	758	1.7-	7-10	V. V	
	60	1329	612	5119	50	20	15		717	
ercot	60	38		258	23	264	18	7+10	SW	
0.0		210	302	16	16		1.0	, 10	300	
eccoc	62	400	146	362	427	428	18	7-10	المال	
ecco	10	777	14	16	20		10		4.50	
ura	63	466	345	529	544	470	15	7-10	du	
error	2.02	22	26	23	24					
enoi	64	743	707	607	996	763/	16	7-10	des	
erro	4.2	28	29	26	34					
	65	637	679	750	801	7077	18	7-16	aw	
erra	- 65	23	26	27	29					
	66	321	437	718	198	419	15	7-10	and	
error	- 67	18	20	23	15	5				
	68	352	413	379	404	328 387	12	7-10	Jul	
ecroc		70	21	21	20					
	69	792	934	409	545	387 670	13	7-10	100	
error		33	34	23	26					
	70	397	367	415	396	-670 394	18	7-10	المال	
error		25	22	25	7.6	201 2-0			1.0	
	71	379	242	486	106	394 303	18	7-10	ded	
erroc		22	19	28	17	202. 604	10	- 10	des	
	72	474	522	627	462	303 524	19	7-10		
tron	73	286	25	31	31 293	52 + 303	16	7-10	کارل	
error		17	303	331	19	34,303	李		003	
(0)	74	193	240	270	214	229	17	7-10	Ju	
Emol		17	20	20	20					
2,10	75	222	241	263	273	250	16	7-10	JU	
error	124.00	19	14	15	16					
	76	151	301	234	233	23(18	7-10	JW	
enor	76	13		13	16					
	77	64	65	69	69	67	12	7-10	لالله	
error		9	10	10	13					
	78	2788	2820	1856	2398	2,466	15	7-10	ZN	
error		58	56	32	42		1.00		7.1	
	79	3012	3846	5138	1006	3,25	15	7-10	ZN	
enort		58	73	87	32					
	鲫									


			XRF AND	lysis .			(%)			
Local	ion.	.1.	2	3	4	AVG	Moistore	Date	mitials	
	80	14869	11122	11282	11279	12,138	15	7-10	ZN	
error	80	236	183	184	180					
	81	10839	4351	47.97	5519	6,387	18	7-10	ZN	
ena	81	170	79	85	93					
	82	694	754	544	492	621	18	7-10	ZN	
error	82	20	23	20	20					
	83	995	1061	74	861	925	19	7-10	MZ	
error	83	26	25	24	25					
	84	1162	749	852	2725	1,372	15	7-10	کسک	
error	84	27	23	28	41					
	85	844	1678	1219	2756	2,265	18	7-10	ZN	
ettor	85	24	35	29	50					
	86	3996	2524	2859	3048	3,108	16	7-10	Jui	
error	86	62	53	60	85					
-1101	87	1265	1305	2042	2435	1,762	15	7-10	1W	
error	87	32.	42	49	49					Pophicate cos of
Civi	88	1642	1306	707	1185	1,210	15	7-16	لناة	82-85
error	88	45	39	30	34					
CIVEL	89	2632	3029	1513	1639	2,202	16	7-10	1W -	
error	89	60	61	61	42					
-(10)	90	1637	1854	1614	1909	1,754	18	7-10	ZN	
error	90	144	44	37	37	TI COT				
-110	91	1774	2889	3898	3256	7,953	15	7-10	ZN	
error	91	38	68	98	89					
aia	92	1713	1657	2186	2097	1,485	18	7-10	ZN	
emo	92	45	42	42	40	11102		1-10		
CHOC	93	38	43	3	34<	1714	18	7-10	7.0	
emor	43	1413	1754	1350	2338	1 100	10			
CIO	94	64(865	659	643	STITU .	18	7-10	ZN	
2000	- AND	24		27	23	715/	10	6710	-,0	
enor	95		31	788	1631	1,277	19	7-10	ZN	
ecroc		1034	35	23	45	1,211		1-10	22	
CUIDE	96		905		855	9591	18	7-10	ZN	
a roug	00	969		1107	26	101	10	1-10		
etror	97	22	386	266	11	230	19	7-10	ZN	
2000	97	155		13		230	11	1-10		
2000	48	13	700	261	289	352	15	7-10	ZN	
2000	0 0		345		13	0,32		(+(0		
entor	99	19		14	647	487	18	7-10	7.1	
200	0.0	355	466	486	37	10 [10	1710	ZN	
error	100	17	32	404		389	18	7-10	71	
		484	357		305	204	10	(40	ZN	
error		22	17	254	20	305	15	7 10	ZN	
0.00	101	305	325		335	303	12	7-10	4.0	
error		14	15	15		215	l may	7 10	ZN	
0.	102	208	253	222	177	415	17	7-10	410	
enor		14	15	16	14	224	17	-7 10	ZN	
0-	103	237	248	176	193	224	111	7-10	410	
error		14	18	15	17	207	18	710	ZN	
4000	104	295	201	168	168	207	142	7-10	210	
2000	104	17	15	14	14	2100	10	-7 10	ZU	
0.00	105	474	1046	1052	880	863	18	7-10	20	
entor	(00	23	30	28	84					


			XRF And	lysis			(%)				
Local		1	2	3	14	AVG	Morsture	Date	Initials		
	106	1434	177	1441	1614	1,329	20	7-10	ZN		
error	106	42	29	40	38						
	107	744	564	805	812	746	10	7-10	606		
ecroc	107	33	30	35	34						
	108	401	368	277	350	349	18	7-10	300		
error	108	27	22	П	20						
	104	814	2111	2071	2006	1752	16	7-10	900		
error	104	33	53	55	60						
	110	760	658	663	595	167	17	7-10	Jul		
error	No	32	30	27	26						
	14	445	310	3V2	367	359	P	7-10	المال		
ercoc	111	24	21	2.3	29						
	112	57	29	68	40	49	18	7-10	900		100
error	112	10	10	10	9					i	
	113	282	305	202	241	258	19	7-16	JW.	1	
eccor	113	וח	2.2	16	15				1.1		
	114	313	319	426	340	350	18	7-10	717		
error	114	18	21	21	20				A. V		
	115	762	653	1049	691	739/	15	7-10	987		19.7
error	115	204-25	228 2		251 19				A		
	116	209	228	149	251	209	10	7-10	947		
emor	116	19	17	14	12		41				
	117	709	449	565	614	584	11	7-10	146		
ecroc	117	76	24	25	31						
	118	1877	1530	1184	1240	1,454/	14	7-10	SUS		
error	118	47	48	37	21		10	144 1 to	X (
	119	15(191	126	188	157	16	7-10	Jul		
error	119	15	13	13	15		3		Sub.		
	120	203	126	101	135	120	17	7-10	910		
error		13	14	10	11	200	14	7 10	A . x		
	121	204	180	275	ITI	208	1 1	7-10	967		
emoc	121	20	NT.	13	12	211	12	7 10	111		
	122	243	301	312	409	316	14	7-10	910		
enco	124	17	21	20	17	2201	10	7-10	Avi		
	123	3590	3231	3290	3411	3,381	10	u	dw		
emoc	120	90		88		20021	14	7,1	JW		
	124	2385	2111	3461	3653	2,903		7-10	910		
eroc	125	60	59		(7.2.1	6,6831	19	716	24		
		2570 55	8688	8751	91	0,000		7-10	000		
Sam2	126	352	886	164	738	780	18	7-10	262		
	126	20	42	44	30	600	1.0		000		
emoc	127	365	261	277	273	294	16	7-10	JN		
emoc		18	13	18	17		, ,		3.0		
CHO	128	68	57	76		64	19	7-10	146		
error	128	4	7	10	54						
ald.	129	65	40	61	69	61	12	7-10	des		
estor	124	10	1	10	15				300		
->1011	130	dd	49	6(68	41	18	7-10	SW		
ercor		10	10	P	2				W. V.		
C. NO.	131		377	10(84	226	18	71-10	JW		
error	13(25	26	q q	6						
5,101											
	السالاسا										

. Callecton	
2 11	
= MRS Wall	74 75 77 ·0/1c··
	200 70 71 72
= larget Beam Baffle	87 676 394 303 521 307-
	64 65 66 67 616
	471 1/3 717 4/9 8/28 SAT
1 = ISM Sample Area	50 60 61 62 RIC.
	737 838 758 264 428
	54 55 56 57 116.
	841 942 1,171 670 1,151 -56.1.
	48 44 50 51 52 Ple.
	1.00 2.083 1280 1.10 465 601 .
×	CONT. 100 05 00 00 00 00 00 00 00 00 00 00 00 0
	38 39 40 47 42
	160 5/247 2,381 2,990 4,708 soil.
2	33 34 35 35 37 Phe.
0	1,532 3,566 6,938 2,086 4,389 56.0
	136 137 Oceane, solarel brayel clarkel Grayel Grayel Galler of arter 10-1
	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
1	132 133 134 Canel. Gave. Ligner Ginel. Grave. Grave. Grave. Grave.
	72 6 20 720 379
el. 110	- 50
	123 . 50:1. 500
52 "Weed"	
101	118 85 81 4 8 12 16 20 24 28 32
305	316 1454 2,255 6,387 18,071 15,820 11,575 9,943
2	117 84 80 3 7 11 15 19 23 27 31 92 (
389	OS 584 (372
99	116 83 79 2 6 10 14 18 22 26 30 91
LSh	42 209 924 3251 14327 74 543 17 020 3,966 19,016 20,661 16,26 15,640
85	16 734 82 78 11 5 9 9 20 9
352 215	21 3/108 621 21/166 16,486 7608 600 12,206 10,206 10,206 10,003 1/10 8,829 1754 715



TAT requested for these samples.

Scale: 1 square =

Rete in the Rain.

1400 - Began collecting discrete soil samples from the soil pile from O.1' below top of pile (x6) and ground level to l'above grand level win the pile (x6) RTROZDSOIA-RTROZDSOEA token from top of pile to I' depth. RTB02DS07A-RTR02DS12A taken from I' above ground to occurred Duplicate taken (RTRO2DSOIB) TCIP taken from RTROZDSOZA Packed cooler and completed CCC w/ Ficing Point and Soil Pile discrete samples 1445 - Z. Neigh offsite to Feder w/ cooles I wille ansite to continue step outs of Target Benn 1715 - Z. Neigh onsite. Continue step outs Explore pending onea around MAS Clean up 1930 - Offste * XRF successful standardization 17.3 = ND < 23 (NIST 2709 A) 1100-1400 = 1310 (NIST 2711A) * Primary/Duplinde/Tophede sample locations at the Fring Point that left on wooden fining positions were shifted scale: I square = North of even respective timing position as necessary.

that worked around hydric soils at the base of the Taget Beam south of the MRS wall. 1600 = Continue step outs north of MRS wall 1700 - End step-outs north of Target Berm once exceedances ceased. Details of stepart locations included on grid. 1715 - Continue step-outs on south side of MRS wall. Last raw on Target Beam to the south did not exceed 400 ppm but wet floor soil east of berm/south of wall do Continued step-outs beyond feare of southern side of MRS - exceedances posisted. Step-out XRF samples taken south of dearnage ditch to bound DU No exceedances observed south of the drainage diton. 1945 - Clean up Offsite. J.W. Scale: I square =

7-11-2018
0700- J. Witte, Z. Neigh onsite. Dailgate
meeting. Devise daily strategy
0800 - Continue step-outs south of the MRS, cost
of the target berm, for the Target Berm DU
Standardize the XRF - Successful
17.3 = ND 7 20 (NIST 2709A)
1100-1400 = 1301 = 39 (NIST 2711A)
0930 - Complete step outs south of MRS and
east of Target Berm, Call den Li
to discuss sediment sampling in drainage
ditch south of the MRS.
1030 - Collect internal XRF samples from Target
Bern DU:
1130 - Z. Neigh offsite to purchase more flogs
J. Witte onsite to analyze remaining XAF
Samples 1245 - Z. Neigh onsite: Grid Ism locations at
remaining step out locations.
1530 - Begin collecting ISM samples of the
Target Beam DU
1945 - Complete collecting Target Berm DU Ism
2000 - Offsite after Cleanup
Will continue with Firing Point and
bockground DU ISM collection.
Scale: 1 square = Rete in the Rain.

11 11

0700-choite, tailgate meeting 0730- Begin collecting Ism sample from Firing Point Once complete, began collecting discrete subsurface samples from firing point at 3 locations equidistant from North to South to the west of Richa positions Samples were not collected from 24-30". A 24" depth could not be reached due to a gravel/cobble layer Multiple attempts made at each location to reach 29-30" failed. A TOLP sample was collected From Rost Fring Point subscreace sample This somple location was based on the SI sample booton & I with offsite to goranae ice and exten gloves while z. Helpy dug. 1045 - Began collecting subsurface samples from the Target Berm. 4 subsurface sample locations sampled. At location one 1, samples collected from both intervals At location? only TCLP sampled from O'E" (highest XRF). At location 3, both intervals sampled. At beation 4, both intervals sampled. At location 5, only 12-18" sampled. Multiple attempts at diff. locations on the Rospe Floor failed to reach 24-30" based on gravel/cobble layer. 1230 - Began collecting sediment samples from the French Dran outfall.

Scale: 1 square =

The fonded area shronk from the first day onsite. Largest observed size was approx. 7A x 5A. Size at the time of sampling was approx. ZA × 3ft. 8 samples collected in pended area, including one sample for TOLP analysis. One sample collected approx. 10A east of ponded area where surface water flow may occur during heavy cain one sample collected approx. 10ft west for some ceases. 10 total sediment samples collected from French Drain. 1330 - Too sediment samples collected from dischage ditch south of MRS due to step-outs from Target Berm approaching ditch. One sample collected immediately south of southemmost Target Bern Stepouts, between the two locations (east (west). Somple two collected equidistant between sample I and where the dealrage diton confluences with flowing water east of the MRS. 1400 - Began gridding Ism locations at background Du. Collected ISM 1645 - Reviewed Sample inventory 1715 - Began collecting GPS locations at areas of interest to bound Dus in figure creation. 1815 - General site cleanup. Packed eavip

=======================================	ICIC		FI.	_ J	. 6	1:H	C	olf.	ste	55 55 55	TO	<u>ا</u>	oob	dize	2
1930	(10	2015	181	le:	C702		- (() ()	<u>्र</u>	V	Car	N	Cie	anu	6
V		-	(4 0	بري د.	3	1	OF	751	1.6	-	-	- 1	-	- 1	&
本口の	α	. it	2.1	11	20	P 5	1	h-	1	O	- A	- I			- 8
*EQ	() (oll	Cee.	7	O	erw	een	1	ang.	1	1/0/	_1.	2(1)	5	-
back	Man	(X)	70	ry	+(DM	9	Oil	Vici	OC.	-	-			_ [
	1	1	W.	å	1	3	1	10		4					
		1	1	į.	- 1		-	-	14	10	+		-	-	- 2
-	-		1	-				-	(1	-	-	- b	77.	- 5	_
-		4	1	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	L)	- 1	1	-	-		-	11	-	-	
		+	0	1	1	- 12 - 13	- 1		1	*	2)	- 4		-	_
-					1	-	-	1	-	Ť		# 0	-	<u></u>	_ 1
-	- 12 D)	i e	-	-		1	- 17	_	. 1		-		1	10	
- 1	(6"	Ž.	- (-	F)	1	- 1	1	0 -	إلما	Y.	- 1	-	- 4		_
	-	1		17	1	-		1	1	1	. 1	10			
-	-	-	- 17	0)	1	-	- 1	1			3	i i	-	3	
-	1	1	-1/-	30	4	- 1	- 5	1	1	-	já U	4	-	0:	
		-		9	, v	- 1	N.		,	1	1	į		0	
	-		-	-	Ů.	1	N)	Î	8	1		ì	W	V.	1
	7	Ŷ	8	12	1	1	j	3		i i	1	1	2	20 20 30	
- 0	Ŷ.				į.	Ž.	14		10	1		1	il.	8	
		8	(4)	ii d	\$	10	Ĭ	Š	9) 9) 8)	W.	ii.	1			
		1	30		Ž.			1	li .	1	Ž.	Ď.	0	II II	
			1	1	i	5	it in				į		ili ili	No.	
	y -		1	5	72 61 10	. <u>P3</u> oil	3	-	ř	1	i		90	(4)	
Scale	: 1 sq	uare													

Date:	7-8	8-1	8
-------	-----	-----	---

AECOM Technical Services Inc. DAILY QUALITY CONTROL REPORT

roject Title:	/ 1		WEATHER	BRIGHT SUN	CLEAR	OVERCAST	RAIN	SNOV
ocation: Ridgus	Project Title: Ridgway Training Rang				32 - 50	50 - 70	70-85	>85
and and an advantage of the analysis and a	ay. PA	100150	TEMPERATURE WIND	< 32	MODERATE	HIGH	70-00	-00
	~7) \11		HUMIDITY	DRY /	MODERATE	HUMID		
				-				
ersonnel \ Site Visitors On-Site	e							
No. Name	Hi	rs.	Affiliation	L	ocation/Des	scription of	Work	
a. Loe Witte	8	A	ECOM	Ridawa	MRS /		sm	
b. Zach Neign	- 5	A	Ecom	11 0 ",	11 11	11 11 11		
C.		_						
d. e.		_						
f.								
g.								
ampling equipment on site:								
Type Serial Number		Tim		meter	Standard	d	Readin	g
ustic spoon NA	Calibration	1530-1			NA.		NA	
	Verification	1500	Leod.	66W .	2109A (173	20	
IRC						-		
	LN.							
ieia Changes. 1L5		NO						
If yes, filed Nonconforman	ce and Corre	ective Actio	on Report numb	er (NCR N	o.): NF	4		
• '								
Health & Safety (Briefing held, PPE,	Condo						/tcios	,
Health & Safety (Briefing held, PPE, njuries, near misses, etc.)	Condu		ilgate meetin				{+cips	,
njuries, near misses, etc.)	- 1	cted to	ilgate meetin	19, disco			/ \c :05	1
	- 1	cted to		19, disco			{\telp5	
njuries, near misses, etc.) Work Performed (including	ISM	cted to	ilgate meeting), XRF and	19513 19513	ssed hea		/tc:05	,
njuries, near misses, etc.) Work Performed (including	TSM Daily Repo	cted to gridding	iligate meetin	19, disco	ssed hea		/tcips	
njuries, near misses, etc.) Nork Performed (including sampling)	TSM Daily Repo	cted to gridding	ilgate meeting), XRF and Rev	19, disco	ssed her	at, slips		
njuries, near misses, etc.) Nork Performed (including sampling)	TSM Daily Repo Track Prog	cted to gridding	iligate meeting), XRF and Rev Rev Igainst QAPP <u>NA</u>	19 disco	ssed her	e to standard	s_ ✓	·
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities	Daily Repo Track Prog	cted to gridding ort ress Report a s. NA mt Blanks N	iligate meeting), XRF and Rev Repairst QAPP NA Equ A # M	iew of COC_N ipment calibra s/MSD_NA	DA ned complete	e to standard	s	·
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities	Daily Repo Track Prog	cted to gridding ort ress Report a s. NA mt Blanks N	iligate meeting), XRF and Rev Rev Igainst QAPP <u>NA</u>	iew of COC_N ipment calibra s/MSD_NA	DA ned complete	e to standard	s	·
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities QC Activities	Daily Repo Track Prog # Duplicate # Equipmen	cted to gridding ortress Report a condary	iligate meeting), XRF and Rev Regainst QAPP_NA Equ A # M	iew of coc_n ipment calibra s/MSD_NA	DA hed complete	e to standard # Field Blan	s	A
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved	Daily Repo Track Prog	cted to gridding ortress Report a condary	iligate meeting), XRF and Rev Regainst QAPP_NA Equ A # M	iew of coc_n ipment calibra s/MSD_NA	DA hed complete	e to standard # Field Blan	s	A
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities QC Activities	Daily Reportance Programmer Poly Pocces	cted to gridding ort ress Report a s. NA rodary '	iligate meeting, XRF and Revaluation Reval	iew of coc represent calibrations in cesting periods and cesting periods.	DA lited completed every description (e to standard # Field Bland in Rection	s	A
njuries, near misses, etc.) Nork Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved	Daily Report Track Programmer # Equipment Do book	cted to gridding ort ress Report a s. NA rodary '	iligate meeting), XRF and Rev Regainst QAPP_NA Equ A # M	iew of coc represent calibrations in cesting periods and cesting periods.	DA lited completed every description (e to standard # Field Bland in Rection	s	A

Date

Signature /

Date:	7-9-18	
-------	--------	--

AECOM Technical Services Inc. DAILY QUALITY CONTROL REPORT

^						
Report Number: 2	WEATHER (BRIGHT SUN	CLEAR	OVERCAST	RAIN	SNOW
Project Title: Ridging RT	TEMPERATURE	< 32	32 - 50	50 - 70	70-85	>85
Location: Ridayay, PA	WIND	(STIL)	MODERATE	HIGH		
Contract/DO Number:	HUMIDITY	DRY	MODERATE	HUMID		

Personnel \ Site Visitors On-Site

No.	Name	Hrs.	Affiliation	Location/Description of Work
a.	Joe Witte	12.5	AFCOM	Ridging MRS / ISM, XRF
b.	Zach Neigh	12-5	AECOM	101111111111111111111111111111111111111
C.	Tom Marcs	2.5	PAANG	1, 1 1 Site Visit
d.	Margo Wolfgana	2.5	PAANG	1, 88 11 00 / 6 26 11 2
e.	0 - 3 3			
f				
g.				

Sampling equipment on site:

Туре	Serial Number		Time	Parameter	Standard	Reading
Plastic Stor	NN no	Calibration	NH	NA	NA	NA
Hand Auge	-NA	Verification	Abr	NA	:	· —
XRF analyze	011762	Vernication	0800	NIST 2711A	1100-1400	1310
=			/	2		

Field Changes:	YES	NO		
If yes, filed	Nonconformance and Cor	rective Action Report number (NCR No.):	NA	

Health & Safety (Briefing held, PPE,	Conducted tailgate, observed bees at soil pile, observed
injuries, near misses, etc.)	ticks
Work Performed (including	XRF analysis, ISM gridding, discrete sampling at Firing
sampling)	Point and Soil Pile
OA Astrikisa	Daily Report Review of COC
QA Activities	Track Progress Report against QAPP NA
00 4 41 141	# Duplicates 2 Equipment calibrated complete to standards V
QC Activities	# Equipment Blanks 0 # MS/MSD # Field Blanks 0
Droblems Engagetered Deceled	Resolved to take step outs from Target Berm onto Range Floor
Problems Encountered Resolved	as for as necessary. Not treating hange Floor as separate DU
Additional Information	Bees live in soil Pile. Ponded water at French Drain sedimo
Additional information	Connects to water that surrounds the MRS
Activities Schooluled for the Next Day	XRF/ISM of Torget Berm step outs. Discrete sediment
Activities Scheduled for the Next Day	sampling

Contractor Verification: On behalf of the contractor, AECOM, I certify this report is complete and correct, and all materials and equipment used and work performed during this reporting period are in compliance with the contract plans and specifications, to the best of my knowledge, except as may be noted above.

a what	7-9-18
Signature //	Date

Date: 7-10-2018

AECOM Technical Services Inc. DAILY QUALITY CONTROL REPORT

	-						
Report Number:	3	WEATHER	BRIGHT SUN	CLEAR)	OVERCAST	RAIN	SNOW
Project Title: <u>Ridaw</u>		TEMPERATURE	< 32	32 - 50	50 - 70	70-85	>85
Location:	daway, PA	WIND	STILL (MODERATE	HIGH		
Contract/DO Number:	0 / 1	HUMIDITY	DRY	MODERATE	HUMID		
Personnel \ Site Visitors On-Site							
No. Name	Hrs.	Affiliation	L	ocation/Des	cription of	Work	- 77
a. doe witte	12.75	AECOM	Rida	NOW MA	5 1 ISN	1, X1	XF-
b. Zach Neigh	12.75	AEcon	110	11 11 V	1 11 10	1 11 1	
c. Dave Connotty	6	ARNG	1,	in the Man	1 site	Visi	
d. Rick Weber	0.5	PADER	(1 1	/	11 1		"
e. Jake more	0.5	PADED	16	10 00	1 "	, it	11
f.							
g.							
Sampling equipment on site: Type Serial Number		Time Para	meter	Standard	A R	Readir	n/I
Diadic Como ala		IN AL		NA		NA	y
VOC . I'M ONT(7)	Calibration	340 NIST		1100-10		351	
XIAT MILANGE ST. 10 C	/erification	3 (0 1-10)	- 1117	1100	,		
Health & Safety (Briefing held, PPE, injuries, near misses, etc.)		ting, observed time		ig tree, i	excessive	, sun	
Work Performed (including sampling)	XK+ analysi	is, ISM griddi					
QA Activities	Daily Report	Rev eport against QAPP	iew of COC A_	ALA			_
QC Activities	# Duplicates N		ipment calibra S/MSD_ りみ		e to standard # Field Blan		<u> </u>
Problems Encountered Resolved	Step-out 'mydric soils	location on south	em side p cut b	of MRS	s continuous continuou	ve in	e KRF
Additional Information	10	step outs sou		will least	t of be	m	
Activities Scheduled for the Next Day	, XRF/ISM	of Target Berm st	tep-cuts.				
Contractor Verification: On beha materials and equipment used contract plans and specifications,	and work perfo	rmed during this re	eporting pe	eriod are i	n complia		
May 1	With	-		7-10-7	2018		
Signature			— Dat				

Date: 7-11-2018

AECOM Technical Services Inc. DAILY QUALITY CONTROL REPORT

Report Number:	1	WEATHER	BRIGHT SUN	CLEAR	OVERCAST	RAIN	SNOV
Project Title: Rida.	say RI	TEMPERATURE	< 32	32 - 50	50 - 70	70-85	>85
Location: Riduw	ay, PA	WIND		MODERATE	HIGH		
Contract/DO Number:		HUMIDITY	DRY	MODERATE	HUMID		
Personnel \ Site Visitors On-Site							
No. Name	Hrs.	Affiliation			cription of		7-
a. Joe Witte b. Zoon Neign	13	AECOM AECOM	Ridgina		sm, LRE		
C.		11000	12000	1 -	or the		
d.							
e. f.							
g.							
Sampling equipment on site: Type Serial Number		Time Parar	notor	Standard	d I	Readin	a l
(QF 011762	01	SOO N(5T 2		1100 - 140		1301	y
Act Com	Calibration //erification	NA NA		NA		NA	
	- Thication						
							_
If yes, filed Nonconformand	1			<u>لا</u> :(.	A		
Health & Safety (Briefing held, PPE, injuries, near misses, etc.)	Tailgate	meeting, sun,		<u>ل</u> :(.	18		
Health & Safety (Briefing held, PPE,	1	meeting, sun,	neat		A		
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including	Tailgate XRF, 7	meeting, sun,	neat		I.A.		
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling)	Tailgate XAF, 7 Daily Report Track Progress # Duplicates # Equipment Bla	Reviews against QAPP North against QAPP Manks NA #MS	weat ew of COC_N pment calibrat 6/MSD_1	A ed complete	e to standard # Field Blan	ks_ N	
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling) QA Activities	Tailgate XRF, 7 Daily Report Track Progress I # Duplicates # Equipment Bla Rexerved. to MRS	Reviewed and sediment	ew of COC_NA pment calibrat s/MSD_1 samples to	ed complete	e to standard # Field Blan South OF	ks N	<u> </u>
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities	Tailgate XRF, 7 Daily Report Track Progress I # Duplicates # Equipment Bla Rexerved. to MRS	Reviewed and sediment	ew of COC_NA pment calibrat s/MSD_1 samples to	ed complete	e to standard # Field Blan South OF	ks N	<u> </u>
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved	Tailgate XRF, 7 Daily Report Track Progress I # Duplicates # Equipment Bla Rexerved. to MRS	Reviews against QAPP North against QAPP Manks NA #MS	ew of COC_NA pment calibrat s/MSD_1 samples to	ed complete	e to standard # Field Blan South OF	ks N	<u> </u>
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved Additional Information	Daily Report_ Track Progress I # Duplicates_ # Equipment Bla Rexived to MRS Sed iment If of the contract and work perf	Review Manual Review Manks NA Hosamples Resort against QAPP NA Equipanks NA Hosamples Resorted Samples Resorted Asserte Samples Retor, AECOM, I certificormed during this resorted formed during this resorted to the samples Resorted Resort	ew of coc Na pment calibrat samples to to drain y this report porting per	ed complete	e to standard # Field Blan South of	the rrect,	MA:
Health & Safety (Briefing held, PPE, injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved Additional Information Activities Scheduled for the Next Day Contractor Verification: On behavaterials and equipment used	Daily Report_ Track Progress I # Duplicates_ # Equipment Bla Rexived to MRS Sed iment If of the contract and work perf	Review Manual Review Manks NA Hosamples Resort against QAPP NA Equipanks NA Hosamples Resorted Samples Resorted Asserte Samples Retor, AECOM, I certificormed during this resorted formed during this resorted to the samples Resorted Resort	ew of coc_N pment calibrat samples to to atrain y this report porting per s may be not	ed complete	e to standard # Field Blan South of	the rrect,	MA and

	7	-12	-7	810
Date:				

AECOM Technical Services Inc. DAILY QUALITY CONTROL REPORT

Topo I I I I I I I I I I I I I I I I I I	5			(CLEAR)			SNOV
roject Title:		TEMPERATURE	< 32	32 - 50	50 - 70	70-85	>85
ocation: Ridawa	Y, PA	WIND	STILL	MODERATE	HIGH		
Contract/DO Number:		HUMIDITY	DRY	MODERATE	HUMID		
Personnel \ Site Visitors On-Site							
No. Name	Hrs.	Affiliation		ocation/Des			k.
a loe witte	13	AECOM AECOM	Ridau		The state of the s	discre	-
b. Zaen Neigh		HEADIN	110000	-		U.S.C.	
d.							
e							
f, g.							
		<u> </u>					
ampling equipment on site:		- 1 -		011		Dandle	A SUITE
Type Serial Number		Time Param		Standar		Readin	ig
	Jailbration	IOH III		ΙΟ (
	/erification						
injuries, near misses, etc.)	Tailgate 1						
injuries, near misses, etc.) Work Performed (including		crete samples					
injuries, near misses, etc.) Work Performed (including sampling)	TSM , dis	Review Reviews	ew of COC				
injuries, near misses, etc.) Work Performed (including sampling) QA Activities	TSM , dis	Review Report against QAPP		ated complet	e to standare # Field Blan		
injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities	Daily Report Track Progress # Duplicates # Equipment Bl. 24-30 " depit	Reviews Samples Report against QAPP Equipanks #MS not occasible at noe floor for disco	oment calibra /MSD / The Fin	ated complet —— ring point notes due	# Field Blan	iks <u>Nt</u> je loca vel (a	thich yer
Work Performed (including	Daily Report Track Progress # Duplicates # Equipment Bl. 24-30 " depit	Review Review Review Report against QAPP Equipanks #MS	oment calibra /MSD / The Fin	ated complet —— ring point notes due	# Field Blan	iks <u>Nt</u> je loca vel (a	thich yer
injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved Additional Information	Daily Report Track Progress # Duplicates # Equipment Bl. 24-30 " depit on the con	Reviews Samples Report against QAPP Equipanks #MS not occasible at noe floor for disco	oment calibration /MSD / the Fire some creased :	ated complet —— ring point notes due	# Field Blan	iks <u>Nt</u> je loca vel (a	otion yer
injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved	Daily Report Track Progress # Duplicates # Equipment Bli 24-30" depit on the root Background	Reviews samples Report against QAPP Equipanks Most offers by discourse from the Ship Co	the fire son	ated completering point of average of the average of the completering are in t	# Field Blan The grave The y lete and coin complia	nks No we lock well a bright FD D	drien yer Berm DU's.
injuries, near misses, etc.) Work Performed (including sampling) QA Activities QC Activities Problems Encountered Resolved Additional Information Activities Scheduled for the Next Day Contractor Verification: On behavaterials and equipment used	Daily Report Track Progress # Duplicates # Equipment Bli 24-30" depit on the root Background	Reviews samples Report against QAPP Equipanks Most offers by discourse from the Ship Co	the fire son	ated completering point of average of the average of the completering are in t	# Field Blan To Grave The grave Lete and co in complia	nks No we lock well a bright FD D	drien yer Berm DU's.

Date:	5 July 201	3
-------	------------	---

AECOM Technical Services Inc. Nonconformance and Corrective Action Report

Report Number: 01	Location: Ridgway Training Range
Project Title: Ridgway Train	ing Range Remedial Investigation Contract Number: W9133L-14-D-001; DO 0006
Description of Nonconformance and Cause:	The Work Plan and QAPP state that "Enough volume will be collected at each discrete location to be analyzed for waste characterization, and the laboratory will be instructed to hold the extra volume from each sample while MC analysis is performed. Once it is determined which location is the worst-case scenario (i.e., highest concentration), the laboratory will be instructed to run TCLP analysis on that sample." This strategy is inappropriate for waste characterization and Feasibility Study decision making. Waste characterization samples will not be used in the RI report to quantify risk of any kind at the site. Waste characterization samples will only be used to qualitatively inform potential remedial alternative actions in a Feasibility Study.
Proposed Disposition:	AECOM suggests the collection of one waste characterization sample at each DU. At the Target Berm (where XRF is used), the waste characterization sample will be collected from the location with the highest XRF lead result. At all other DUs (where XRF is not used), waste characterization samples will be collected based on field determination. All waste characterization samples will be held at the laboratory and analyzed only if the laboratory results from the respective DU ISM/discrete samples exceed the USEPA RSL for lead (400 ppm). These data will sufficiently characterize waste at the site and inform potential remedial alternative decision making in a potential Feasibility Study. This strategy is consistent with other NDNODS SARs 5 and 6 soil sampling strategies.
Submitted by: Joe Witte	Date: 5 July 2018
	Digitally signed by Gwinn, Rosa
Approved by:	nn, Rosa DN: cn=Gwinn, Rosa, ou=USGRN2 Reason: I am approving this document Date: 2018.07.05 16:25:37 -04100
Actual Disposition approved by Project Manager:	Collection of one waste characterization sample at each DU. At the Target Berm, the waste characterization sample will be collected from the location with the highest XRF lead result. At all other DUs, waste characterization samples will be collected based on field determination. All waste characterization samples will be held at the laboratory and analyzed only if the laboratory results from the respective DU ISM/discrete samples exceed the USEPA RSL for lead (400 ppm).
Implementation of Disposition assigned to:	Ridgway Training Range RI field work staff: Joe Witte and Zach Neigh
Completed by: Joe Witte	Date: 5 July 2018
Verified by:	All Stuger Date: 5 July 2018

Date: 11 July 2018

AECOM Technical Services Inc. Nonconformance and Corrective Action Report

Report Number:		02	Location:	Ridgeway Training Range, PA
Project Title:	~ .	Training Center nvestigation	Contract Number:	W9133L-14-D-001: DO 0006
Description of Noncand Cause:	onformance	to the north and characterized the parallel to the si screening samp (400ppm) were screening between	l east (on the range floo he DU to the south, down outhern range wall. Base les, no exceedances of observed beyond the deen the southern range	has been bounded with step outs or). Step out sampling has we to a drainage ditch that runs sed on X-Ray Fluorescence (XRF) the USEPA RSL for lead trainage ditch; however, sample wall and the drainage ditch nees next to the drainage ditch.
Proposed Dispositio	on:	two discrete sec analysis of MC	liment samples from th	s, specifically collection of up to be drainage ditch for laboratory s). These data will be used to ts to the ditch.
Submitted by: Sarah Stinger Laund Stenberg Approved by: Date: 11 July 2018				
Actual Disposition a Project Manager:	approved by	ditch for labora immediately do	tory analysis of MC me	ent samples from the drainage etals (Sb, Cu, Pb, Zn). One rea of XRF lead exceedances at (to the east).
Implementation of E assigned to:	Disposition	Ridgway Traini	ing Range RI field worl	k staff: Joe Witte and Zach Neigh
Completed by:		Joe Witte	Date: 11 Jul	y 2018
Verified by:		Wak 1 Sting	Date: 11	July 2018

Appendix B:

Photographic Record

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania Project No. 60519685

Photo No. 1

Location of Photo:

Front of the Ridgway Training Range

Description:Covered firing position area pictured, facing northwest

Photo No. 2

Location of Photo:

Front of Ridgway Training Range

Description:

Drainage ditch east of the covered firing positions at Ridgway Training Range, facing southwest

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 3

Location of Photo: Range floor

Description:

A wooden baffle in front of the Target Berm; photo taken from the center of the range floor facing downrange (west)

Photo No. 4

Location of Photo: Target Berm

raigot Boiiii

Description:

Target Berm downrange on the west end of the MRS, facing north

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 5

Location of Photo: Range floor

Description:

Soil Pile DU on the north side of the range floor between two wooden baffles, facing north

Photo No. 6

Location of Photo:

French Drain DU outfall area

Description:

French Drain outfall north of training range walled area, facing north. Standing water visible

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 7

Location of Photo:

Covered Firing Position DU

Description:

Incremental sample locations at the Firing Position DU, facing north. White flags = incremental grid nodes; orange flags = primary sample locations; blue flags = duplicate sample locations; yellow flags = triplicate sample locations.

Photo No. 8

Location of Photo:

Background DU

Description:

Incremental sample locations at the Background DU, facing west. White flags = incremental grid nodes; orange flags = primary sample locations; blue flags = duplicate sample locations; yellow flags = triplicate sample locations.

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 9

Location of Photo: Target Berm DU

Description:

Incremental sample locations at the Target Berm DU, facing southwest. White flags = XRF sample locations; orange flags = primary sample locations; blue flags = duplicate sample locations; yellow flags = triplicate sample locations. Gravel at the base of the berm pictured.

Photo No. 10

Location of Photo:Range floor

Description:

Incremental sample locations at the Target Berm DU continuing onto the range floor, facing northwest. Pink flags = XRF sample locations; orange flags = primary sample locations; blue flags = duplicate sample locations; red/pink flags = triplicate sample locations

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 11

Location of Photo: Gravel path on range floor

Description:

Gravel path within the walled area of the training range adjacent to the south wall, facing east

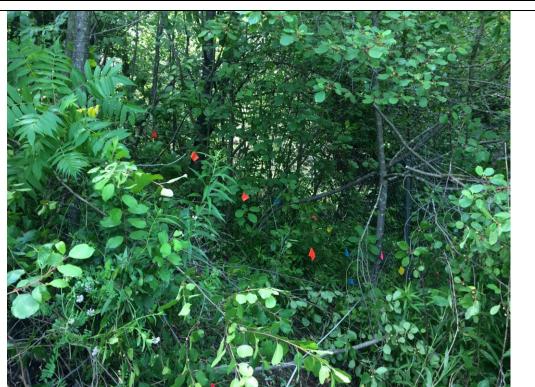


Photo No. 12

Location of Photo: Target Berm DU

Description:

Incremental sample locations at the Target Berm DU north of the walled training range area, facing northwest

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 13

Location of Photo: Target Berm DU

Description:

Gravel area north of the walled area at the base of the Target Berm, facing east

Photo No. 14

Location of Photo: Target Berm DU

Description:

Incremental sample locations at the Target Berm south of the walled training range area

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 15

Location of Photo: Target Berm DU

Description:

Drainage ditch south of the MRS, facing southwest. XRF and incremental sample locations pictured on both sides of the drainage ditch.

Photo No. 16

Location of Photo: French Drain DU

Description:

Standing water in the French Drain DU outfall area, facing north. Samples were collected from sediment beneath the standing water.

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 17

Location of Photo: Soil Pile DU

Description:

Example soil boring holes where samples were collected from the Soil Pile DU

Photo No. 18

Location of Photo:

Drainage ditch south of the Training Range

Description:

Draining ditch where sediment samples were collected south of the Training Range walled area, facing west

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania Project No.

60519685

Photo No. 19

Location of Photo: Target Berm DU

Description:

Several discrete soil samples collected from the Target Berm DU, facing east

Photo No. 20

Location of Photo:

Front of the Ridgway Training Range

Description:

ISM samples RTR01IS01 and RTR01IS03 pictured.

Appendix C:

Data Validation Report (on CD)

Appendix D:

Laboratory Data Analytical Package (on CD)

Appendix E:

Human Health Risk Assessment

Final Human Health Risk Assessment

Ridgway Training Range, Pennsylvania

Munitions Response Site PAE40-001-R-01 Pennsylvania Army National Guard

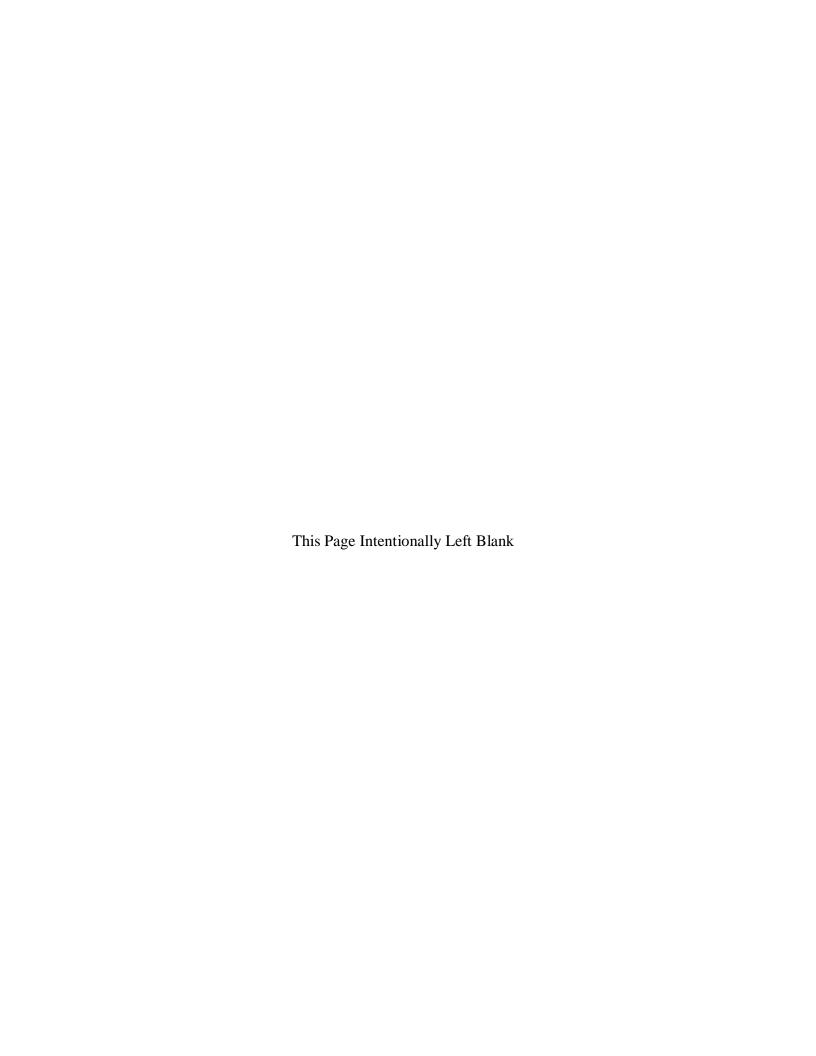
Army National Guard

Contract No. W9133L-14-D-0001 Delivery Order No. 0006

June 2019

Prepared for: Army National Guard NGB-AQ-W9133L 111 South George Mason Drive Building 2, 4th Floor Arlington, VA 22204-1373

Prepared by: AECOM 12420 Milestone Center Drive Suite 150 Germantown MD, 20876 USA


T: +1 (301) 820 3000 F: +1 (301) 820 3009

aecom.com

Project Name:	Remedial Investigation through Decision Document for Six Army National Guard Munitions Response Sites, Ridgway Training Range, Pennsylvania
Site Location:	Ridgway Township, PA
Contract/Delivery Order:	Contract No. W9133L-14-D-0001 Delivery Order No. 0006
Report Name:	Remedial Investigation Report Ridgway Training Range, Pennsylvania Munitions Response Site PAE40-001-R-01
Preparation Date (Month/Year):	June 2019
Prepared for:	Army National Guard NGB-AQ-W9133L 111 South George Mason Drive Building 2, 4th Floor Arlington, VA 22204-1373
Prepared by:	AECOM 12420 Milestone Center Drive Suite 150 Germantown MD, 20876 USA

T: +1 (301) 820 3000 F: +1 (301) 820 3009

aecom.com

Table of Contents

Tal	ole of (Contents	i
Tal	oles		ii
Fig	ures		iii
Att	achmo	ents	iv
Acı	ronym	s and Abbreviations	v
Exe	ecutive	e Summary	. ES-1
1	Intro	oductionoduction	1-1
	1.1	Project Authorization	1-1
	1.2	Project Purpose and Scope	1-1
	1.3	Remedial Investigation Report Organization	1-3
2	Site	Characterization	2-1
	2.1	Background Information.	2-1
	2.2	Surrounding Land Use	2-2
	2.3	Conceptual Site Model	2-2
	2.4	Data Evaluation	
		2.4.1 Human Health Risk Screening Criteria	2-4
	2.5	Risk-Based Screening	2-4
3	Exp	osure Assessment	3-1
	3.1	Chemical Intake	3-1
	3.2	Exposure Scenarios	3-3
	3.3	Exposure Point Concentration	3-6
	3.4	Lead Evaluation	3-6
4	Toxi	icity Assessment	4-1
	4.1	Selection of Toxicity Values	4-1
	4.2	Noncarcinogenic Health Effects	4-2
	4.3	Carcinogenic Health Effects	4-3
5	Rick	Characterization	5-1

	5.1	Target Risk Levels	5-1
	5.2	Carcinogenic Risks	5-2
	5.3	Noncarcinogenic Risks	5-4
	5.4	Lead Modeling Results	5-6
6	Uncertainty Assessment		
	6.1	Site Characterization Uncertainties	2
	6.2	Exposure Assessment Uncertainties	4
	6.3	Toxicity Assessment Uncertainties	5
	6.4	Risk Characterization Uncertainties	6
7	Con	clusions and Recommendations	7-1
8	Refe	rences	8-3
Ta	bles		
Tabl	e ES-	Human Health Risk Assessment Soil COCs	ES-2
		Risk-Based Screening, Summary Statistics and Exposure Point Concentrations	_~ _
		nd Sediment	2-5
Tabl	e 2-2.	Background ISM Evaluation	2-8
Tabl	e 2-3.	Ridgway Training Range COPCs	2-8
Tabl	e 4-1.	Non-Cancer Toxicity Values for Ridgway Training Range	4-3
Tabl	e 4-2.	Cancer Toxicity Values for Ridgway Training Range	4-4
Tabl	e 5-1.	Risk Results for the Human Health Risk Assessment	5-3
Tabl	e 5-2.	Non-Cancer Risk Drivers for Ridgway Training Range	5-5
Tabl	le 5-3.	Adult Lead Methodology Results for the On-Site Outdoor Worker Scenario	5-7
Tabl	e 5-4.	Adult Lead Methodology Results for the On-Site Construction/Utility Worker Scenario	.5-8
Tabl	e 5-5.	Integrated Exposure Uptake Biokinetic (IEUBK) Model	5-9
Tabl	e 6-1.	Surface Soil Risk Results Using Discrete EPCs	2
Tahl	e 7-1	Human Health Risk Assessment Soil COCs	7-1

Figures

Figure 1-1.	Location	1-2
Figure 2-1.	Ridgway Training Range Site Layout	2-9
Figure 2-2.	Conceptual Site Model	2-10
Figure 2-3.	Human Health MC Exposure Pathway Analysis	2-11
Figure 2-4.	Ridgway Training Range MRS RI Approach	2-12

Attachments

Attachment 1	Sample Data	Used in	the HHRA
--------------	-------------	---------	----------

Attachment 2 Exposure Assessment Equations and Exposure Point Concentrations

Attachment 3 Transport and Fate Modeling

Attachment 4 Cancer Risk and Non-Cancer Hazard Calculations

Attachment 5 Uncertainty Assessment Calculations

Acronyms and Abbreviations

AECOM Technical Services, Inc.

ALM Adult Lead Methodology ARNG Army National Guard

AT averaging time

bgs below ground surface

BW body weight

CA constituent concentration in air

cm² square centimeters

CDC Centers for Disease Control and Prevention

CDI chronic daily intake

CERCLA Comprehensive Environmental Response, Compensation and Liability Act

COC constituent of concern

COPC constituent of potential concern

CR contact rate

CS soil concentration
CSF cancer slope factor

CSFd cancer slope factor, dermal

CSFo cancer slope factor, oral (ingestion)

CSM conceptual site model
DABS dermal absorption fraction
DAD dermally absorbed dose
DA-event absorbed dose per event
DoD Department of Defense

DU decision unit

EBS Environmental Baseline Survey

EC exposure concentration
ED exposure duration
EF exposure frequency

ELCR excess lifetime cancer risk
EPC exposure point concentration

ET exposure time FS Feasibility Study

GIABS gastrointestinal absorption factors

HEAST Health Effects Assessment Summary Table

HHRA human health risk assessment

HI hazard index HQ hazard quotient

IEUBK Integrated Exposure Uptake Biokinetic

IR soil ingestion rate

IRIS Integrated Risk Information System

IS incremental sample(s)

Prepared for: Army National Guard

ISM incremental sampling methodology

ITRC Interstate Technology & Regulatory Council

IUR inhalation unit risk

kg kilograms

m³/kg cubic meters per kilogram MC munitions constituents

MEC munitions and explosives of concern mg/cm²-event milligrams per square centimeters-event

mg/kg milligram per kilogram
mg/kg-day milligrams per kilogram-day
(mg/kg-day)⁻¹ 1/milligrams per kilogram-day
MMRP military munitions response program

MRS munitions response site

ND non-detect

NDNODS Non-Department of Defense, Non-Operational Defense Site

ORNL Oak Ridge National Laboratory

PA Pennsylvania

PAARNG Pennsylvania Army National Guard

PADEP Pennsylvania Department of Environmental Protection
PADMVA Pennsylvania Department of Military and Veterans Affairs

PbB lead blood concentration PEF particulate emission factor

PPRTV Provisional Peer Reviewed Toxicity Value RAGS Risk Assessment Guidance for Superfund

RBA relative bioavailability
RfC reference concentration

RfD reference dose

RfDd reference dose, dermal

RfDo reference dose, oral (ingestion)

RI Remedial Investigation
RPD relative percent difference
RSL regional screening level

SA skin surface area
SI Site Inspection

SSAF soil-to-skin adherence factor UCL upper confidence limit

μg/cm³ micrograms per cubic centimeter μg/dL micrograms per deciliter of blood

U.S. United States

USEPA United States Environmental Protection Agency

UU/UE unlimited use and unrestricted exposure

Executive Summary

The Remedial Investigation (RI) report has been prepared in support of the long term management of the Non-Department of Defense (DoD), Non-Operational Defense Site (NDNODS) Ridgway Training Range Munitions Response Site (MRS; Army Environmental Database Restoration Number PAE40-001-R-01), located in Pennsylvania (PA). The Ridgway Training Range MRS is a 0.22-acre site located in Ridgeway Township, Pennsylvania on the west side of Grant Road, approximately 2 miles northwest of Ridgway Borough and 5 miles southwest of Johnsonburg in Elk County, PA.

The Army National Guard (ARNG) determined a RI should be conducted at the MRS under the Military Munitions Response Program (MMRP) Munitions Response Services. The human health risk assessment (HHRA) was conducted as part of the RI to evaluate whether constituents of potential concern (COPCs) attributable to past site activities have the potential to cause adverse health effects to human receptors at the MRS. The RI and HHRA meet the requirements of the Comprehensive Environmental Response, Compensation, and Liability Act, as amended by the Superfund Amendments and Reauthorization Act of 1986. The HHRA also meets the site-specific risk assessment requirements of Act 2 as presented in 25 Pa. Code §250.602(c) and the Act 2 Technical Guidance Manual [Pennsylvania Department of Environmental Protection (PADEP), 2002].

The Ridgway Training Range MRS was broken into the following Decision Units (DUs): Target Berm, Soil Pile, Firing Point, and French Drain Outfall. Discrete and incremental sampling methodology (ISM) data were collected at the MRS. Discrete soil samples were collected at the Target Berm, Soil Pile, and Firing Point DUs to evaluate the vertical extent of munition constituents (MC). ISM surface soil samples were collected from Target Berm, Firing Point, and Background Reference Area DUs. ISM data were not collected at the Soil Pile and French Drain Outfall DUs due to their small size. Finally, discrete sediment samples were collected from drainage areas at the Target Berm and French Drain Outfall DUs.

Potential off-site receptors were not identified for the MRS because site access is restricted via a locked gate. However, an on-site trespasser scenario was evaluated in the HHRA to address potential breaches in site security. On-site and surrounding area vegetation, the concrete wall, and other structures inhibit windblown particulates from leaving the MRS. Also, sediment COPCs were not identified in the surface water drainage areas of the French Drain Outfall and Target Berm DUs where surface water leaves the MRS.

The HHRA addressed soil and sediment exposure media only. USEPA residential soil regional screening levels (RSLs; dated May 2018) that are protective of a target cancer risk of 1×10^{-6} (one in 1,000,000; 1E-06) and a target hazard quotient of 0.1 were used to screen soil and sediment USEPA 2018 and PADEP 2002). Risk-based screening results identified antimony, copper, lead, and nitroglycerin as soil COPCs. Detected concentrations of zinc in soil and sediment were below the residential soil RSL; therefore zinc was eliminated from further evaluation. Risk-based screening results for sediment were below residential soil RSLs;

Prepared for: Army National Guard

AECOM
ES-1

sediment was eliminated from further evaluation at the Target Berm and French Drain Outfall DU drainage areas.

The Target Berm and Firing Point DU ISM mean concentrations for the metals were compared with the mean concentrations of metals in the Background Reference Area DU to evaluate whether the metal concentrations were potentially naturally occurring; the site mean concentrations were higher (i.e., at least one order of magnitude higher) than the background mean concentrations therefore the metals were determined to be site-related.

The following human health on-site receptors were evaluated: outdoor worker, teen trespasser, child and adult visitor, child and adult hypothetical resident, construction worker, and utility worker. The current scenarios represent exposure to current site conditions; these conditions are assumed to not change in the future (i.e., no land re-development). Receptors are assumed to be exposed to surface soil (0 to 24 inches below ground surface [bgs]). The future scenarios are used to address site conditions that have changed due to land re-development. Land redevelopment results in excavation activities that bring subsurface soil to the surface and the soils are "mixed" together. Future receptors are exposed to total soil (0 to 36 inches bgs). Soilrelated exposure pathways that were evaluated in the HHRA were incidental ingestion and dermal contact with soil. The inhalation exposure pathway was incomplete because the soil constituents of potential concern did not have inhalation toxicity values.

Cancer risk and non-cancer hazard calculations were conducted for the soil exposure medium. United States Environmental Protection Agency (USEPA) Adult Lead Methodology (ALM) and Integrated Exposure Uptake Biokinetic (IEUBK) models were used to estimate lead blood concentrations (PbB) for receptors exposed to lead in soil.

Table ES-1 identifies the constituents of concern (COCs) that exceeded the PADEP and risk thresholds in the HHRA.

Table ES-1. Human Health Risk Assessment Soil COCs

Receptor	Exposure Medium	Constituent of Concern
Target Berm DU		
Child Visitor	Surface Soil	Lead (a, b)
Cliffd Visitor	Total Soil	Lead (a, b)
Outdoor Worker	Surface Soil	Lead (b)
Outdoor worker	Total Soil	Lead (b)
Construction/Utility Worker	Surface Soil	Lead (b, c)
	Surface Soil	Antimony
Hypothetical Child Resident	Surface Soff	Lead (b)
Hypothetical Cliffd Resident	Total Soil	Antimony
	Total Soli	Lead (b)
Soil Pile DU		
	Surface Soil	Lead (a, b)
Child Visitor	Total Soil	Antimony
	Total Soll	Lead (a, b)
Construction Worker (c)	Total Soil	Antimony
Construction worker	10(a) 50()	Lead (b, c)

Receptor	Exposure Medium	Constituent of Concern
Utility Worker (c)	Total Soil	Lead (b, c)
Outdoor Worker	Surface Soil	Lead (b)
Outdoor Worker	Total Soil	Lead (b)
Hamathatiaal Child Davidant	Surface Soil	Antimony Lead ^(b)
Hypothetical Child Resident	Total Soil	Antimony Lead ^(b)
Hypothetical Adult Resident	Total Soil	Antimony
Firing Point DU		
Hypothetical Child Resident	Surface Soil	Nitroglycerin

Notes:

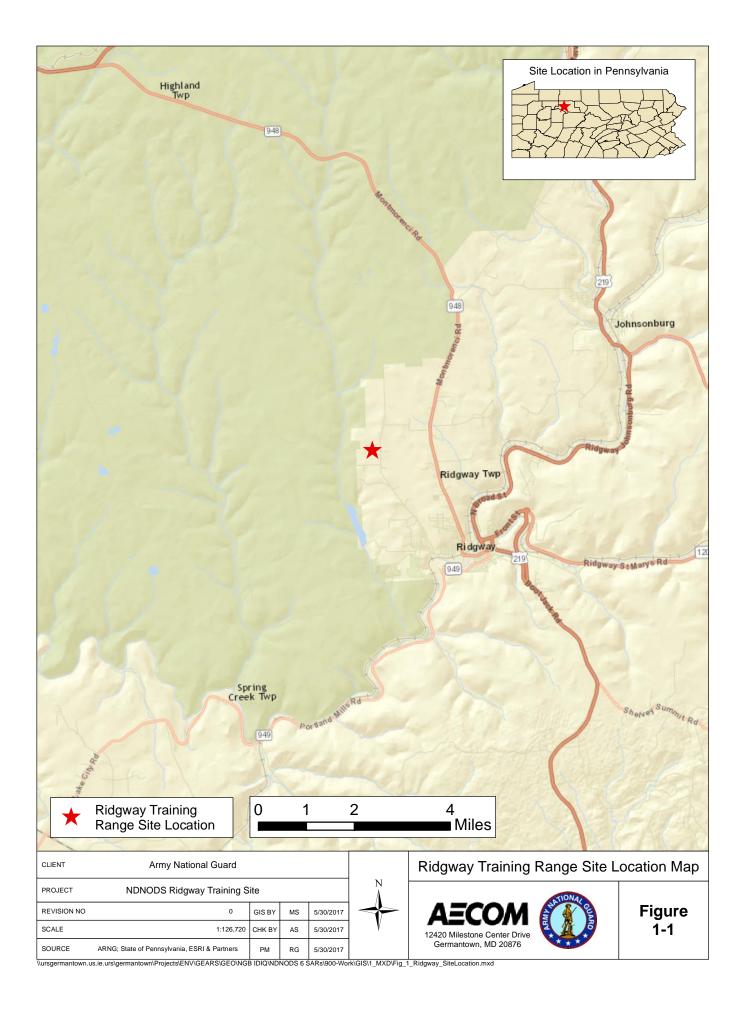
- (a) IEUBK model results for the hypothetical child resident were also used to be protective of the child visitor at the MRS.
- (b) Lead modeling results are based on target PbB threshold of 10 micrograms per deciliter of blood ($\mu g/dL$).
- (c) If a target PbB threshold of 5 $\mu g/dL$ was used, then lead would be identified as a surface soil and total soil COC for the construction and utility worker scenarios.

The HHRA recommends further evaluation of the soil COCs in a Feasibility Study (FS) for the Ridgway Training Range MRS.

1 Introduction

This Human Health Risk Assessment (HHRA) was prepared as part of the Remedial Investigation (RI) report in support of the long term management of the Non-Department of Defense (DoD), Non-Operational Defense Site (NDNODS) Ridgway Training Range Munitions Response Site (MRS; Army Environmental Database Restoration Number PAE40-001-R-01), located in Pennsylvania (PA) (**Figure 1-1**).

1.1 Project Authorization


Based on the results of a Site Inspection (SI; Parsons, 2012), the Army National Guard (ARNG) determined a RI and risk assessment should be conducted at a single NDNODS MRS in Pennsylvania under the Military Munitions Response Program (MMRP) Munitions Response Services. The RI is being performed pursuant to the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986. Also, the HHRA was prepared pursuant to the requirements of Act 2, addressing the site-specific risk assessment requirements as presented in 25 Pa. Code § 250.602(c) and the Act 2 Technical Guidance Manual [Pennsylvania Department of Environmental Protection (PADEP), 2002].

Environmental work is being conducted at the MRS by the ARNG Directorate and the Pennsylvania ARNG (PAARNG). This project is being executed by AECOM Technical Services, Inc. (AECOM), under ARNG Contract Number W9133L-14-D-0001, Delivery Order No. 0006, issued 29 September 2016. Under this delivery order, AECOM is responsible for fully executing the RI and related tasks at the Ridgway Training Range MRS.

1.2 Project Purpose and Scope

The overall objectives for the HHRA of Ridgway Training Range is to conduct a site-specific, quantitative analysis of the MRS under current and future land use scenarios based on the nature of the human health constituents of potential concern (COPCs) detected in environmental media, potential exposure pathways to human receptors, and the degree to which these exposures may pose adverse effects. Results of the HHRA may be used to assess risk management options for the MRS, including possible further actions to address impacted soils and sediment.

A quantitative HHRA was completed as part of the RI to evaluate risks to human health potentially posed by COPCs in the affected media beneath and within the vicinity of the site that cannot be eliminated using screening criteria.

1.3 Remedial Investigation Report Organization

Brief descriptions of the document sections and appendices are as follows:

- **Section 1: Introduction.** Section describes the authorization, project purpose and scope, and presents the report organization.
- **Section 2: Site Characterization.** Section summarizes the MRS background, historical use, and environmental setting. The conceptual site model developed for the MRS is also presented. The analytical data is reviewed and the human health COPCs are identified.
- **Section 3: Exposure Assessment.** Section identifies the human receptors that may be exposed to site-related COPCs in the affected media and the potential extent of human exposure that may occur under MRS-specific exposure scenarios.
- **Section 4: Toxicity Assessment.** Section describes the relationship between the magnitude of exposure (dose or exposure concentration) and the incidence of adverse health effects associated with the identified COPCs.
- **Section 5: Risk Characterization.** Section describes the nature and magnitude of potential human health risks in comparison with state and federal target risk levels.
- **Section 6: Uncertainty Analysis.** Section discusses the uncertainties associated with each step of the HHRA.
- **Section 7: Summary and Conclusions.** This section provides an overview of the findings of the HHRA for the MRS.
- **Section 8: References.** This section provides the references used to develop this document.
- **Attachment 1:** Sample Data Used in the HHRA
- **Attachment 2:** Exposure Assessment Equations and Exposure Point Concentrations
- **Attachment 3:** Transport and Fate Modeling
- **Attachment 4:** Cancer Risk and Non-Cancer Hazard Calculations
- **Attachment 5:** Uncertainty Assessment Calculations

2 Site Characterization

This Section summarizes the MRS background, historical use, and environmental setting. A conceptual site model (CSM) developed for the MRS is also presented. The evaluation of the analytical data and risk-based screening to identify human health COPCs is described.

2.1 Background Information

The Ridgway Training Range MRS is a 0.22-acre site located in Ridgeway Township, Pennsylvania on the west side of Grant Road, approximately 2 miles northwest of Ridgway Borough and 5 miles southwest of Johnsonburg in Elk County, PA (**Figure 2-1**). It is surrounded by the 8-acre former Ridgway Weekend Training Site.

According to the 2012 SI report (Parsons, 2012), PAARNG documentation indicates that the range was constructed in 1987 as a small-arms range with sheltered firing points and a baffle system to retain firing activities. Observations made during the 2012 SI confirmed that the range is a baffled outdoor range that is surrounded by 15-foot concrete walls on the northern and southern edges of the range. The eastern portion of the MRS contains twelve sheltered firing positions covered by a metal roof; an 8-foot earthen berm is located on the western edge of the MRS. Above the earthen berm is a horizontal wooden baffle supported by large beams installed into the hillside. Within the range, two vertical wooden baffle walls are suspended from the top of the concrete side walls and hang down into the range floor area to prevent stray bullets from leaving the range (**Figure 2-1**). The RI provides a photo log of the MRS in Appendix B.

The NDNODS Ridgway Training Range MRS was used by the PAARNG for small-arms, live-fire weapons training from 1987 to 2005 (Parsons, 2012). Munitions use documentation was not found during the SI, but based on range type, timeframe of range use, and location, AECOM assumes that the following munitions were fired: .22 caliber, .38 caliber, .45 caliber, .50 caliber, 9mm, 5.56mm, and 7.62mm. In 1989, a temporary waiver was granted for one-time firing of 7.62mm machine gun rounds. The extent of the usage is unknown, but is expected to be minimal (Earth Resources Technology, 2008).

Live-fire training occurred within the mostly enclosed 25-meter outdoor baffled M-16 rifle range. From 1987 to 1990, the range was used approximately four to five times a year, but range use from 1990 to 2001 is unknown. From 2001 to 2005, the range was used approximately two to three times a year. During that period, AECOM estimated that approximately 64,000 small-caliber rounds were expended at the range. The range was last used in November 2005 and small-arms training was discontinued in March of the following year because it no longer met ARNG requirements (Pennsylvania Department of Military and Veterans Affairs [PADMVA], 2011). Request for formal closure occurred on September 9, 2011.

No historical evidence of munitions and explosives of concern (MEC) has been documented or found at the site. It was determined during the SI that no explosive hazards are expected at the

Prepared for: Army National Guard

AECOM

MRS. As a result of the baseline survey and SI, the size and shape of the MRS were revised. The revised Ridgway Training Range MRS included only the firing points, target berm, and range floor in between (0.22 acres). This area (AEDB-R No. PAE40-001-R-01) was recommended to be carried forward to RI/Feasibility Study (FS).

Transfer of the property to a private owner was completed in 2015. The MRS is currently used as a staging area for equipment associated with a private landscaping company owned by the property owner. The MRS is primarily covered in grass, other vegetation, and the structures associated with the former baffled small-arms range. The area within the MRS concrete walls is currently unused. Access to the MRS is restricted from public access by a locked gate and walls surrounding the MRS. To improve drainage in front of the target berm at the MRS, the landowner installed a French drain parallel to the berm. In doing so, the top 12 to 18 inches of soil from the foot of the target berm were removed and stored in a pile near the north side wall (i.e., Soil Pile DU). Since the current landowner has owned the property, the range has been used with homemade munitions, distinct from historic use, which were fired into a trap. This use has stopped and will not occur again until this project concludes. Future land use is unlikely to significantly change.

2.2 Surrounding Land Use

The MRS is located within a fragmented forest that is surrounded on all sides by Ridgway Weekend Training Site (Figure 2-1). The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural, mining, residential, and recreational land (Parsons, 2012). Allegheny National Forest borders the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. A community baseball/athletic field abuts the northern edge of the property.

The Ridgway Rifle Club, a privately owned gun club, is located approximately 0.83 miles south of the MRS. The neighboring Ridgway Rifle Club was founded in 1927 and has remained open since its founding. The club includes small-arms shooting ranges and hosts shooting competitions regularly. Firing points at the Ridgway Rifle Club face west northwest. Based on the distance from the MRS and the location of and trajectory from firing points, it is not expected that the Ridgway Rifle Club activities would contribute any munitions debris or constituents to the MRS.

2.3 Conceptual Site Model

The CSM (Figure 2-2) was generated based on the information and findings presented in the 2012 SI, environmental baseline survey report, and site visit. The CSM describes the potential physical, chemical, and biological processes that may transport contaminants from sources to receptors and provides the basis for evaluating potential risks to human health and the environment. A munition constituent (MC) exposure pathway analysis was conducted (Figure 2-3) that identifies the potentially complete exposure pathways that were quantified in the HHRA. The exposure scenarios and exposure pathways evaluated in the HHRA are further described in Section 3, Exposure Assessment.

Prepared for: Army National Guard AECOM The property is privately owned and is used as a staging area by a landscaping company. Future use is planned to be the same. Access to the MRS is mostly restricted via a locked gate, so the public does not have ready access to the site. However, a trespasser is a possible scenario. Potential human receptors include the landowner, visitors or workers (e.g., construction, utility, and commercial/industrial) that the landowner allows on site. As there is no restriction on the land, there is potential that the site could be used for residential purposes in the future.

2.4 Data Evaluation

The MRS data were broken into the following decision units (DUs): Target Berm, Soil Pile, Firing Point, Background Reference Area and French Drain Outfall (Figure 2-4). Table A1-1 in Attachment 1 lists the samples that were included in the HHRA data set. Tables A1-2 and **A1-3 of Attachment 1** present the analytical data used in the HHRA.

The Ridgway Training Range MRS was broken into the following DUs: Target Berm, Soil Pile, Firing Point, and French Drain. Discrete and incremental sampling methodology (ISM) data were collected at the MRS. Discrete soil samples were collected at the Target Berm, Soil Pile, and Firing Point DUs to evaluate the vertical extent of MC. ISM surface soil samples were collected from Target Berm, Firing Point, and Background Reference Area DUs. ISM data were not collected at the Soil Pile and French Drain Outfall DUs due to their small size. Finally, discrete sediment samples were collected from drainage areas at the Target Berm and French Drain Outfall DUs to determine whether constituent concentrations were leaving the MRS via drainage areas. The Background Reference Area DU data were used to determine whether the metal concentrations were possibly attributed to naturally occurring site conditions. Discrete subsurface samples were collected at select areas to determine the vertical extent of MC (see yellow highlighted samples in **Table A1-1 of Attachment 1**).

Discrete, field duplicate samples were collected in the following DUs: Target Berm, Soil Pile, Firing Point, and the French Drain. Discrete, field duplicate samples, if considered equally representative, are not independent samples. New Jersey Department of Environmental Protection (2014) considers a relative percent difference (RPD) less than 50% to be indicative of representative samples for solid matrices. The RPD between primary and duplicate results for the soil and sediment sample locations are presented in **Table A1-4 of Attachment 1**. Results which were not considered representative were retained as independent samples. The mean of the primary and duplicate was used for samples determined to be representative.

Quality assurance/quality control procedures outlined in AECOM (2018) were used to assess the precision and accuracy of analytical data. No rejected "R"-flagged data were identified and all soil and sediment data were carried forward into the HHRA. "J"-flagged results (estimated values) were treated as detect results. ISM data were used for risk calculations where available. If corresponding biased, discrete surface soil data were available for the DU, then separate risk calculations were conducted and discussed in the uncertainty assessment.

2.4.1 Human Health Risk Screening Criteria

Analytical data were compared to risk-based screening levels to determine if past small arms training activities resulted in contamination exceeding human health screening levels. Sitespecific background reference samples were collected and analyzed for comparison purposes.

Risk-Based Screening

Residential soil regional screening levels (RSLs) that are protective of a target cancer risk of 1E-06 and a target hazard quotient of 0.1 were used to screen the soil and sediment maximum detected concentrations for each DU (United States Environmental Protection Agency [USEPA] 2018a). Table 2-1 presents the risk-based screening results for each DU and exposure medium.

The surface soil (0 to 24 inches below ground surface [bgs]), subsurface soil (24 to 36 inches bgs), and total soil (i.e., entire soil column, 0 to 36 inches bgs) risk-based screening results for each DU identified antimony, copper, lead and nitroglycerin as soil COPCs. The maximum detected concentrations for zinc were below the residential soil RSL and so zinc was eliminated from further evaluation. The maximum detected concentrations for metals in sediment were below residential soil RSLs at the Target Berm and French Drain Outfall DUs. Therefore, the sediment exposure medium was eliminated from further evaluation. Laboratory detection limits were protective of the USEPA RSLs so no further analysis of non-detections was necessary (AECOM 2017 and 2018).

Because most human health effects data for lead are correlated with concentrations in the blood rather than an external dose, the standard cancer risk and non-cancer hazard approach for evaluating health effects cannot be applied to lead. Lead's residential soil RSL of 400 milligrams per kilogram (mg/kg) was derived using USEPA's Integrated Exposure Uptake Biokinetic (IEUBK) model (IEUBKwin v1.1 build 11) (USEPA 2010). The IEUBK model predicts the chance that a typical child (ages 0 to 6 years) would have a lead blood concentration (PbB) exceeding 10 micrograms per deciliter (µg/dL) from background sources (e.g., diet, lead-based paint, drinking water, and indoor dust) as well as an exposure to lead related to the MRS. If all default parameters are used to run the IEUBK model, it produces a soil action level of 400 mg/kg which USEPA has adopted as lead's residential soil RSL (USEPA 2018a).

USEPA (2010) guidance recommends using the mean concentration for estimating risk from exposure to lead; as shown in **Table 2-1**, the mean soil concentrations for lead at each DU exceeded the soil action level of 400 mg/kg; lead was carried forward as a soil COPC in the HHRA.

In Table 2-2, the Background Reference Area DU ISM mean concentrations for the metals and nitroglycerin in surface soil were more than an order of magnitude lower than the ISM mean concentrations at the Target Berm and Firing Point DU. The metals and nitroglycerin in surface soil at the Target Berm and Firing Point DUs are likely site-related COPCs.

Table 2-1. Risk-Based Screening, Summary Statistics and Exposure Point Concentrations for Soil and Sediment

COPC/								Siii	mmary Static		
COPC/			3.50			Risk-Based	Constituent	Sui	mmary Statis 95%	95%	
	Detection	%	Minimum Detection	Maximum Detection	Maximum	Screening Level (1)	of Potential	Mean	UCL (2)	UCL	Selected Exposure Point Concentration (3)
Exposure Media	Frequency	70 Detection	mg/kg	mg/kg	Detection Sample Location	mg/kg	Concern? (Yes/No)	mg/kg	mg/kg	Туре	mg/kg
Target Berm DU				8.8		8 8	(,		~ ~ ~	71	
Discrete Surface Soil (0 - 6 inches, bgs)											
Total Metals											
Antimony	6/6	100%	0.195	89.5	RTR01DA03A	3.1	Yes	34.2	65.7	N1	65.7
Copper	6/6	100%	16.9	1,830	RTR01DA03A	310	Yes	471	1,049	N1	1,049
Lead	7/7	100%	41.2	17,500	RTR01DA03A	400	Yes	5,347	10,396	N1	5,347
Zinc	6/6	100%	62.2	292	RTR01DA03A	2,300	No	133	203	N1	Not COPC
ISM Surface Soil (0 - 6 inches, bgs)											
Total Metals											
Antimony	3/3	100%	24.8	40.1	RTR01IS03	3.1	Yes	30.6	44.6	N1	40.1
Copper	3/3	100%	481	636	RTR01IS01	310	Yes	576	717	N1	636
Lead	3/3	100%	5,720	8,770	RTR01IS03	400	Yes	6,890	9,662	N1	6,890
Zinc	3/3	100%	149	165	RTR01IS03	2,300	No	157	171	N1	Not COPC
Discrete Subsurface Soil (24 - 30 inches, bgs)											
Total Metals											
Antimony	2/2	100%	5.47	34.8	RTR01DB03A	3.1	Yes	20.1			34.8
Copper	2/2	100%	65.1	961	RTR01DB03A	310	Yes	513			961
Lead	2/2	100%	824	6,360	RTR01DB03A	400	Yes	3,592			3,592
Zinc	2/2	100%	107	189	RTR01DB03A	2,300	No	148			Not COPC
Discrete Total Soil (0 - 30 inches, bgs)											
Total Metals											
Antimony	8/8	100%	0.195	89.5	RTR01DA03A	3.1	Yes	30.7	53.4	N1	53.4
Copper	8/8	100%	16.9	1,830	RTR01DA03A	310	Yes	481	911	N1	911
Lead	9/9	100%	41.2	17,500	RTR01DA03A	400	Yes	4,957	22,661	G1	4,957
Zinc	8/8	100%	62.2	292	RTR01DA03A	2,300	No	137	187	N1	Not COPC
Discrete Sediment (0 - 6 inches, bgs)											
Total Metals											
Antimony	2/2	100%	0.18	0.966	RTR01DA03A	3.1	No	0.6			0.966
Copper	2/2	100%	15.3	79.7	RTR01DA03A	310	No	47.5			79.7
Lead	2/2	100%	15.8	242	RTR01DA03A	400	No	129			129
Zinc	2/2	100%	62.4	74.9	RTR01DA03A	2,300	No	68.7			Not COPC
Soil Pile DU											
Discrete Surface Soil (0 - 12 inches, bgs)											
Total Metals											
Antimony	7/7	100%	2.24	58.5	RTR02DS02A	3.1	Yes	21.4	77.7	G1	58.5
Copper	7/7	100%	76.6	1,740	RTR02DS02A	310	Yes	488	1,754	G1	1,740
Lead	7/7	100%	672	8,980	RTR02DS02A	400	Yes	3,326	9,847	G1	3,326
Zinc	7/7	100%	106	314	RTR02DS02A	2,300	No	181	242	N1	Not COPC
Discrete Subsurface Soil (24 - 36 inches, bgs)											

Prepared for: Army National Guard

AECOM
2-5

								Summary Statistics			
			Minimum	Maximum		Risk-Based Screening	Constituent		95%	95%	Selected Exposure Point
COPC/	Detection	%	Detection	Detection	Maximum Detection	Level (1)	of Potential Concern?	Mean	UCL (2)	UCL	Concentration (3)
Exposure Media	Frequency	Detection	mg/kg	mg/kg	Sample Location	mg/kg	(Yes/No)	mg/kg	mg/kg	Туре	mg/kg
Total Metals											
Antimony	6/6	100%	36.5	1,080	RTR02DS11A	3.1	Yes	254	1,790	G1	1,080
Copper	6/6	100%	675	2,060	RTR02DS10A	310	Yes	1,054	1,502	N2	1,502
Lead	6/6	100%	4,920	57,200	RTR02DS11A	400	Yes	18,933	35,573	N1	18,933
Zinc	6/6	100%	165	443	RTR02DS10A	2,300	No	244	332	N2	Not COPC
Discrete Total Soil (0 - 36 inches, bgs) Total Metals											
Antimony	13/13	100%	2.24	1,080	RTR02DS11A	3.1	Yes	129	934	NP1	934
Copper	13/13	100%	76.6	2,060	RTR02DS10A	310	Yes	749	1,053	N1	1,053
Lead	13/13	100%	672	57,200	RTR02DS11A	400	Yes	10,529	22,825	G1	10,529
Zinc	13/13	100%	106	443	RTR02DS10A	2,300	No	210	256	N1	Not COPC
Firing Point DU											
Discrete Surface Soil (0 - 18 inches, bgs)											
Semi-Volatile Organic Compounds											
Nitroglycerin	9/9	100%	0.002	1.3	RTR03DA03B	0.63	Yes	0.575	0.844	N1	0.844
ISM Surface Soil (0 - 6 inches, bgs)											
Semi-Volatile Organic Compounds											
Nitroglycerin	3/3	100%	3.7	21	RTR03IS03	0.63	Yes	9.7	26.2	N1	21
Background DU											
ISM Surface Soil (0 - 6 inches, bgs) Semi-Volatile Organic Compounds											
Nitroglycerin	3/3	100%	0.38	0.46	RTR04IS01	0.63	No	0.427	0.497	N1	0.46
Total Metals											
Antimony	3/3	100%	0.244	0.682	RTR04IS02	3.1	No	0.517	0.919	N1	0.682
Copper	3/3	100%	10.5	12.7	RTR04IS02	310	No	11.7	13.6	N1	12.7
Lead	3/3	100%	59.2	82.3	RTR04IS03	400	No	74.4	96.7	N1	74.4
Zinc	3/3	100%	23	33.5	RTR04IS02	2,300	No	29.9	40	N1	33.5
French Drain Outfall DU											
Discrete Sediment (0 - 6 inches, bgs)											
Total Metals	40/40	1000	0.002	0.620	DED055505 :	2.1		0.000	0.000	3.74	W . G0DG
Antimony	10/10	100%	0.092	0.638	RTR05DD05A	3.1	No	0.298	0.388	N1	Not COPC
Copper	10/10	100%	6.63	38.7	RTR05DD02A	310	No	22.5	28.3	N1	Not COPC
Lead	11/11	100%	17.6	358	RTR05DD02A	400	No	122	174	N1	Not COPC
Zinc	10/10	100%	34.7	71.1	RTR05DD10A	2,300	No	51.8	58.1	N1	Not COPC

Notes:

-- = Unable to be determined

bgs = below ground surface

DU = Decision Unit

 $ISM = Incremental \ Sampling \ Methodology$

mg/kg = milligrams per kilogram

N/A = Not Available/Applicable

(1) USEPA 2018. Regional Screening Levels (May 2018). Residential RSL was used for soil and sediment that is protective of a target cancer risk of 1E-06 and a target hazard quotient of 0.1.

AECOM 2-6 Prepared for: Army National Guard

								Su	mmary Statis	tics	
			Minimum	Maximum		Risk-Based Screening	Constituent		95%	95%	Selected Exposure Point
COPC/	Detection	%	Detection	Detection	Maximum Detection	Level (1)	of Potential Concern?	Mean	UCL (2)	UCL	Concentration (3)
Exposure Media	Frequency	Detection	mg/kg	mg/kg	Sample Location	mg/kg	(Yes/No)	mg/kg	mg/kg	Type	mg/kg

⁽²⁾ Determined using USEPA's ProUCL 5.1 software (discrete data) and ITRC UCL calculation method (ISM data).

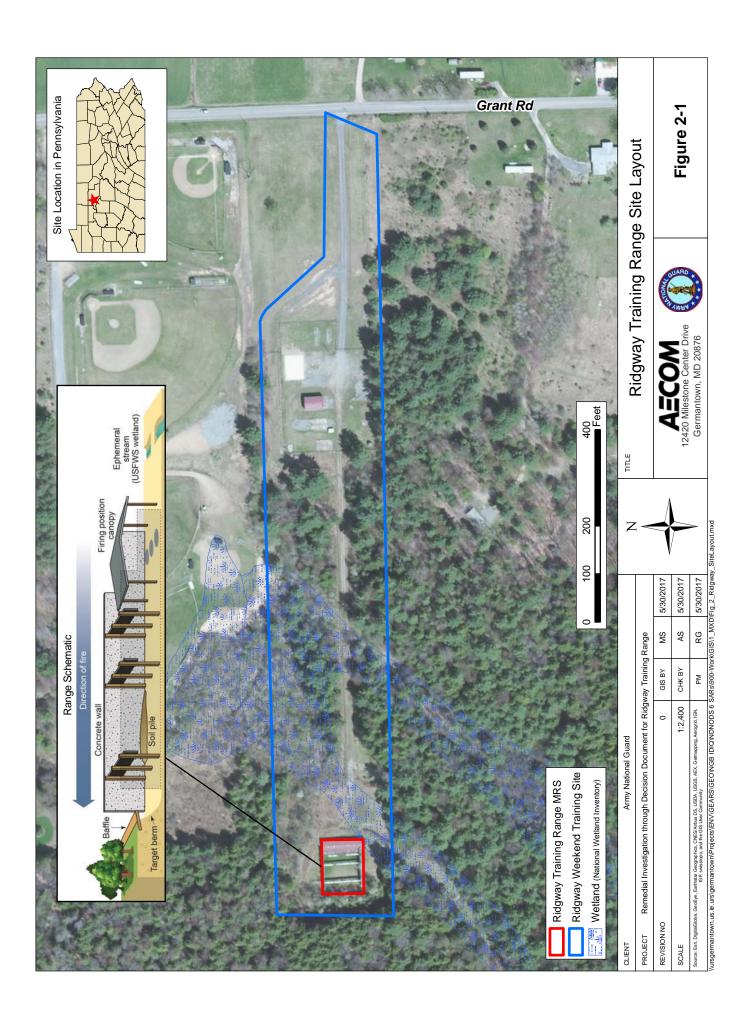
(3) The maximum detection is selected if no 95% UCL is available or if 95% UCL is greater than the maximum detection. For lead, the mean concentration is used.

UCL Type Code:	
Normal	
95% Student's-t UCL	N1
95% Modified-t UCL	N2
Gamma	
95% Adjusted Gamma UCL	G1
Non-parametric	
99% Chebyshev (Mean, Sd) UCL	NP1

AECOM 2-7 Prepared for: Army National Guard

Table 2-2. Background ISM Evaluation

Constituent	Background Reference Area DU ISM Mean Concentration (mg/kg)	Target Berm DU ISM Mean Concentration (mg/kg)	Firing Point DU ISM Mean Concentration (mg/kg)
Antimony	0.517	30.6	NV
Copper	11.7	576	NV
Lead	74.4	6,890	NV
Zinc	29.9	157	NV
Nitroglycerin	0.427		9.7


Notes:

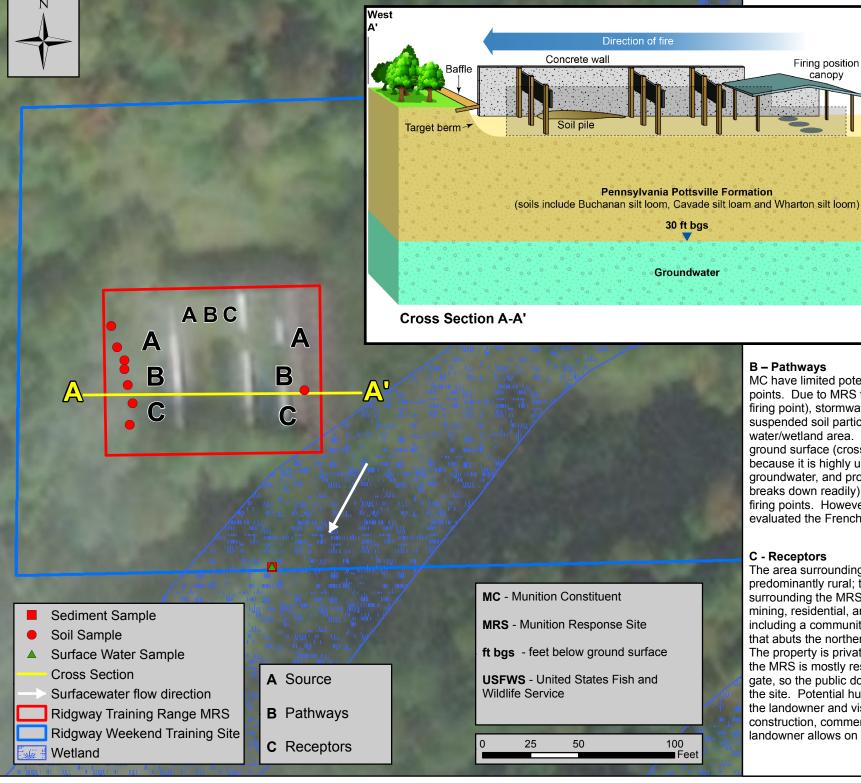

DU = Decision Unit; ISM = incremental sampling methodology; mg/kg = milligrams per kilogram; NV = no value

Table 2-3 identifies the soil COPCs at the MRS. Surface soil (0 to 24 inches bgs) and subsurface soil (24 to 36 inches bgs) data were combined to generate total soil data sets for each DU. Exposure to subsurface soil is most likely to occur during excavation activities when subsurface soil is brought to the surface (e.g., utility line repairs, construction trenches, and land redevelopment). Total soil data consist of biased, discrete soil data only.

Table 2-3. Ridgway Training Range COPCs

Exposure Medium	Target Berm DU	Soil Pile DU	Firing Point DU
Surface Soil, 0 to 24 inches bgs	Antimony	Antimony	
	Copper	Copper	Nitroglycerin
	Lead	Lead	
Total Soil, 0 to 36 inches bgs	Antimony	Antimony	
	Copper	Copper	Not applicable
	Lead	Lead	

Target Berm

A - Sources

Metals MC at the target berm and soil pile as well as nitroglycerin at the firing points as a result of historical small arms training.

Firing Point

MC have limited potential to migrate from soil at the target berm, soil pile, and firing points. Due to MRS topography and range features (e.g., walled-in MRS, covered firing point), stormwater runoff from significant rain events is unlikely to transport suspended soil particles off site via the French drain outfall or to the nearby surface water/wetland area. Groundwater at the MRS is approximately 30 feet below ground surface (cross section A-A'). Groundwater pathways are incomplete because it is highly unlikely for MC to migrate based on soil type, depth to groundwater, and properties of MC (relevant metals do not migrate far, nitroglycerin breaks down readily). MC is anticipated to remain at the target berm, soil pile, and firing points. However, the risk assessments (human and ecological) have also evaluated the French drain outfall and the drainage area near the target berm.

East

Ephemeral

stream

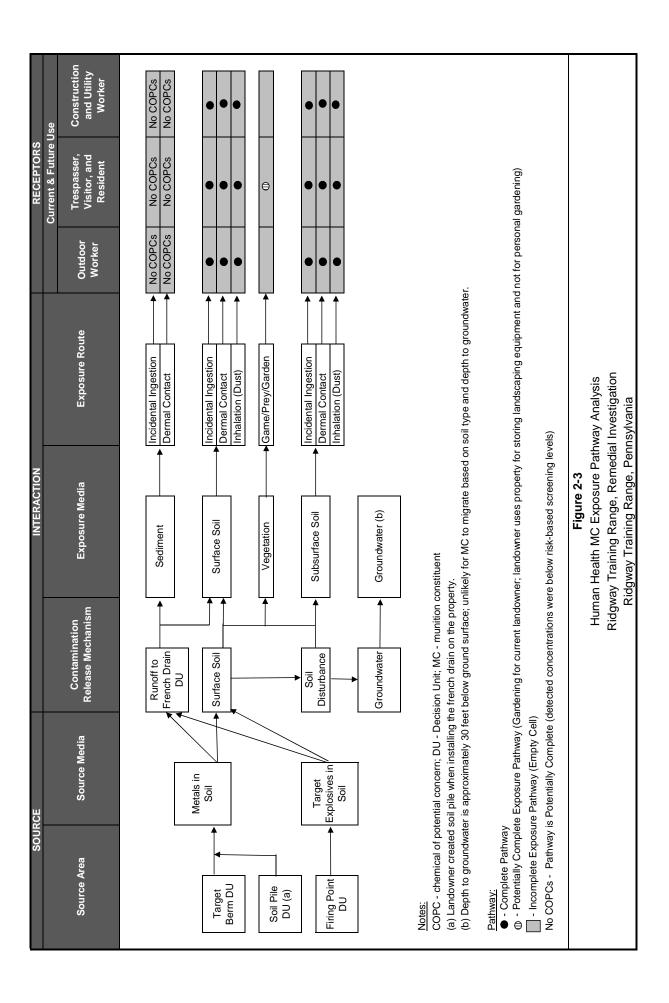
(USFWS wetland)

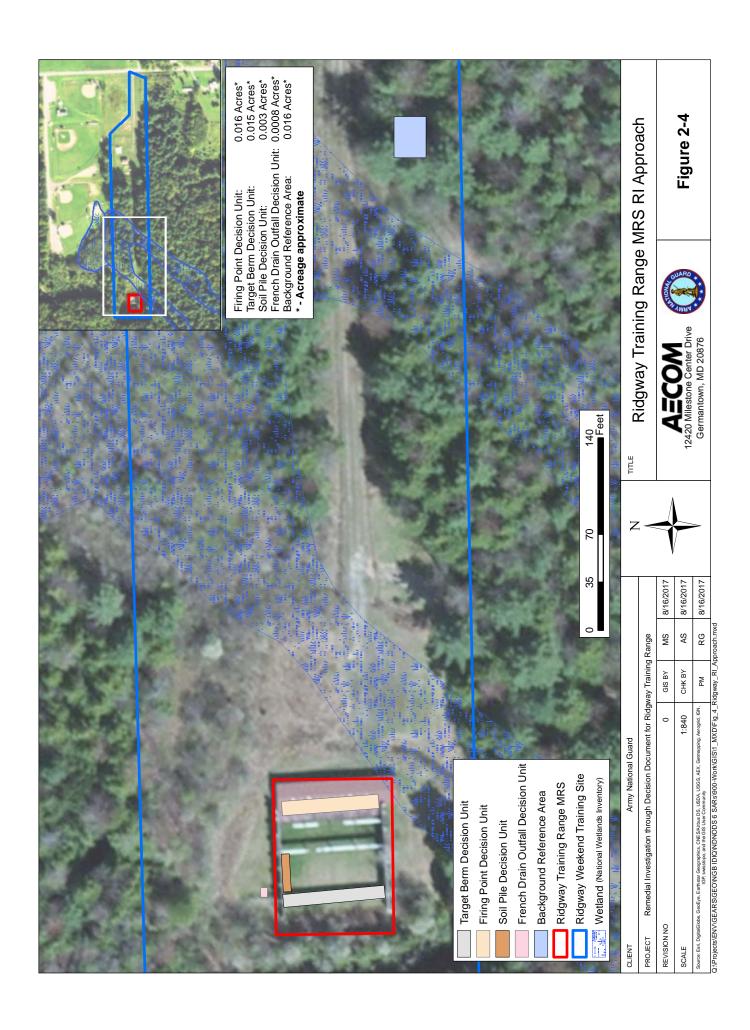
C - Receptors

Firing position

The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural. mining, residential, and recreational land, including a community baseball/athletic field that abuts the northern edge of the property. The property is privately owned. Access to the MRS is mostly restricted via a locked gate, so the public does not have access to the site. Potential human receptors include the landowner and visitors or workers (e.g., construction, commercial/industrial) that the landowner allows on site.

There is no federally-designated critical habitat located within the site. However. habitat supporting ecological receptors is present within the MRS. A tiny portion of a wetland is present within the MRS that could provide habitat for aquatic species. Allegheny National forest borders the western edge of the MRS, with various coniferous trees and some deciduous trees, the most common being birch. Although no federally-designated critical habitat is located within the MRS, there are statelisted endangered species in Pennsylvania. Many of these species will not be found on or near the MRS.




12420 Milestone Center Drive

Germantown, MD 20876

Figure 2-2 **Conceptual Site Model** Ridgway Training Range, Pennsylvania Service Layer Credits: Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS **User Community**

> Date.....November 2018 Prepared by.....AECOM

3 Exposure Assessment

The HHRA addresses two exposure scenario timeframes: current and future. The current scenarios represent exposure to current site conditions; these conditions are assumed to not change in the future (i.e., no land re-development). Receptors are assumed to be exposed to surface soil (0 to 24 inches bgs). The future scenarios are used to address site conditions that have changed due to land re-development. Land re-development results in excavation activities that bring subsurface soil to the surface and the soils are "mixed" together. Future receptors are exposed to total soil (0 to 36 inches bgs).

3.1 Constituent Intake

Exposure is defined as the contact rate (CR) of an organism with a constituent or physical agent. Intake is exposure normalized for time and body weight (BW) and is expressed in units of milligram (mg) constituent/kilogram (kg) body weight-day (EPA 1989). The HHRA generally focuses on potential impacts of long-term (chronic) exposure to contaminants present at the Site. The measure of chronic exposure is the chronic daily intake (CDI). The CDI is calculated for ingestion pathway.

The general equation (USEPA 1989) for calculating CDI is:

Equation 1:

$$CDI = (CS \times CR \times RBA \times EF \times ED)/(BW \times AT)$$

Where:

CDI = chronic daily intake; the amount of constituent at the exchange boundary (mg/kg body weight-day).

Constituent-specific variable

CS = soil concentration; the representative concentration contacted over the exposure period (mg/kg soil).

RBA = relative bioavailability factor (unitless); concentration that becomes available for distribution to internal target tissues and organs.

Variables that describe the exposed population

CR = contact rate; the amount of contaminated medium contacted per unit time or event (mg/day soil).

EF = exposure frequency (days/year); describes how often exposure occurs.

ED = exposure duration (years); describes how long exposure occurs.

BW = body weight; the average body weight (kilograms [kg]) over the exposure period.

Assessment-determined variable

AT = averaging time; period over which exposure is averaged (days).

Metals can exist in a variety of chemical and physical forms in the environment, and not all forms of a given metal are absorbed to the same extent. The RBA is the fraction of an ingested dose that crosses the gastrointestinal epithelium and becomes available for distribution to internal target tissues and organs (USEPA 2007). **Table A3-3 in Attachment 3** presents the RBAs used in the HHRA. For the Ridgway training range, the default RBA of 1 was used for antimony, copper, and nitroglycerin.

For the dermal exposure pathway, a dermally absorbed dose (DAD) is calculated. The generic equation described above is used with additional constituent- and receptor-specific dermal contact parameters to estimate dermal absorption of the constituent through the skin.

The following equation (USEPA 2004) is used:

Equation 2:

$$DAD = (DA-event \times EV \times EF \times ED \times SA)/(BW \times AT)$$

Equation 3:

$$DA\text{-event} = (CS \times CF \times SSAF \times DABS)$$

Where:

DAD = dermally absorbed dose; the amount of constituent at the exchange boundary (mg/kg body weight-day).

Constituent-specific variable

CS = soil concentration; the representative concentration contacted over the exposure period (mg/kg soil).

DABS = constituent-specific dermal absorption fraction (unitless)

Variables that describe the exposed population

DA-event = absorbed dose per event; the amount of contaminated medium contacted per unit time or event (mg/centimeter squared-event [mg/cm²-event]).

EF = exposure frequency (days/year); describes how often exposure occurs.

ED = exposure duration (years); describes how long exposure occurs.

SSAF = soil-to-skin adherence factor (milligrams per square centimeters – event [mg/cm²-event]); amount of soil that adheres to the skin per unit of skin surface area.

SA = skin surface area, soil contact (square centimeters [cm²]); amount of skin exposure to the affected media.

BW = body weight; the average body weight (kg) over the exposure period.

Assessment-determined variable

AT = averaging time; period over which exposure is averaged (days).

USEPA's Office of Research and Development reviewed available experimental data for dermal absorption from contaminated soil and recommended constituent- and class-specific

dermal absorption (DABS) fraction which are summarized in Exhibit 3-4 in the USEPA Risk Assessment Guidance for Superfund (RAGS) Part E guidance (USEPA 2004). The recommendations accounted for the uncertainty associated with different soil types, loading rates, constituent concentrations and other conditions that affect how readily a constituent that is adhered to soil particulates may pass through the skin barrier of a potential receptor. The DABS values used in the HHRA are documented in **Table A3-3 of Attachment 3.**

Consistent with USEPA guidance on inhalation exposure (USEPA 2009), exposure by inhalation is evaluated by calculating an adjusted exposure concentration as follows:

Equation 4:

 $EC = (CA \times ET \times EF \times ED)/AT$

Where:

Constituent-specific variable

EC = exposure concentration (micrograms per cubic meter $[\mu g/m^3]$).

CA = constituent concentration in air $(\mu g/m^3)$.

Variables that describe the exposed population

ET = exposure time (hours/day).

EF = exposure frequency (days/year).

ED = exposure duration (years).

Assessment-determined variable

AT = averaging time (ED in years \times 365 days/year \times 24 hours/day).

The CDI, DAD, and EC equations and exposure parameters that were used for calculating the pathway-specific intakes for each receptor and exposure pathway are provided in **Tables A2-1 through A2-14 in Attachment 2.** Exposure equations and assumptions provided in the Act 2 guidance (PADEP 2002) were used as well as the following USEPA resources: USEPA's standard default exposure parameters (USEPA 2014 and 2015); USEPA's Exposure Factors Handbook (USEPA 2011); USEPA RAGS Human Health Evaluation Manual, Supplemental Guidance for Dermal Risk Assessment (USEPA 2004), and USEPA RAGS Supplemental Guidance for Inhalation Risk Assessment (USEPA 2009). Any site-specific assumptions or values that were used in the calculations are described further below in the exposure scenario descriptions.

3.2 Exposure Scenarios

This section identifies human receptors that may be exposed to site-related human health COPCs in affected media and addresses the potential extent of their exposure under site-specific exposure scenarios. **Figure 2-2** presents the current understanding of the site conditions with respect to known and suspected constituent sources, potential transport mechanisms and migration pathways, and human receptors.

Potential off-site receptors were not identified for the MRS because site access is restricted via a locked gate. However, an on-site trespasser scenario was evaluated in the HHRA to address potential breaches in security. On-site and surrounding area vegetation, the concrete wall, and other structures inhibit windblown particulates from leaving the MRS; also, the inhalation exposure pathways were identified as incomplete because no inhalation toxicity values are available for antimony, copper, and nitroglycerin (PADEP 2018a). Also, sediment COPCs were not identified in the surface water drainage areas of the French Drain and Target Berm DUs where surface water leaves the MRS.

Figure 2-3 identifies the soil exposure pathways that were quantified for each on-site receptor at the MRS. The following on-site receptors were evaluated: outdoor worker, trespasser (teen), visitor (child/adult), hypothetical resident (child/adult), construction worker, and utility worker.

On-Site Outdoor Worker: The on-site outdoor worker spends 180 days per year for 25 years managing and storing landscaping equipment and performing general grounds maintenance at the MRS. This receptor represents the standard default outdoor worker scenario presented in the Act 2 guidance (PADEP 2002). The outdoor worker is assumed to be exposed to surface soil (current) and total soil (future; assuming the land is redeveloped). Soil-related exposure pathways include incidental ingestion, dermal contact, and inhalation of wind-blown particulates from soil. A site-specific particulate emission factor (PEF) of 1.27E+09 cubic meters per kilogram (m³/kg) was used to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway.

On-Site Trespasser: The on-site trespasser is a young teen age 6 to 16 years old that spends 24 days per year for 10 years at the MRS climbing the locked gate or fence while visiting the ball fields nearby. Tables A2-13 and A2-14 in Attachment 2 document the SA (3,749 square centimeters [cm²]) and BW (44 kg) that were calculated using the USEPA (2011) Exposure Factors Handbook for the trespasser. An SSAF of 0.3 mg/cm²-event was used for the dermal contact exposure pathway that is protective of a teenager playing soccer in moist field conditions (USEPA 2004). The on-site trespasser is exposed to surface soil (current) and total soil (future; assuming the land is redeveloped). Soil-related exposure pathways include incidental ingestion, dermal contact, and inhalation of wind-blown particulates from soil. A site-specific PEF of 1.27E+09 m³/kg was used to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway.

On-Site Visitor (Child/Adult/Lifetime): The on-site visitor is assumed to be an adult and a young child (0 to 6 years) that visits the MRS for 75 days per year for 26 years (Oak Ridge National Laboratory [ORNL] 2018). The on-site visitor is likely to be a friend or family member of the landowner that may occasionally help out with the family business or are just visiting. The on-site visitor is assumed to be exposed to surface soil (current) and total soil

Prepared for: Army National Guard AECOM (future; following land re-development). Soil-related exposure pathways include incidental ingestion, dermal contact, and inhalation of wind-blown particulates from soil. A site-specific PEF of 1.27E+09 m³/kg was used to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway. Potential cancer risk and non-cancer hazard estimates are calculated for the child, adult, and lifetime visitor. The lifetime visitor represents the combined child and adult cancer risk estimates that are normalized over a lifetime of exposure (i.e., USEPA default assumption of 70 years), assuming that the child and adult continue to visit the landowner over the course of their lifetime.

On-Site Hypothetical Resident (Child/Adult/Lifetime): The expected future land use of the park is commercial (i.e., landscaping business). However, the inclusion of a hypothetical future resident (i.e., an adult and young child, 0 to 6 years) was used to conservatively evaluate unlimited use and unrestricted exposure (UU/UE) for future risk management decision-making should the land use change. USEPA standard default residential exposure parameters (i.e., 350 days per year for 26 years) were used (USEPA 2014 and 2015). Soil-related exposure pathways include incidental ingestion, dermal contact, and inhalation of wind-blown particulates from soil. A site-specific PEF of 1.27E+09 m³/kg was used to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway. Potential cancer risk and non-cancer hazard estimates are calculated for the child, adult, and lifetime resident. The lifetime resident represents the combined child and adult cancer risk estimates that are normalized over a lifetime of exposure (i.e., USEPA default assumption of 70 years), assuming that the child and adult live at the MRS throughout the course of their lifetime.

On-Site Construction Worker: The construction worker is assumed to be involved in a 3month-long construction project (i.e., exposure frequency of 60 days per year; 5 days per week × 4 weeks/month × 3 months). Soil-related exposure pathways include incidental ingestion, dermal contact, and inhalation of wind-blown particulates from soil. Excavation activities are likely to produce large amounts of fugitive dust while traveling on unpaved roads and transporting soil. A site-specific unpaved road PEF of 1.07E+07 m³/kg was used to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the unpaved road PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway.

On-Site Utility Worker: The utility worker is assumed to be involved short-term excavation activities (e.g., 20 days out of the year to excavate and repair or install a utility line). Soilrelated exposure pathways include incidental ingestion, dermal contact, and inhalation of windblown particulates from soil. For conservatism, the same site-specific unpaved road PEF of 1.07E+07 m³/kg was also used for the utility worker to estimate the wind-blown particulates in outdoor air; Attachment 3 describes the calculation of the unpaved road PEF (USEPA 2002). No volatiles were identified as soil COPCs; therefore the inhalation of vapors emanating from soil is an incomplete exposure pathway.

Prepared for: Army National Guard AECOM

Exposure Point Concentration 3.3

Table 2-1 provides the exposure point concentrations (EPCs) that were derived for each DU; EPCs are the concentrations of COPCs in the affected medium that a receptor may come into contact. USEPA (1989) recommends using the lower of the maximum detected concentration and the 95% upper confidence limit (UCL) of the mean concentration as the EPC in cases where the DU is reasonably defined. For lead, the mean concentration was used as the EPC (USEPA 2018b).

The discrete soil EPCs were derived using USEPA's ProUCL Version 5.1 software, which was developed for USEPA, to test the distribution of the datasets (USEPA 2016a). After testing, the program computes a conservative 95% UCL based on the appropriate distribution of the data. For those datasets that do not fit the normal, lognormal, or gamma distributions, several parametric and distribution-free non-parametric methods are available to calculate an appropriate 95% UCL (e.g., bootstrap methods). The ProUCL Version 5.1 program uses several statistical methods to handle datasets with non-detect (ND) results (USEPA 2016a). Tables A2-15 through A2-18 in Attachment 3 provides the ProUCL output information.

The ISM soil EPCs were derived using the Interstate Technology & Regulatory Council (ITRC) UCL calculation method (ITRC 2012). Three or more ISM samples are needed to calculate a 95% UCL. Because fewer than eight replicate ISM samples are typically collected for a DU, fewer statistical options are available to calculate a UCL compared with the methodology that is used for handling discrete sampling data. The ITRC calculation method calculates two UCLs that accommodate ISM data sets and "bracket" the range of UCLs that may be calculated; the two UCLs are the Student's-t (representing the low end of the range) and Chebyshev (representing the high end of the range). Table A2-19 in Attachment 3 presents the summary statistics and ITRC UCL calculations for the ISM data (ITRC 2012). However, the calculated ITRC UCLs for the Target Berm, Firing Point and Background Reference Area DUs were higher than the maximum detected concentration of the replicate results. Therefore, the maximum detected concentrations were used as the selected EPCs (Table 2-1) (USEPA 1989).

3.4 Lead Evaluation

Attachment 3 presents the exposure parameters used to evaluate lead in soil at the MRS using the Adult Lead Methodology (ALM) model (version dated 14 June 2017) and the IEUBK model (Windows version 1.1, Build 11) (USEPA 2017a and 2010). The goal is to limit the risk to no more than a 5% probability for a fetus of a pregnant female worker (ALM model) or a young child (IEUBK model) to have a PbB that exceeds a target PbB threshold level (USEPA 2010 and 2017a). Two target PbB threshold levels were evaluated in the HHRA: the existing USEPA PbB threshold of 10 µg/dL (USEPA 2010 and 2018a) and the proposed PbB threshold of 5 µg/dL (Centers for Disease Control and Prevention [CDC] 2012 and USEPA 2016b).

The USEPA (2017a) ALM model was used to evaluate potential exposure to lead in soil for the on-site outdoor worker (which is protective of the adult visitor and teen trespasser) and the onsite construction and utility worker. The construction and utility worker scenarios represent short-term exposure scenarios; therefore a "minimum worker scenario" was evaluated using a minimum of 90 days of exposure (i.e., exposure frequency) to predict quasi-steady-state PbB

levels from exposure to soils at the DUs because of the limitations of the ALM model (USEPA 2016c). The IEUBK model results are protective of the hypothetical residential scenario; therefore the adult resident was not evaluated separately using the ALM model.

For the ALM model, USEPA (2017b) recommends using a baseline PbB level of 0.6 µg/dL and a geometric standard deviation PbB of 1.8. Also, central tendency values for soil ingestion rates (IRs) and exposure frequency were used; a central tendency soil IRs of 0.05 grams/day was used for the outdoor worker scenario (USEPA 2011 and 2017a) and a higher central tendency IRs of 0.1 grams/day was used for the construction/utility worker scenario (USEPA 2011) to better represent incidental ingestion of higher levels of dust and soil during excavation activities.

The USEPA IEUBK Model for Lead in Children was used to evaluate soil exposure to the hypothetical child resident (USEPA 2010). The IEUBK model default for the mother's blood lead concentration at childbirth was changed from 1.0 to 0.6 µg Pb/dL (USEPA 2017b). Also, USEPA recommended changing the child age range from 0 to 84 months to 12 to 72 months based on recent scientific data provided from the CDC (USEPA 2017c). The IEUBK model was used to estimate PbB levels for the hypothetical child resident which is also protective of the child visitor scenario.

4 Toxicity Assessment

Risk assessments vary for different constituents depending on whether noncarcinogenic or carcinogenic responses are used to assess potential risks. Some COPCs may result in both noncarcinogenic and carcinogenic effects. Toxicity assessment involves determining whether exposures to a constituent can increase the incidence of a specific adverse effect (e.g., cancer, kidney damage) in humans, characterizing the nature and strength of evidence of causation and, if sufficient data are available, quantifying the relationship between the dose of the constituent and the incidence of adverse health effects in the exposed population. Toxicity assessments provide the basis for evaluating what is acceptable exposure and what level of exposure may adversely affect human health.

4.1 Selection of Toxicity Values

USEPA (2003) recommends using the following hierarchy for selecting toxicity values for the HHRA:

Tier 1 – USEPA's Integrated Risk Information System (IRIS) (USEPA 2018c) – The IRIS program supports protection of human health and the environment by identifying and characterizing the health hazards of constituents found in the environment. Each assessment can cover a constituent, a group of related constituents, or a complex mixture. https://www.epa.gov/iris

Tier 2 – USEPA's Provisional Peer Reviewed Toxicity Values (PPRTVs) (USEPA 2018d) – The Office of Research and Development / National Center for Environmental Assessment / Superfund Health Risk Technical Support Center develops PPRTVs on a constituent-specific basis. https://hhpprtv.ornl.gov/

Tier 3 – Other Toxicity Values – Tier 3 includes additional USEPA and non-USEPA sources of toxicity information. Priority should be given to those sources of information that are the most current, the basis for which is transparent and publicly available, and that have been peer reviewed. Some examples of Tier 3 sources include the following:

- The **PADEP online Land Recycling Program Toxicity Database** (PADEP 2018): http://www.depreportingservices.state.pa.us/ReportServer/Pages/ReportViewer.aspx?/C PP/Toxicity
- Health Effects Assessment Summary Tables (HEAST) dated July 1997 (USEPA 1997). https://epa-heast.ornl.gov/

Dermal toxicity values are not available in USEPA's IRIS database or other USEPA sources. Therefore, USEPA's RAGS Part E dermal guidance was used for estimating dermal exposure to soil (USEPA 2004). USEPA (2004) recommends adjusting oral toxicity values using gastrointestinal absorption factors (GIABS) to evaluate dermal exposure routes for some constituents. Table A3-3 in Attachment 3 presents the GIABS values used in the HHRA. The oral-to-dermal adjustment is not required for constituents where 100 percent (i.e., GIABS=1)

absorption is assumed (USEPA 2004). A cutoff of 50% gastrointestinal absorption is recommended to reflect the intrinsic variability in the analysis of absorption studies. USEPA (2004) recommends using a GIABS of 15% (GIABS=0.15) for antimony, indicating that the metal is poorly absorbed through the skin and gastrointestinal tract. For the other Ridgway training range COPCs, a default GIABS of 100 percent (GIABS=1) was assumed (USEPA 2004). The following equations were used to derive dermal toxicity values for the MRS:

```
Equation 5:
```

```
RfDd = (RfDo \times GIABS)
```

Where:

RfDd = Reference dose, dermal (mg/kg-day)

RfDo = Reference dose, oral (ingestion) (mg/kg-day)

GIABS = Gastrointestinal absorption factor (unitless)

Equation 6:

CSFd = (CSFo/GIABS)

Where:

CSFd = Cancer slope factor, dermal, 1/milligrams per kilogram-day [(mg/kg-day)⁻¹]

CSFo = Cancer slope factor, oral (ingestion) (mg/kg-day)⁻¹

GIABS = Gastrointestinal absorption factor (unitless).

4.2 Noncarcinogenic Health Effects

Evaluation of noncarcinogenic effects is based on the assumption that noncarcinogenic toxicological effects of constituents occur only after a threshold dose is achieved. The reference dose (RfD) was used to evaluate ingestion and dermal exposure pathways. The reference concentration (RfC) was used to evaluate the inhalation pathway and the estimates of the threshold dose (or concentration) at which the most sensitive human population may experience an observed adverse effect for that compound. For the Ridgway training range, the none of the soil COPCs have inhalation RfCs available and so the non-cancer inhalation exposure pathway is incomplete.

USEPA defines a chronic RfD as an estimate of a daily exposure level for the human population that is unlikely to result in deleterious effects during a lifetime (i.e., 70 years). A chronic RfD was used to evaluate the potential noncarcinogenic hazards associated with long-term constituent exposures. Chronic toxicity values were used for all the Ridgway training range receptors even though the construction worker and utility worker scenarios are considered subchronic scenarios (i.e., less than 7 years of exposure) (USEPA 1989). Subchronic toxicity values were not used in this HHRA per direction from Ms. Brie Sterling, human health risk assessment reviewer from PADEP (PADEP 2018b).

Table 4-1 documents the non-cancer toxicity values used in this HHRA.

Table 4-1. Non-Cancer Toxicity Values for Ridgway Training Range

СОРС	RfDo (mg/kg-day)	GIABS (USEPA 2004) (unitless)	RfDd (mg/kg- day)	Primary Target Organ	Combined Uncertainty/ Modifying Factor	Source
Antimony	0.0004	0.15	0.00006	OT	1000	IRIS; USEPA 2018c
Copper	0.0325	1	0.0325	GI	NA	HEAST 1997
Nitroglycerin	0.0001	1	0.0001	HM	300	PPRTV 2018d

COPC = constituent of potential concern; GI = gastrointestinal tract; GIABS = gastrointestinal absorption factor; HEAST = Health Effects Assessment Summary Tables; HM = hematological; IRIS = Integrated Risk Information System; NA = not available; OT = other; PPRTV = Provisional Peer-Reviewed Toxicity Values; RfDo = reference dose, oral; RfDd = reference dose, dermal; USEPA = United States Environmental Protection Agency

The non-cancer toxicity values were cross-checked against the PADEP toxicity database to verify state approval of the values selected from USEPA sources (PADEP 2018b).

4.3 Carcinogenic Health Effects

USEPA (1989) requires that potential carcinogens be evaluated as if minimum threshold doses do not exist. USEPA established a weight-of-evidence approach to evaluate whether a particular constituent is a carcinogen (USEPA 1986). In 2005, USEPA published new guidelines for carcinogenic risk assessment (USEPA 2005). The 2005 guidelines recognize the growing sophistication of research methods; therefore, USEPA is revising the weight-of-evidence classification system. Weighing of the evidence includes addressing both the likelihood of human carcinogenic effects of the agent and the conditions under which such effects may be expressed, to the extent that these are revealed in the toxicological and other biologically important features of the agent. Five standard hazard descriptors are recommended under the 2005 cancer guidance:

- Carcinogenic to Humans
- Likely to be Carcinogenic to Humans
- Suggestive Evidence of Carcinogenic Potential
- Inadequate Information to Assess Carcinogenic Potential
- Not Likely to be Carcinogenic to Humans

The cancer slope factor (CSF) was used to estimate the incremental potential risk from exposure to carcinogenic COPCs. CSFs are developed based on a dose response curve for the carcinogenicity of the specific constituent. In estimating risks posed by potential carcinogens, EPA generally assumes that any exposure level is associated with a finite probability, however minute, of producing a carcinogenic response. This mechanism for carcinogenicity is referred to as non-threshold, because there is theoretically no level of exposure for such a substance that does not pose a small, though finite, probability of producing a carcinogenic response.

The CSF, expressed in units $(mg/kg-day)^{-1}$, is used to convert the CDI or DAD (mg/kg-day) of a constituent from ingestion and dermal exposures, normalized over a lifetime, directly to a potential cancer risk estimate. To evaluate inhalation exposure, the CSF is expressed as an inhalation unit risk (IUR) in units of $(\mu g/m^3)^{-1}$ and is used to convert the adjusted EC in units of $\mu g/m^3$ directly to a potential cancer risk estimate. For the Ridgway training range, none of the soil COPCs have IURs available and so the cancer inhalation exposure pathway is incomplete. Also, only nitroglycerin has carcinogenic toxicity values and is classified as "Likely to be Carcinogenic to Humans" (PPRTV 2018d). The table below presents the oral (ingestion) and dermal cancer toxicity values used for nitroglycerin in the HHRA.

Table 4-2. Cancer Toxicity Values for Ridgway Training Range

COPC	CSFo (mg/kg-day)-1	GIABS (USEPA 2004) (unitless)	CSFd (mg/kg-day) ⁻¹	Weight of Evidence/ Cancer Guideline Description	Source
Nitroglycerin	0.0172	1	0.0172	Likely to be Carcinogenic to Humans	PPRTV 2018d

Notes:

COPC = constituent of potential concern; CSFd = cancer slope factor, dermal; CSFo = cancer slope factor, oral; GIABS = gastrointestinal absorption factor; PPRTV = Provisional Peer-Reviewed Toxicity Values; USEPA = United States Environmental Protection Agency

The cancer toxicity values were cross-checked against the PADEP toxicity database to verify state approval of the values selected from USEPA sources (PADEP 2018b).

5 Risk Characterization

This section integrates the information developed in the exposure assessment and the toxicity assessment into an evaluation of the potential risks associated with exposure to COPCs at each DU. Both the potential cancer risk and non-cancer health hazard were evaluated.

This section also addresses the nature and magnitude of potential human health risks in comparison to state and federal target risk levels for making risk management decisions.

Target Risk Levels 5.1

The Pennsylvania Act 2 regulations have established a target cumulative excess lifetime cancer risk (ELCR) (i.e., from all pathways for a single receptor group) of 1×10⁻⁴ (1E-04) for carcinogenic risks. USEPA (1991b) also states that where the cumulative current or future ELCR to an individual is less than 10^{-4} (one in 10,000), action generally is not warranted unless there are adverse environmental impacts.

Both the Pennsylvania Act 2 regulations and USEPA accept a noncarcinogenic hazard target level, or hazard index (HI), of 1. For non-cancer hazards, potential adverse health effects cannot be ruled out if the target HI is greater than 1 per target organ endpoint. If the total HI for all target organ endpoints combined exceeds 1, constituents are segregated based on the target organ endpoint, and separate target organ-specific HIs are calculated. Only constituents that act on the same target organ are expected to be additive (USEPA 1989).

Lead exposure was evaluated by comparing the estimated PbB to the USEPA's target PbB of 10 μg/dL for the receptor population (USEPA 2016b). The target PbB is based on potentially adverse neurological effects in children (CDC 1991). The CDC Advisory Committee on Childhood Lead Poisoning Prevention has revised its recommended target blood lead level to 5 µg/dL (CDC 2012). At the present time, USEPA has not formally adopted this blood lead level and continues to use a target level of 10 µg/dL. However, a sensitivity analysis was performed as part of the lead evaluation to determine how the lead modeling results would change if a target blood lead level of 5 µg/dL were used.

In addition, the threshold for lead is to limit the risk to no more than a 5% probability for a young child's or a fetus of a pregnant female worker PbB concentration to exceed the target PbB level in the IEUBK and ALM models, respectively (USEPA, 2010). If the probability of 5% is exceeded, then adverse health effects from exposure to lead are possible for the hypothetical child resident or fetus of the adult female worker.

For each exposure scenario (i.e., receptor and DU) with a potential ELCR/HI above USEPA target levels, Constituent of concern (COC) is defined as COPC that causes the cumulative ELCR to exceed 10⁻⁴ (1E-04) and/or the target organ endpoint HI to exceed 1, at one significant figure. Lead is identified as a COC if the target PbB of 10 µg/dL and probability of 5% for the receptor population was exceeded.

The potential risks are only estimates and are based on intentionally conservative exposure and toxicity assumptions. Exceedance of any particular risk level does not imply that adverse health effects have already occurred or will occur. The estimates are an indication that additional evaluation or action may be warranted.

5.2 Carcinogenic Risks

The potential ELCR, which is unitless, represents an estimation of an upper bound incremental lifetime probability that an individual may develop cancer as a result of exposure to a potential carcinogen. The potential ELCR is calculated for each constituent and exposure pathway (ingestion and dermal) by multiplying the estimated CDI by the CSF, as follows:

The potential ELCR is calculated for each constituent and exposure pathway (ingestion and dermal) by multiplying the estimated CDI or DAD by the CSF, as follows:

```
Equation 7:
```

```
ELCR (unitless) = CDI (mg/kg-day) \times CSF (mg/kg-day)<sup>-1</sup>
```

Where:

```
ELCR = Excess lifetime cancer risk (unitless).

CDI = Chronic daily intake (mg/kg-day)

CSFo = Cancer slope factor, oral (ingestion) (mg/kg-day)<sup>-1</sup>
```

Equation 8:

```
ELCR (unitless) = DAD (mg/kg-day) \times CSFd (mg/kg-day)<sup>-1</sup>
```

Where:

```
ELCR = Excess lifetime cancer risk (unitless).

DAD = Dermally absorbed dose (mg/kg-day)

CSFd = Cancer slope factor, dermal (mg/kg-day)<sup>-1</sup>
```

Potential constituent-specific risks for all constituents associated with a specific pathway are summed to assess exposure to multiple constituents. The pathway-specific risks for all pathways are then summed to determine the estimated total cumulative risk for the exposure scenario. The total cumulative risk estimate assumes that different carcinogens affect the same target organ to produce a cancer response, ignoring potential antagonistic or synergistic effects or disparate effects on different target organs.

Table 5-1 summarizes the ELCR and non-cancer HI results for each DU. **Attachment 4** provides the ELCR and non-cancer HI calculations in USEPA (2001) RAGS Part D Table format.

Table 5-1. Risk Results for the Human Health Risk Assessment

			Current	Future	Currer	nt/Future	
			Surface Soil	Total Soil		ace Soil	
		Attachment	Surface Son	Total Bon	Suite	Non-	Non-cancer
		4 Table	Non-Cancer	Non-		Cancer	Hazard
Decision Unit	Receptor	Reference	Hazard	Cancer HI	ELCR	Hazard	Driver
Target Berm	Child Visitor	7-1, 7-9	0.4	0.5	NA	NA	
Target Berm	Adult Visitor	7-2, 7-10	0.04	0.05	NA	NA	
Target Berm	Teen Trespasser	7-3, 7-11	0.03	0.04	NA	NA	
Target Berm	Outdoor Worker	7-4, 7-12	0.05	0.07	NA	NA	
Target Berm	Utility Worker	7-5, 7-13	0.03	0.04	NA	NA	
Target Berm	Construction Worker	7-6, 7-14	0.1	0.1	NA	NA	
Target Berm	Child Resident	7-7, 7-15	2	2	NA	NA	antimony
Target Berm	Adult Resident	7-8, 7-16	0.2	0.2	NA	NA	
Soil Pile	Child Visitor	7-17, 7-25	0.6	8	NA	NA	antimony
Soil Pile	Adult Visitor	7-18, 7-26	0.06	0.8	NA	NA	
Soil Pile	Teen Trespasser	7-19, 7-27	0.05	0.6	NA	NA	
Soil Pile	Outdoor Worker	7-20, 7-28	0.09	1	NA	NA	
Soil Pile	Utility Worker	7-21, 7-29	0.05	0.6	NA	NA	
	Construction						
Soil Pile	Worker	7-22, 7-30	0.2	2	NA	NA	antimony
Soil Pile	Child Resident	7-23, 7-31	3	35	NA	NA	antimony
Soil Pile	Adult Resident	7-24, 7-32	0.3	4	NA	NA	antimony
Firing Point	Child Visitor	7-33	NA	NA	1E-07	0.7	
Firing Point	Adult Visitor	7-34	NA	NA	4E-08	0.08	
Firing Point	Lifetime Visitor	7-35	NA	NA	1E-07	NA	
Firing Point	Teen Trespasser	7-36	NA	NA	2E-08	0.07	
Firing Point	Outdoor Worker	7-37	NA	NA	7E-08	0.1	
Firing Point	Utility Worker Construction	7-38	NA	NA	1E-09	0.06	
Firing Point	Worker	7-39	NA	NA	5E-09	0.2	
Timg Tome	,, orker	, 35	1111	1111	32 07	0.2	nitroglycer
Firing Point	Child Resident	7-40	NA	NA	5E-07	3	in
Firing Point	Adult Resident	7-41	NA	NA	2E-07	0.4	
	Lifetime						
Firing Point	Resident	7-42	NA	NA	7E-07	NA	
Background	Child Visitor	7-43	NA	NA	2E-09	0.02	
Background	Adult Visitor	7-44	NA	NA	8E-10	0.002	
Background	Lifetime Visitor	7-45	NA	NA	3E-09	NA	
Background	Teen Trespasser	7-46	NA	NA	4E-10	0.002	
Background	Outdoor Worker	7-47	NA	NA	2E-09	0.004	
Background	Utility Worker Construction	7-48	NA	NA	3E-11	0.002	
Background	Worker	7-49	NA	NA	1E-10	0.006	
Background	Child Resident	7-50	NA	NA	1E-08	0.1	
Background	Adult Resident	7-51	NA	NA	4E-09	0.01	
	Lifetime						
Background	Resident	7-52	NA	NA	1E-08	NA	

Prepared for: Army National Guard

			Current Surface Soil	Future Total Soil		nt/Future ace Soil	
	_	Attachment 4 Table	Non-Cancer	Non-		Non- Cancer	Non-cancer Hazard
Decision Unit	Receptor	Reference	Hazard	Cancer HI	ELCR	Hazard	Driver
Target Berm	Child Visitor	7-1 7-9	0.4	0.5	NA	NA	

NA = not applicable

Red Bold Value indicates an exceedance of the target cumulative threshold.

The potential ELCR results are all below the target cumulative ELCR of 1×10^{-4} (1E-04) for carcinogenic risks. Exposure to nitroglycerin in soil is not likely to cause adverse health effects to human receptors at the MRS.

5.3 Noncarcinogenic Risks

To characterize potential noncarcinogenic effects, comparisons were made between projected intakes of substances over a specified time period and toxicity values, primarily RfDs and RfCs. The ratio of exposure to toxicity value is the hazard quotient (HQ). The HQ is calculated for each constituent and exposure pathway (ingestion and dermal) by dividing the CDI by the RfD as follows:

Equation 9:

Non-Cancer HQ (unitless) = CDI (mg/kg-day)/RfDo (mg/kg-day)

Where:

Non-Cancer HQ = Constituent-specific non-cancer hazard quotient (unitless).

CDI = chronic daily intake (mg/kg-day)

RfDo = Reference dose, oral (ingestion) (mg/kg-day)

Equation 10:

Non-Cancer HQ (unitless) = DAD (mg/kg-day)/RfDd (mg/kg-day)

Where:

Non-Cancer HQ = Constituent-specific non-cancer hazard quotient (unitless).

DAD = Dermally absorbed dose (mg/kg-day)

RfDd = Reference dose, dermal (mg/kg-day)

Estimated HQs for noncarcinogenic effects are generated on a constituent-by-constituent basis for each relevant pathway of exposure. The constituent-specific HQs are summed for all constituents associated with a specific pathway to determine the pathway-specific HI. The

pathway-specific HIs are then summed to determine the total cumulative non-cancer HI for the exposure scenario.

The HQ is not a statistical probability of a noncarcinogenic effect occurring. If the exposure level is less than the appropriate toxicity value (i.e., the HQ is less than 1), adverse health effects are not likely, even with a lifetime of exposure. Given the uncertainty of factors used in deriving RfDs and RfCs, a HQ greater than 1 may not indicate a higher risk of adverse effect than a HQ of 1 or less. If the cumulative HI for an exposure scenario is greater than 1, the HI is segregated by critical effect and mechanism of action (USEPA 1989). HQs for constituents that affect the same target organ endpoint are summed to derive target organ-specific HIs.

The non-cancer hazard calculations are provided in **Attachment 4** in USEPA RAGS Part D Tables 7 and 9 format (USEPA 2001). **Table 5-1** summarizes the potential non-cancer hazard results for each DU. **Table 5-2** summarizes the non-cancer hazard drivers for the MRS.

				Non-	
Decision		Scenario	Exposure	Cancer	
Unit	Receptor	Timeframe	Medium	HI	Risk Driver
Target	Hypothetical	Current	Surface Soil	2	Antimony
Berm	Child Resident	Future	Total Soil	2	Antimony
	Child Visitor	Future	Total Soil	8	Antimony
	Construction Worker	Future	Total Soil	8	Antimony
Soil Pile	Hypothetical	Current	Surface Soil	3	Antimony
	Child Resident	Future	Total Soil	35	Antimony
	Hypothetical Adult Resident	Future	Total Soil	4	Antimony
Firing Point	Hypothetical Child Resident	Current/Future	Surface Soil	3	Nitroglycerin

Table 5-2. Non-Cancer Risk Drivers for Ridgway Training Range

The non-cancer HIs for the Target Berm DU and Soil Pile DU are attributed to incidental ingestion and dermal contact with nitrogen in soil. The landowner is currently using the property as a staging area for equipment associated with a private landscaping company. The hypothetical resident may not be considered a reasonable exposure scenario. The construction worker and child visitor at the Soil Pile DU have non-cancer HIs from exposure to total soil that are above the Act 2 and USEPA target HI threshold of 1. Discrete sample concentrations of antimony in the Soil Pile DU subsurface soil (24 to 36 inches bgs) range from 36.5 mg/kg to 1,080 mg/kg which are higher than the range of concentrations in the surface soil (0 to 24 inches bgs) at 2.24 mg/kg to 58.5 mg/kg (**Table 2-1**); subsurface soil concentrations are driving the risk at the Soil Pile DU. For the Firing Point DU, incidental ingestion of nitroglycerin in surface soil is driving the non-cancer hazard results for the hypothetical child resident. Again the current and future land use is commercial; the hypothetical child resident at the Firing Point DU may not be considered a reasonable exposure scenario.

Non-cancer HI results were also calculated for the Background Reference Area DU for comparison purposes; metals may be present in soil due to minerals (rocks) that break down and release metals into the soil. As shown in **Table 5-1**, the Background Reference Area DU results are an order of magnitude or more lower than the site-related DUs. Background ISM mean concentration comparison (**Table 2-2**) also indicates that metals present in soil at the Target Berm and Soil Pile DUs are likely site-related COPCs.

Antimony is identified as a total soil COC for the child visitor and construction worker scenarios at the Soil Pile DU. If the future land use change should change to residential, antimony is identified as a surface soil and total soil COC for the hypothetical resident at the Target Berm and Soil Pile DUs. If the future land use should change to residential, nitroglycerin is identified as a surface soil COC for the hypothetical child resident at the Firing Point DU.

5.4 Lead Modeling Results

The ALM modeling results are presented in **Tables 5-3 and 5-4** for the on-site outdoor worker and construction/utility worker scenarios, respectively. The ALM model results for the outdoor worker are considered protective of the adult site visitor scenario. **Table 5-5** presents the IEUBK modeling results for the hypothetical child resident; the IEUBK model results are considered protective and representative of the hypothetical child and adult resident scenarios.

For the on-site outdoor worker scenarios, the Target Berm and Soil Pile DU surface soil and total soil results exceed the 5% probability to limit the risk to no more than a 5% probability for a fetus PbB of a pregnant female worker PbB to exceed the target PbB level; As shown in **Table 5-3**, the fetal PbBs also exceed the target PbB thresholds of $5 \mu g/dL$ and $10 \mu g/dL$.

For the construction/utility worker scenarios, the 5% probability threshold is exceeded for the Target Berm DU ISM surface soil and Soil Pile DU discrete total soil when a target PbB threshold of $10~\mu g/dL$ is assumed; the fetal PbBs also exceed the $10~\mu g/dL$ target PbB threshold. When a target PbB threshold of $5~\mu g/dL$ is assumed, the surface soil and total soil results for the Target Berm and Soil Pile DUs exceed the target thresholds (5% probability and fetal PbB concentrations).

For the hypothetical child resident, the IEUBK model results exceeded the 5% probability threshold in all cases when the target PbB threshold of 10 $\mu g/dL$ was assumed. The IEUBK model was not run using the target PbB threshold of 5 $\mu g/dL$ due to the high probability percentage results when the 10 ug/dL PbB threshold was used.

Assuming a $10 \,\mu\text{g/dL}$ PbB threshold, lead is identified as a surface soil and total soil COC for the outdoor worker at the Target Berm and Soil Pile DUs. Lead is also a surface soil COC at the Target Berm DU and a total soil COC for the Soil Pile DU for the construction/utility workers. However, if a $5 \,\mu\text{g/dL}$ PbB threshold is assumed for the construction/utility worker evaluation, lead becomes a surface soil and total soil COC for both DUs. The 2017 release of the ALM model lists $5 \,\mu\text{g/dL}$ as the model default target PbB level of concern (USEPA 2017a).

Table 5-3. Adult Lead Methodology Results for the On-Site Outdoor Worker Scenario

		On-Site (On-Site Outdoor Worker Scenario, ALM Model Results	io, ALM Model Resu	ılts		
Position I Little Constitution	Lead Mean	PbB _{adult} PbB of adult	PbB _{fetal, 0.95} 95th percentile PbB	Probability %		Probability %	5 µg/dL
Decision Cintexposure Point	EPC mg/kg	worker, geometric mean μg/dL	among fetuses of adult workers µg/dL	Target PbB Threshold, 10 µg/dL	Constituent of Concern? (Yes/No)	Target PbB Threshold, 5 µg/dL	Constituent of Concern? (Yes/No)
Target Berm DU, Surface Soil, Discrete	5,347	6.9	16	21%	Yes	%59	Yes
Target Berm DU, Surface Soil, ISM	068'9	8.8	21	34%	Yes	78%	Yes
Target Berm DU, Total Soil, Discrete	4,957	6.5	15	18%	Yes	%09	Yes
Soil Pile DU, Surface Soil, Discrete	3,326	4.5	11	%9	Yes	37%	Yes
Soil Pile DU, Total Soil, Discrete	10,529	13	31	61%	Yes	93%	Yes
Background DU, Surface Soil, ISM	74.4	0.7	1.6	0.0001%	No	0.02%	No

Zotes:

ALM = Adult Lead Methodology; DU = Decision Unit; EPC = exposure point concentration; ug/dL = micrograms per deciliter; mg/kg milligrams per kilogram; PbB = lead blood concentration

Red bold value = PbB concentration exceeds target PbB threshold

Yes = Probability percent (%) exceeds 5% at the target PbB threshold; No = probability percent (%) equals or is below 5% at the target PbB threshold.

Table 5-4. Adult Lead Methodology Results for the On-Site Construction/Utility Worker Scenario

	iS-nO	ite Construction/Utilit	ite Construction/Utility Worker Scenario, ALM Model Results	M Model Results			
	Lead	PbBadult	PbB _{fetal, 0.95}	Probability %	$10 \mu g/dL$	Probability %	2 μg/dL
Decision Unit/Exposure Point	Mean EPC	PbB of adult worker, geometric mean	95th percentile PbB among fetuses of adult workers	Target PbB Threshold, 10	Constituent of Concern?	Target PbB Threshold, 5	Constituent of Concern?
	mg/kg	ηg/dL	μg/dL	µg/aL	(YeS/INO)	mg/ar	(Yes/No)
Target Berm DU, Surface Soil, Discrete	5,347	4.3	10	2%	No	33%	Yes
Target Berm DU, Surface Soil, ISM	068'9	5	12.6	11%	Yes	47%	Yes
Target Berm DU, Total Soil, Discrete	4,957	4	9.5	4%	No	73%	Yes
Soil Pile DU, Surface Soil, Discrete	3,326	2.9	6.8	1%	No	13%	Yes
Soil Pile DU, Total Soil, Discrete	10,529	7.8	18.5	28%	Yes	72%	Yes
Background DU, Surface Soil, ISM	74.4	0.7	1.5	0.0001%	No	0.01%	No

Notes:

ALM = Adult Lead Methodology; DU = Decision Unit; EPC = exposure point concentration; ug/dL = micrograms per deciliter; mg/kg milligrams per kilogram; PbB = lead blood concentration

Red bold value = PbB concentration exceeds target PbB threshold.

Yes = Probability percent (%) exceeds 5% at the target PbB threshold; No = probability percent (%) equals or is below 5% at the target PbB threshold.

Table 5-5. Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for the Hypothetical Child Resident

	Lead Mean EPC	Target PbB Threshold 10 µg/dL	Target PbB Threshold 5 µg/dL	Constituent of Concern
Decision Unit/Exposure Point	(mg/kg)	Probability %	Probabilty %	(Yes/No)
Target Berm DU, Discrete SS	5,347	98.50%	No run	Yes
Target Berm DU, ISM SS	6,890	99%	No run	Yes
Target Berm DU, Discrete TS	4,957	98%	No run	Yes
Soil Pile DU, Discrete SS	3,326	93%	No run	Yes
Soil Pile DU, Discrete TS	10,529	100%	No run	Yes

 $DU = decision\ unit;\ EPC = exposure\ point\ concentration;\ IEUBK = Integrated\ Exposure\ Uptake\ Biokinetic;\ ug/dL = micrograms\ per\ deciliter;\ mg/kg = milligrams\ per\ kilogram;\ PbB = lead\ blood\ concentration;$ $\underline{\textbf{Yes}} = Probability\ percent\ (\%)\ exceeds\ 5\%\ at\ the\ target\ PbB\ threshold;$

No = probability percent (%) equals or is below 5% at the target PbB threshold.

6 Uncertainty Assessment

Uncertainties are inherent in every aspect of a quantitative risk assessment. Certain assumptions are made as part of the risk assessment process, and these assumptions may lead to an over- or underestimation of the actual risks associated with the Site. The assumptions made for this HHRA were conservative, so that an overestimation of the actual risks posed by MRS conditions is more likely.

This section provides information about the key assumptions, their inherent uncertainty and variability, and the impact of this uncertainty and variability on the estimates of potential risk.

6.1 Site Characterization Uncertainties

Source of Uncertainty: Unbiased ISM samples were collected for surface soil at the Target Berm and Background Reference Area DUs in a manner that is representative of exposure at the MRS. However biased discrete soil samples were collected at the Soil Pile and Firing Point DUs.

Effect on Risk/Hazard Estimates: Representative (ISM); Overestimate (Discrete). **Potential Magnitude**: Low.

Rationale for Assumptions: Unbiased ISM samples tend to provide better data to derive representative EPCs for evaluating ELCR and/or non-cancer hazards because the data are a composite of randomly collected samples within an area and provide a representative concentration. The discrete samples were collected where contamination was suspected at the MRS and included step out sampling to better define the horizontal extent of contamination. Generally, the ISM results were more consistent but lower than the maximum discrete samples. To reduce the level of uncertainty with the data, the HHRA evaluated both ISM and discrete surface soil data. Attachment 5 contains the discrete surface soil risk results to support the uncertainty evaluation; the results are summarized in Table 6-1.

Table 6-1. Surface Soil Risk Results Using Discrete EPCs

		Current Surface Soil	Future Total Soil		t/Future ce Soil
			Non-		Non-
Decision		Non-Cancer	Cancer	Cancer	Cancer
Unit	Receptor	Hazard	Hazard	Risk	Hazard
Target Berm	Child Visitor	0.6			
Target Berm	Adult Visitor	0.06			
Target Berm	Teen Trespasser	0.05			
Target Berm	Outdoor Worker	0.09			
Target Berm	Utility Worker	0.05			
	Construction				
Target Berm	Worker	0.2			
Target Berm	Child Resident	3			
Target Berm	Adult Resident	0.3			
Firing Point	Child Visitor			4.00E-09	0.03
Firing Point	Adult Visitor			2.00E-09	0.003

		Current Surface Soil	Future Total Soil		t/Future ce Soil
Decision Unit	Receptor	Non-Cancer Hazard	Non- Cancer Hazard	Cancer Risk	Non- Cancer Hazard
Firing Point	Lifetime Visitor			6.00E-09	
Firing Point	Teen Trespasser			7.00E-10	0.003
Firing Point	Outdoor Worker			3.00E-09	0.005
Firing Point	Utility Worker			6.00E-11	0.002
	Construction				
Firing Point	Worker			2.00E-10	0.008
Firing Point	Child Resident			2.00E-08	0.1
Firing Point	Adult Resident			7.00E-09	0.01
Firing Point	Lifetime Resident			3.00E-08	

The ISM surface soil results in **Table 5-1** also identified antimony as a COC for the hypothetical child resident at the Target Berm DU (i.e., non-cancer HI exceeded 1). The discrete surface soil results did not identify nitroglycerin as a COC for the child resident at the Firing Point DU. Maximum detected concentration of 21 mg/kg from the ISM replicates was used to estimate surface soil exposure; range of surface soil detections differ for the discrete (0.002 mg/kg to 1.3 mg/kg) and ISM (3.7 mg/kg to 21 mg/kg) data sets. It is unknown if the non-cancer hazards are under- or overestimated.

Source of Uncertainty: If the analytical methods used do not apply to some constituents that are present at the site, risk could be underestimated.

Effect on Risk/Hazard Estimates: Underestimate.

Potential Magnitude: Low.

Rationale for Assumptions: The RI field investigation was designed to address potential MC exposure from historical site-related DoD activities at the MRS. Laboratory analytical methods were specifically selected to evaluate the soil and sediment media for small arms MC constituents. The level of uncertainty is reduced due to the selected methods and quality assurance/quality control procedures that were used to assess the precision and accuracy of analytical data (AECOM 2018).

Source of Uncertainty: The range has been used with homemade munitions, distinct from historic use, which were fired into a trap. However, this use has stopped and will not occur again until this project concludes. Also, to improve drainage at the MRS, the landowner installed a French drain parallel to the berm, and in doing so moved soil from the Target Berm to a pile near the north side wall.

Effect on Risk/Hazard Estimates: Under- or Overestimate.

Potential Magnitude: Unknown.

Rationale for Assumptions: It is unknown how much contamination is attributed to DoD activities or to private use of the range by the current landowner. The French drain installation has potentially impacted the distribution of MC (e.g., soil pile) at the site. The land owner has ceased using the range for the duration of the investigation. It is unknown how these activities have affected of level and distribution of contamination; However, RI field activities have characterized the horizontal and vertical extent of contamination, thus reducing the level of uncertainty.

Source of Uncertainty: Handling of duplicate data in the HHRA data set.

Effect on Risk Hazard Estimates: Representative

Magnitude: Low

Rationale: Primary and duplicate samples were compared for representativeness prior to use in the HHRA. This resulted in some primary/duplicate pairs being averaged or kept independent. The RPD evaluation (**Section 2.4 and Table A1-4 in Attachment 1**) strengthened the EPC calculations for the HHRA; the level of uncertainty associated with the quality of the data used to derive EPCs was reduced.

Source of Uncertainty: Maximum detected concentrations and generic screening levels were used to identify COPCs for the Ridgway training range.

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Moderate.

Rationale for Assumptions: PADEP (2002) and USEPA (1989, 2017a) guidance recommends using conservative generic screening levels and maximum detected concentrations for COPC screening. Although the MRS is likely to remain commercial into the future, residential screening levels were used to identify COPCs to be protective of the private, and potentially public use, of the property. Also, the limits of detection were selected to be protective of risk-based screening levels where possible; the laboratory was better able to detect potential concentrations of constituents that may be COPCs at the site.

6.2 Exposure Assessment Uncertainties

Source of Uncertainty: USEPA (1989) recommends using the lower of the 95% UCL of the mean concentration and the maximum detected concentration as the EPC. For the ISM surface soil, maximum detected concentrations were used as the EPCs because they were lower than the calculated UCLs. Also, maximum detected concentrations were used for the Soil Pile DU surface soil risk calculations. The mean concentration was used as the EPC for lead.

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Low.

Rationale for Assumptions: Surface soil risk calculations were conducted for the Target Berm DU ISM (maximum detections used for EPCs) and discrete (UCLs used for EPCs) data; the risk conclusions were similar for both data sets. Therefore the level of uncertainty is reduced for the Target Berm DU risk results. ISM data were not collected at the Soil Pile DU. It is unknown if the surface soil results at the Soil Pile DU are overestimated from using biased discrete maximum detected concentrations as the EPCs. Table 2-1 indicates that the subsurface soil (24 to 36 inches bgs) concentrations for antimony and copper at the Soil Pile DU are higher than the surface soil (0 to 12 inches bgs) concentrations. The total soil risk calculations were derived using UCLs and so the total soil evaluation is likely to be more representative, assuming the Soil Pile DU is disturbed in the future.

Source of Uncertainty: Modeled concentrations were used to estimate concentrations in outdoor air and PbBs. Generally, a higher level of uncertainty is associated with the modeled concentrations rather than the use of measured concentrations.

Effect on Risk/Hazard Estimates: Under- or overestimate.

Potential Magnitude: Low.

Rationale for Assumptions: Conservative model assumptions were used to estimate outdoor air concentrations using site-specific PEFs and PbBs using the ALM and IEUBK lead models. Conservative modeling parameters tend to reduce the likelihood of underestimating the ELCR/non-cancer hazard results as well as receptor PbBs. The risk drivers identified in Table 5-1 and 6-1 are attributed to the incidental ingestion and dermal contact with soil exposure pathways; inhalation toxicity values were not available for the soil COPCs, so the inhalation of soil particulates in outdoor air exposure pathway was incomplete. Lead was identified as a soil COC for the outdoor worker, construction/utility worker and the hypothetical resident. However, the hypothetical resident is not a likely scenario; future land use is likely to remain commercial.

Source of Uncertainty: Conservative exposure parameters were used to estimate exposure to the potential human receptors at the MRS.

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Moderate.

Rationale for Assumptions: Conservative PADEP (2002) and USEPA (2014 and 2015) default exposure parameters were used to estimate exposure to human receptors at the MRS. The site is used as a staging area for landscaping equipment.

6.3 Toxicity Assessment Uncertainties

Source of Uncertainty: USEPA cancer slope factors are considered to be plausible upper bounds of risk at a 95% confidence limit. Therefore, there is a 95% probability that the true cancer risks do not exceed these levels, and that the estimated cancer risks are likely to be much lower (USEPA 2018b).

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Moderate.

Rationale for Assumptions: Cancer guidelines state that the use of linearized multistage models and upper bound risk estimates are appropriate, but the lower limit of risk may be as low as zero (USEPA 2018c).

Source of Uncertainty: Reference doses are frequently derived from animal studies that have little quantitative bearing on potential adverse health effects in humans.

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Moderate.

Rationale for Assumptions: Since the fate and mechanism of action of a constituent may differ in animals and humans, the effects observed in animals may not be observed in humans, resulting in an overestimation of potential adverse health effects.

Source of Uncertainty: Provisional toxicity data (e.g., PPRTV and HEAST toxicity values) were used to estimate cancer risk and/or non-cancer hazards for copper and nitroglycerin.

Effect on Risk/Hazard Estimates: Under- or overestimate.

Potential Magnitude: Unknown.

Rationale for Assumptions: Provisional toxicity values are still undergoing intensive scientific review and have not been verified by IRIS (USEPA 2018c). It is unknown if the ELCR and/or non-cancer hazards are under- or overestimated. Copper was not identified as a COC, but nitroglycerin was identified as a non-cancer COC for the hypothetical child resident at the Firing Point DU.

Source of Uncertainty: Chronic toxicity data were used to calculate non-cancer hazards for the construction worker scenario, which is a subchronic exposure scenario (3 months of exposure).

Effect on Risk/Hazard Estimates: Overestimate.

Potential Magnitude: Low.

Rationale for Assumptions: The non-cancer hazard results are likely overestimated. However, chronic toxicity data were used for construction worker and utility worker evaluations per direction from PADEP (PADEP 2018b).

6.4 Risk Characterization Uncertainties

Source of Uncertainty: Risk characterization uncertainties include possible synergistic or antagonistic effects of exposure to multiple constituents and applicability of cancer risk estimation methodology to less than lifetime exposure durations.

Effect on Risk/Hazard Estimates: Under- or overestimate.

Potential Magnitude: Low.

Rationale for Assumptions: These uncertainties are generic to the risk assessment process and not specific to the Ridgway training range.

7 Conclusions and Recommendations

The HHRA has fulfilled the objective discussed in Section 1.0, which was to evaluate whether COPCs attributable to past site activities have the potential to cause adverse health effects to human receptors within the area under investigation. Results of the HHRA may be used to develop risk management options for each DU, including possible further actions to address impacted soils sediment where needed. The results are summarized below.

- Risk-based screening results identified antimony, copper, lead, and nitroglycerin as soil COPCs. Zinc was eliminated from further evaluation. ISM surface soil comparison of the Target Berm and Firing Point DU ISM data with the Background Reference Area DU surface soil ISM data indicated that surface soil COPCs are likely site-related. Sediment at the Target Berm and French Drain Outfall DUs was eliminated from further evaluation (i.e., no COPCs).
- Potential off-site receptors were not identified for the MRS because site access is restricted via a locked gate; constituents are not likely to affect groundwater due to its depth (30 feet bgs); and no COPCs were identified in sediment from the French Drain and Target Berm drainage areas that flow off-site.
- Cancer risk and non-cancer hazard calculations were conducted for the soil exposure
 medium. USEPAALM and IEUBK models were used to evaluate lead in soil. Soil exposure
 was evaluated for the following on-site receptors: outdoor worker, teen trespasser, child and
 adult visitor, child and adult hypothetical resident, construction worker, and utility worker.

Table 7-1 identifies the HHRA soil COCs.

Table 7-1. Human Health Risk Assessment Soil COCs

Receptor	Exposure Medium	Constituent of Concern
Target Berm DU		
Child Visitor	Surface Soil	Lead (a, b)
Cilia visitoi	Total Soil	Lead (a, b)
Outdoor Worker	Surface Soil	Lead (b)
Outdoor worker	Total Soil	Lead (b)
Construction/Utility Worker	Surface Soil	Lead (b, c)
	Surface Soil	Antimony
Hypothetical Child	Surface Soff	Lead (b)
Resident	Total Soil	Antimony
	Total Soli	Lead (b)
Soil Pile DU		
	Surface Soil	Lead (a, b)
Child Visitor	Total Soil	Antimony
	10(a) 5011	Lead (a, b)
Construction Worker (c)	Total Soil	Antimony
Construction worker	10(a) 50()	Lead (b, c)
Utility Worker (c)	Total Soil	Lead (b, c)
Outdoor Worker	Surface Soil	Lead (b)

Receptor	Exposure Medium	Constituent of Concern
	Total Soil	Lead (b)
Hypothetical Child	Surface Soil	Antimony Lead ^(b)
Resident	Total Soil	Antimony Lead ^(b)
Hypothetical Adult Resident	Total Soil	Antimony
Firing Point DU		
Hypothetical Child Resident	Surface Soil	Nitroglycerin

- (a) IEUBK model results for the hypothetical child resident were used to be protective of the child visitor and hypothetical adult resident (lifetime exposure) at the MRS.
- (b) Lead modeling results are based on target PbB threshold of $10 \mu g/dL$.
- (c) If a target PbB threshold of 5 μ g/dL was used, then lead would be identified as a surface soil and total soil COC for the construction and utility worker scenarios.

The HHRA recommends further evaluation of the soil COCs in a Feasibility Study for the Ridgway Training Range MRS.

8 References

- AECOM. 2018. Draft Final Remedial Investigation Report. Ridgway Training Range, Pennsylvania. Munitions Response Site PAE40-001-R-01. Pennsylvania Army National Guard. October 2018.
- AECOM. 2017. Final Uniform Federal Policy Quality Assurance Project Plan Military Munitions Response Program. Ridgway Training Range, Pennsylvania. Munitions Response Site PAE40-001-R-01. Pennsylvania Army National Guard. November 2017.
- Centers for Disease Control and Prevention (CDC). 1991. Preventing Lead Poisoning in Young Children. http://www.cdc.gov/nceh/lead/publications/books/plpyc/contents.htm.
- CDC. 2012. Low Level Lead Exposure Harms Children: A Renewed Call for Primary Prevention. Report of the Advisory Committee on Childhood Lead Poisoning Prevention, Centers for Disease Control and Prevention. January 4, 2012.
- Department of Defense (DoD). 2007. Munitions Response Site Prioritization Protocol (MRSPP) Primer. June 2007.
- Interstate Technology Regulatory Council (ITRC). 2012. *Incremental Sampling Methodology*. Technical and Regulatory Guidance. February.
- New Jersey Department of Environmental Protection. 2014. Data Quality Assessment and Data Usability Evaluation Technical Guidance Manual. Site Remediation Program. Version 1.0. April 2014. Accessed via: https://www.nj.gov/dep/srp/guidance/srra/data_qual_assess_guidance.pdf
- PADEP (Pennsylvania Department of Environmental Protection). 2002. Land Recycling Program Technical Guidance Manual Environmental Quality Board, 25 Pa. Code § 250, Administration of the Land Recycling Program (Act 2), June 8, 2002.
- PADEP. 2018a. Land Recycling Program Toxicity Database, Summary of Toxicity Values on-line check conducted October 30, 2018.
- PADEP. 2018b. Teleconference Call with Brie Sterling, PADEP risk assessment reviewer and AECOM to discuss comments received on 201 Titusville Road Human Health Risk Assessment. 15 October 2018.
- Parsons Infrastructure and Technology (Parsons). 2012. *Final South Carolina Site Inspection Report*, Army National Guard Military Munitions Response Program, February.

- Oak Ridge National Laboratory (ORNL). 2018. RAIS Preliminary Remediation Goals (PRGs) for Chemicals User's Guide. https://rais.ornl.gov/tools/rais_chemical_prg_guide.html
- U.S. Army. 2009. Final Military Munitions Response Program, Munitions Response Remedial Investigation/Feasibility Study Guidance. November 2009.
- United States Environmental Protection Agency (USEPA). 1986. Guidelines for Carcinogenic Risk Assessment, 51 FR 33992. September 24, 1986.
- USEPA. 1989. Risk Assessment Guidance for Superfund, Volume 1: Human Health Evaluation Manual, Part A. Interim Final. Office of Emergency and Remedial Response, Washington, DC. EPA/5401-89/002. December.
- USEPA. 1990. National Oil and Hazardous Substances Pollution Contingency Plan. Code of Federal Regulations, 40 CFR Part 300(e).
- USEPA. 1991a. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual. Supplemental Guidance, Standard Default Exposure Factors. Interim Final. Office of Solid Waste and Emergency Response (OSWER) Directive 9285.6-03. Office of Emergency & Remedial Response Toxics Integration Branch, Washington, DC. March.
- USEPA. 1991b. Role of the Baseline Risk Assessment in Superfund Remedy Selection Decisions. OSWER Directive 9355.0-30. April 22, 1991. https://www.lm.doe.gov/cercla/documents/rockyflats_docs/SW/SW-A-005200.pdf
- USEPA. 1996. Soil Screening Guidance: Technical Background Document. https://www.epa.gov/superfund/superfund-soil-screening-guidance
- USEPA. 1997. Health Effects Assessment Summary Tables (HEAST), FY 1997 Update. EPA-540-R-97-036. July. On-line Repository of HEAST toxicity values are available at https://epa-heast.ornl.gov/
- USEPA. 2001. Risk Assessment Guidance for Superfund, Volume I: Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments). December.
- USEPA. 2002a. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24. https://www.epa.gov/superfund/superfund-soil-screening-guidance
- USEPA. 2002b. User's Guide for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK) Windows® Version 32 Bit Version. EPA 540-K-01-005. OSWER #9285.7-42. May 2002.

- USEPA. 2003. Human Health Toxicity Values in Superfund Risk Assessment. Office of Superfund Remediation and Technology Innovation. OSWER Directive 9285.7-53. December. http://www.epa.gov/oswer/riskassessment/pdf/hhmemo.pdf
- USEPA. 2004. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.
- USEPA. 2005. Guidelines for Carcinogen Risk Assessment. Risk Assessment Forum, U.S. Environmental Protection Agency, Washington, DC. EPA/630/P-03/001F. March.
- USEPA. 2007. Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.
- USEPA. 2010. Integrated Exposure Uptake Biokinetic Model for Lead in Children, Windows®version (IEUBKwin v1.1 build 11) 32-bit version Office of Superfund Remediation and Technology Innovation, United States Environmental Protection Agency.
- USEPA. 2011. Exposure Factors Handbook: 2011 Edition, National Center for Environmental Assessment, Office of Research and Development. EPA/600/R-09/052F, September 2011.
- USEPA. 2016a. ProUCL Version 5.1.00 Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. May. https://www.epa.gov/land-research/proucl-software.
- USEPA. 2016b. Memorandum: Updated Scientific Considerations for Lead in Soil Cleanups. From Mathy Stanislaus, Assistant Administrator of the office of Land and Emergency Management to USEPA Regional Administrators, I-X. December 22, 2016.
- USEPA. 2016c. Recommendations for Assessing Short-Term Exposure Scenarios Involving Lead at Superfund Sites. OLEM Directive 9285.6-54. 2 August 2016.
- USEPA. 2017a. Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas, USEPA Technical Review Workgroup for Lead, Version date 6/14/2017.
- USEPA. 2017b. Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameter. OLEM Directive 9285.6-56. 17 May 2017.
- USEPA. 2017c. Transmittal of Update for the Default Age Range in the IEUBK Model. OLEM Directive 9200.2-177. 15 November 2017.

Prepared for: Army National Guard AECOM

- USEPA. 2018a. Regional Screening Level (RSL) Table and User's Guide Dated May 2018. http://www.epa.gov/risk/regional-screening-table.
- USEPA. 2018b. Lead at Superfund Sites: Frequent Questions from Risk Assessors on the Integrated Exposure Uptake Biokinetic (IEUBK) Model. Last Updated 7 September 2018.
- USEPA. 2018c. U.S. Environmental Protection Agency on-line Integrated Risk Information System. https://www.epa.gov/iris.
- USEPA. 2018d. Provisional Peer Reviewed Toxicity Values for Superfund (PPRTV) Assessments Electronic Library. https://hhpprtv.ornl.gov/index.html

Attachment 1

Sample Data Used in the HHRA

Table A1-1. Summary of Samples Used in the Human Health Risk Assessment

	Sample			Analytics	al Parameters	
Sample	Collection	Sample Depth	Media	Total	l Faranieters	Comments
Identification	Date	(inches bgs)	Type	Metals ¹	Explosives ²	Comments
INCREMENTAL	SAMPLES			MCtais		
Target Berm DU						
RTR01IS01	7/11/2018	0 - 6	Soil	Х		Primary, used also for MS/MSD
RTR01IS02	7/11/2018	0 - 6	Soil	Х		Duplicate
RTR01IS03	7/11/2018	0 - 6	Soil	Х		Triplicate
Firing Point DU						
RTR03IS01	7/12/2018	0 - 6	Soil		X	Primary
RTR03IS02	7/12/2018	0 - 6	Soil		X	Duplicate, used also for MS/MSD
RTR03IS03	7/12/2018	0 - 6	Soil		X	Triplicate
Background Ref		1			1	
RTR04IS01	7/12/2018	0 - 6	Soil	Х	X	Primary, used also for MS/MSD
RTR04IS02	7/12/2018	0 - 6	Soil	X	X	Duplicate
RTR04IS03	7/12/2018	0 - 6	Soil	Х	X	Triplicate
DISCRETE SAMI						
Target Berm DU		40.40	C-:I	V		Collected at VDF comple DTD01V00 leastion
RTR01DA01A RTR01DA01B	7/12/2018	12 - 18 12 - 18	Soil Soil	X		Collected at XRF sample RTR01X80 location Field Duplicate of RTR01DA01A
RTR01DA01B RTR01DB01A	7/12/2018 7/12/2018	12 - 18 24 - 30	Soil	X		Collected at XRF sample RTR01X80 location
RTR01DB01A RTR01DC02A	7/12/2018	0 - 6	Soil	٨		Collected at XRF sample RTR01X00 location
RTR01DA03A	7/12/2018	12 - 18	Soil	Х		Collected at XRF sample RTR01X22 location, MS/MSD
RTR01DB03A	7/12/2018	24 - 30	Soil	X		Collected at XRF sample RTR01X22 location, W3/W3D
RTR01DA04A	7/12/2018	12 - 18	Soil	X		Collected at XRF sample RTR01X91 location
RTR01DB04A	7/12/2018	24 - 30	Soil	X		Collected at XRF sample RTR01X91 location
RTR01DA05A	7/12/2018	12 - 18	Soil	X		Collected at XRF sample RTR01X45 location
1111012/100/1	771272010	12 10	COII	,		Collected from beneath gravel east of XRF sample RTR01X12
RTR01DS01A	7/12/2018	0 - 6	Soil	Χ		location
						Collected from beneath gravel east of XRF sample RTR01X24
RTR01DS02A	7/12/2018	0 - 6	Soil	Х		location
						Collected from drainage ditch south of XRF sample RTR01X125
RTR01DD01A	7/12/2018	0 - 6	Sediment	Х		location. Eliminated during HHRA risk-based screening.
TTTTO I B B O I I T	771272010	0 0	Coaminoni	,		Collected from drainage ditch south of MRS, equidistant between
						the Firing Point and Target Berm. Eliminated during HHRA risk-
RTR01DD02A	7/12/2018	0 - 6	Sediment	Χ		based screening.
Soil Pile DU	T	1			•	
RTR02DS01A	7/9/2018	0 - 12*	Soil	X		Collected from the western half of the Soil Pile
RTR02DS01B	7/9/2018	0 - 12*	Soil	X		Field Duplicate of RTR02DS01A
RTR02DS02A	7/9/2018	0 - 12*	Soil	X		Collected from the western half of the Soil Pile
RTR02DS03A	7/9/2018	0 - 12*	Soil	X		Collected from the western half of the Soil Pile
RTR02DS04A	7/9/2018	0 - 12* 0 - 12*	Soil	X		Collected from the eastern half of the Soil Pile
RTR02DS05A	7/9/2018		Soil	X		Collected from the eastern half of the Soil Pile
RTR02DS06A RTR02DS07A	7/9/2018 7/9/2018	0 - 12* 24 - 36*	Soil Soil	X		Collected from the eastern half of the Soil Pile Collected from the western half of the Soil Pile
RTR02DS07A	7/9/2018	24 - 36*	Soil	X		Collected from the western half of the Soil Pile Collected from the western half of the Soil Pile
RTR02DS08A RTR02DS09A	7/9/2018	24 - 36*	Soil	X		Collected from the western half of the Soil Pile Collected from the western half of the Soil Pile
RTR02DS09A RTR02DS10A	7/9/2018	24 - 36*	Soil	X		Collected from the western half of the Soil Pile Collected from the eastern half of the Soil Pile
RTR02DS11A	7/9/2018	24 - 36*	Soil	X		Collected from the eastern half of the Soil Pile
RTR02DS11A	7/9/2018	24 - 36*	Soil	X		Collected from the eastern half of the Soil Pile
Firing Point DU	1,0,2010		- Jon			The state of the s
g c 20						Collected east of the Firing Point, one quarter of the distance
RTR03DS01A	7/9/2018	0 - 6	Soil		Х	north bewteen the concret pad and the northern MRS wall
RTR03DS01B	7/9/2018	0 - 6	Soil		Х	Field Duplicate of RTR03DS01A
DTD cop Cook	7/0/55:5		0 "		.,	Collected east of the Firing Point, one half of the distance north
RTR03DS02A	7/9/2018	0 - 6	Soil		X	bewteen the concret pad and the northern MRS wall Collected east of the Firing Point, three quarters of the distance
RTR03DS03A	7/9/2018	0 - 6	Soil		Х	north bewteen the concret pad and the northern MRS wall
INTROOPSOM	1/3/2010	0-0	JUII		^	Collected from the covered Firing Point, adjacent to the southern
RTR03DA01A	7/12/2018	12 - 18	Soil		X	concrete pad, MS/MSD
						Collected from the covered Firing Point, equidistant between the
RTR03DA02A	7/12/2018	12 - 18	Soil		X	southern concrete pad and northern MRS wall
DTD00D4004	7/40/0010	40.40	0 - "			Collected from the covered Firing Point, adjacent to the northern
RTR03DA03A	7/12/2018	12 - 18	Soil		X	MRS wall
RTR03DA03B	7/12/2018	12 - 18	Soil		Х	Field Duplicate of RTR03DA03A

Table A1-1. Summary of Samples Used in the Human Health Risk Assessment

Commis	Sample	Cample Danth	Madia	Analytica	I Parameters	
Sample Identification	Collection Date	Sample Depth (inches bgs)	Media Type	Total Metals ¹	Explosives ²	Comments
RTR03DC01A	7/12/2018	0 - 6	Soil			Collected from the covered Firing Point, adjacent to the southern concrete pad, MS/MSD
French Drain DU	I: NOTE: Sedi	iment was elimin	ated during	HHRA risk-	based screenii	ng.
RTR05DD01A	7/12/2018	0 - 6	Sediment	Х		Collected from the southwestern corner of the ponded area , MS/MSD
RTR05DD01B	7/12/2018	0 - 6	Sediment	Х		Field Duplicate of RTR05DD01A
RTR05DD02A	7/12/2018	0 - 6	Sediment	Х		Collected from the southern half of the ponded area
RTR05DD03A	7/12/2018	0 - 6	Sediment	Х		Collected from the southern half of the ponded area
RTR05DD04A	7/12/2018	0 - 6	Sediment	Х		Collected from the southeastern corner of the ponded area
RTR05DD05A	7/12/2018	0 - 6	Sediment	Х		Collected from the northwestern corner of the ponded area
RTR05DD06A	7/12/2018	0 - 6	Sediment	Х		Collected from the northern half of the ponded area
RTR05DD07A	7/12/2018	0 - 6	Sediment	Х		Collected from the northern half of the ponded area
RTR05DD08A	7/12/2018	0 - 6	Sediment	Х		Collected from the northeastern corner of the ponded area
RTR05DD09A	7/12/2018	0 - 6	Sediment	Х		Collected 10 feet east of the ponded area
RTR05DD10A	7/12/2018	0 - 6	Sediment	Х		Collected 10 feet west of the ponded area

= Indicates samples used for subsurface soil and total total soil evaluation.

bgs = below ground surface; DU = Decision Unit; HHRA = human health risk assessment.

MS/MSD = matrix spike/matrix spike duplicate

TCLP = Toxicity Characteristic Leaching Procedure

USEPA = United States Environmental Protection Agency

XRF = X-Ray Fluorescence

^{1 -} Antimony, Copper, Lead, & Zinc, by USEPA SW-846 Method 6020A

 $^{^{\}rm 2}$ - Nitroglycerin by USEPA SW-846 Method 8330B

^{* -} Soil Pile samples collected from below the soil pile surface, not the ground surface

Table A1-2. Incremental Sampling Results Summary

	Location:					Backgro	und R	eferen	ice				
	Sample ID:	F	RTR04IS	01		R	TR04I	S02		R	TR04I	S03	
Sample De	epth (inches bgs):		0-6				0-6				0-6		
	Date Collected:		7/12/201	18		7	/12/20	18		7	7/12/20	18	
	Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
	Total Metals	Total Meta	als by U	SEPA	SW-8	46 Method	6020/	(mg/l	kg)				
	Antimony	0.244	N	J-	m	0.682		J-	m	0.626		J-	m
	Copper	12		J	s	12.7		J	s	10.5		J	S
	Lead	59.2	NA			81.8				82.3			
	Zinc	33.2		J	m	33.5		J	m	23		J	m
		Explosive	s by US	EPA S	SW-84	6 Method 8	330B	(mg/kg	g)				
	Nitroglycerin	0.460	ULMM			0.44	UL	UJ	ı	0.38	U	UJ	S

Location:					Tar	get Bo	erm					
Sample ID:	F	RTR01IS	01		R	TR01I	S02		R	TR01I	S03	
Sample Depth (inches bgs):		0-6				0-6				0-6		
Date Collected:	'	7/11/20 ⁻	18		7	7/11/20	18		7	7/11/20	18	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by	USEPA SV	V-846 N	lethod	6020	A (mg/kg)							
Antimony	24.80	NA	J-	m	27		J-	m	40.1		J-	m
Copper	636	N*EA	J	S	481		J	S	612		J	S
Lead	5720	NA			6180				8770			
Zinc	158	NEA	J	m	149		J	m	165		J	m

Location:					Fir	ring Po	int					
Sample ID:	R	TR03IS	601		R	TR03IS	S02		R	TR03I	S03	
Sample Depth (inches bgs):		0-6				0-6				0-6		
Date Collected:		7/12/20 ⁻	18		7	7/12/20	18			7/12/20	18	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Explosives by U	ISEPA SW	-846 Me	thod 8	3330B	(mg/kg)							
Nitroglycerin	3.70	Ĺ	J	I	4.4	LMM	J	ı	21	Ĺ	J	ĺ

bgs = below ground surface

LQ = Laboratory qualifier

VQ = Validiation qualifier

RC = Reason Code

U = non-detect

J = estimated

J- = estimated, negative bias

UJ= non-detect, estimated detection limit

I = LCS recovery failure

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

A1-3. D	ISCI	ete	201	i anu se	cum	uen	ll Ke	esuits																			
RTR0	1DA	01A		RTR0	1DA	01B	*	RTRO	1DC	02A		RTR	01DA	03A		RTRO	1DB	03A		RTR0	1DA	04A		RTR0	1DB	04A	
Target I	Bern	า - #8	30	Target	Bern	n - #	80	Target	Beri	n - #	6	Target	Berm	- #2	22	Target	Bern	า - #2	2	Target I	3ern	n - #9	91	Target I	Berm	า - #9	1
(Soil			;	Soil				Soil				Soil				Soil			(Soil			(Soil		
12	2 - 18	}		12	2 - 18	8			0 - 6			1	2 - 18			24	4 - 30)		12	2 - 18	3		24	l - 30		
7/12	2/201	18		7/1:	2/20 ⁻	18		7/1	2/20 ⁻	18		7/	12/201	8		7/1	2/201	18		7/12	2/20 ⁻	18		7/12	2/201	8	
Pasult	10	VO	ВС	Posult	10	VO	BC.	Pasult	10	VO	BC.	Posult	10	VO	BC.	Pasult		VO	P ←	Pasult		VO	BC.	Posult	10	VO	B.C
					LQ	VG	INO	Nesun	LQ	VQ	NO	Nesuit	LQ	VQ	INO	Nesun	LQ	VQ	NO	Nesun	LQ	VQ	NO	Result	LQ	VQ	I C
0.336				0.366								89.5	N*A			34.8				64.8				5.47			\neg
17.3	В			16.5	В							1830	N*B			961	В			298	В			65.1	В		
55.8	В	J	f	110	В	J	f					17500	N*BA			6360	В			10600	В			824	В		
81.2				63.4								292	N*A			189				117				107			
6 Method	8330	B (n	ng/k	a)																							
	RTR0 Target I 5 12 7/12 Result 6 Method 0.336 17.3 55.8 81.2	RTR01DA Target Berm Soil 12 - 18 7/12/201 Result LQ 6 Method 602 0.336 17.3 B 55.8 B 81.2	RTR01DA01A Target Berm - #8 Soil 12 - 18 7/12/2018 Result LQ VQ 6 Method 6020A (0.336 17.3 B 55.8 B J 81.2	RTR01DA01A Target Berm - #80 Soil 12 - 18 7/12/2018 Result LQ VQ RC 6 Method 6020A (mg/l) 0.336 17.3 B 55.8 B J f 81.2	RTR01DA01A RTR02 Target Berm - #80 Target Soil Soil	RTR01DA01A RTR01DA01A Target Berm - #80 Target Berm Soil Soil 12 - 18 12 - 18 7/12/2018 7/12/20	RTR01DA01A	RTR01DA01A	Target Berm - #80 Target Berm - #80 Target Soil Soil	RTR01DA01A	RTR01DA01A	RTR01DA01A	RTR01DA01A	RTR01DA01A RTR01DA01B* RTR01DC02A RTR01DA03A RTR01DB03A RTR01DA04A RT	RTR01DA01A RTR01DA01B * RTR01DC02A RTR01DA03A RTR01DB03A RTR01DA04A RTR01DB	RTR01DA01A RTR01DA01B * RTR01DC02A RTR01DA03A RTR01DB03A RTR01DA04A RTR01DB04A RT01DB04A RT											

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

Table	A1-3. D	15CI	ele i	SUL	anu se	uIII	ICII	ıne	Suits																			
Sample ID:	RTR	01DA	05A		RTR0	1DS	01A		RTRO	1DS	02A		RTR)1DI	D01A		RTRO)1DE	002A		RTR)2DS	01A		RTRO	2DS	01B	
Decision Unit - XRF Location:	Target	Bern	n - #4	5	Target	Bern	n - N	IA	Target	Bern	n - N	IA	Target	Ber	m - N	Α	Target	Berr	n - N	IA	Soil	Pile ·	- NA		Soil	Pile -	NA	
Media:		Soil				Soil				Soil			Sec	dime	ent		Sec	dime	nt			Soil				Soil		
Sample Depth (inches bgs):	1:	2 - 18	3			0-6				0-6				0-6				0-6			0	- 12			0	- 12		
Date Collected:	7/1	2/201	18		7/1:	2/20°	18		7/1:	2/20°	18		7/1	2/20)18		7/1	2/20	18		7/9	9/201	8		7/9	/201	8	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	vQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8	}																											
Antimony	0.195				46.2				4.14				0.966				0.18				51.2	N*	J	d	4.93		J	d
Copper	20.8	В			600				57				79.7				15.3	В			828	NA	J	f	145		J	f
Lead	41.2	В			7990				1130				242				15.8	В			6940	N*A	J	d	999		J	d
Zinc	62.2				159				93.2				74.9				62.4				266	N	J	f	106		J	f
Explosives by USEPA SW-84	ļ																											
Nitroglycerin																												

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

	A1-3. D	-2-																									
Sample ID:	RTR0	2DS	02A		RTRO	02DS03	3A	RTR)2DS(04A		RTRO	2DS	05A		RTR0	2DS(06A		RTR	02DS	07A		RTR)2DS	A80	
Decision Unit - XRF Location:	Soil I	Pile -	- NA		Soil	Pile - N	IA	Soil	Pile -	NA		Soil I	Pile -	NA		Soil P	Pile -	NA		Soil	Pile -	NA		Soil	Pile -	NA	
Media:		Soil				Soil			Soil			;	Soil			S	Soil				Soil				Soil		
Sample Depth (inches bgs):	0	- 12			0) - 12		0	- 12			0	- 12			0	- 12			2	4 - 36	3		2	4 - 36	;	
Date Collected:	7/9	/201	8		7/9	9/2018		7/9	9/2018	8		7/9	/201	8		7/9/	/2018	8		7/9	9/201	8		7/9	9/201	8	
Analyte	Result	LQ	VQ	RC	Result	LQ V	Q RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8		•						-						•							•						
Antimony	EQ E	1																									
	58.5		J	d	15.2		Jd	10.2		J	d	2.24		J	d	7.74		J	d	40.4		J	d	97.5		J	d
Copper	1740		J	d	15.2 278		J d	10.2 202		J	d	2.24 76.6		J	d	7.74 149		J	d	40.4 733	H	J	d	97.5 929	\blacksquare	J	d
· · · · · · · · · · · · · · · · · · ·			J	d		H	J d			J	d			J	d			J	d			J				J	d
Copper	1740			d	278			202		J	d	76.6				149				733				929		J	d
Copper Lead	1740 8980 314			d	278 2460			202 1660		J	d	76.6 672				149 1570				733 6340				929 14100		J	d
Copper Lead Zinc	1740 8980 314			d	278 2460			202 1660		J	d d	76.6 672				149 1570				733 6340				929 14100		J	d

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

Tabic	A1-3. D	1901	Cit	BUL	and Sc	ulli	CIII	INC	Suits																			
Sample ID:	RTR)2DS	09A		RTRO)2DS	10A		RTRO)2DS	11A		RTR)2DS	12A		RTRO	3DS	01A		RTRO)3DS	01B		RTRO)3DS	02A	
Decision Unit - XRF Location:	Soil	Pile -	NA		Soil	Pile -	NA		Soil	Pile -	NA		Soil	Pile -	NA		Firing	Poin	t - N	Α	Firing	Poin	t - N	Α	Firing	Point	t - N/	4
Media:		Soil			,	Soil				Soil				Soil				Soil				Soil			,	Soil		
Sample Depth (inches bgs):	2	4 - 36	;		24	4 - 36	;		24	4 - 36	;		24	4 - 36	;) - 6				0-6				0-6		
Date Collected:	7/9	9/201	8		7/9	9/201	8		7/9)/201	8		7/9	9/201	8		7/9)/201	8		7/9	9/201	8		7/9	9/201	8	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8	3									•								•	•	•		•	•					
Antimony	41.2		J	d	226		J	d	1080		J	d	36.5		J	d												
Copper	977				2060				675				947															
Lead	6040		J	d	25000		J	d	57200		J	d	4920		J	d												
Zinc	220				443				165				213															
Explosives by USEPA SW-84	4																											
Lybiosives by Oori A 344-0-																				_				_				
Nitroglycerin																	0.31	J	J+	S	0.26	J	J+	S	0.55	U		

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

Tubic	111 U.D	1001		i alla be	WIII		110	build																			
Sample ID:	RTRO	03DS	03A	RTR)3DA	01A		RTR0	3DA	02A		RTR0	3DA	03A		RTR0	3DA	03B*	•	RTR0	3DC	01A		RTR0	5DD()1A	
Decision Unit - XRF Location:	Firing	Poin	t - NA	Firing	Poin	t - N.	Α	Firing I	Point	t - N	Α	Firing I	Poin	t - N/	A	Firing I	Poin	t - N	Α	Firing	Poin	t - N/	Α	French	Drair	1 - N.	Α
Media:		Soil			Soil			Ç	Soil			Ş	Soil			Ç	Soil			;	Soil			Sec	dimer	nt	
Sample Depth (inches bgs):		0-6		1:	2 - 18	3		12	2 - 18	3		12	2 - 18	3		12	2 - 18	3			0-6				0-6		
Date Collected:	7/9	9/201	8	7/1	2/20 ⁻	18		7/1:	2/201	18		7/1:	2/201	18		7/12	2/20 ⁻	18		7/1:	2/20 ⁻	18		7/1	2/201	8	
Analyte	Result	LQ	VQ RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8		•	<u> </u>	•	•	•	•		•		•		•	•				•									
Antimony																								0.253	Ν		
Copper																								17.4	NB		
Lead																								106	NBA	J	f
Zinc																								48.4			
Explosives by USEPA SW-84	1																										
Nitroglycerin	0.6	U		0.66	JM	J+	m	1.2				0.32	J			1.3		J+	S	0.002	U						

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

Tabic	A1-3, D	ISCI	cic	DUL		uiiii	che Nes	ulis																			
Sample ID:	RTR0	5DD	01B		RTR0)5DD	02A	RTR)5DD	03A		RTR0	5DD	04A		RTR0	5DD	05A		RTR0	5DD	06A		RTR0	5DD	07A	
Decision Unit - XRF Location:	French	Drai	n - N	IA	French	Draii	n - NA	French	Drai	n - N	IA	French	Drai	n - N	IA	French	Draii	n - N	Α	French	Drai	n - N	Α	French	Draiı	n - N	Α
Media:	Sec	lime	nt		Sec	dime	nt	Se	dime	nt		Sec	lime	nt		Sec	lime	nt		Sec	dime	nt		Sed	lime	nt	
Sample Depth (inches bgs):		0-6				0-6			0-6				0-6				0-6				0-6			1	0-6		
Date Collected:	7/1:	2/201	18		7/1:	2/201	8	7/1	2/20	18		7/12	2/20°	18		7/1:	2/201	18		7/1:	2/20 ⁻	18		7/12	2/201	18	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8	3																										
Antimony	0.362				0.29			0.2				0.264				0.638				0.152				0.092	J		
Copper	25.2	В			38.7	В		20.7	В			13.2	В			29.6	В			12.2	В			6.63	В		
Lead	179	В	J	f	358	В		81.8	В			37.3	В			189	В			58	В			17.6	В		
Zinc	56.6				58.2			51				58.8				42.4				34.7				37.7			
Explosives by USEPA SW-84																											
Nitroglycerin			_												_			_		_					_		-

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-3. Discrete Soil and Sediment Results

14010				~ ~ ~		~			301200			
Sample ID:	RTR0	5DD	A80		RTR0	5DD	09A		RTR0	5DD	10A	
Decision Unit - XRF Location:	French	Drai	n - N	Α	French	Drai	n - N	Α	French	Drai	n - N	Α
Media:	Sec	lime	nt		Sec	lime	nt		Sec	dime	nt	
Sample Depth (inches bgs):		0-6				0-6				0-6		
Date Collected:	7/1:	2/201	18		7/12	2/201	18		7/1:	2/201	18	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Total Metals by USEPA SW-8												
Antimony	0.438				0.36				0.236			
Copper	30.3	В			31.5	В			20.6	В		
Lead	120	В			124	В			67.3	В		
Zinc	58.1				53.2				71.1			
Explosives by USEPA SW-84												
Nitroglycerin												
Motoci												

* = Field duplicate

bgs = below ground surface

LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table A1-4. Relative Percent Difference Calculations for Parent/Duplicate Samples

RPD (%) = abs
$$\left(\frac{\text{primary - duplicate}}{\text{mean (primary, duplicate})}\right) \times 100$$

Constituent	Result	t (mg/kg)	Mean	PPD (9/)	Representative?	Mean
Constituent	Primary	Duplicate	(mg/kg)	RPD (%)	Representative?	(mg/kg)
Target Berm DU	(RTR01DA01	A/B), 12-18 inc	hes, bgs			
Antimony	0.336	0.366	0.351	9%	Yes	0.351
Copper	17.3	16.5	16.9	5%	Yes	16.9
Lead	56	110	82.9	65%	No	Retain Both
Zinc	81.2	63.4	72.3	25%	Yes	72.3
Soil Pile DU (RTI	R02DS01A/B)	, 0-12 inches, k	ogs			
Antimony	51.2	4.93	28.1	165%	No	Retain Both
Copper	828	145	487	140%	No	Retain Both
Lead	6,940	999	3970	150%	No	Retain Both
Zinc	266	106	186	86%	No	Retain Both
Firing Point DU ((RTR03DA01	4/B), 0-6 inches	s, bgs			
Nitroglycerin	0.31	0.26	0.285	18%	Yes	0.285
Firing Point DU ((RTR03DA03	A/B), 12-18 inch	ies, bgs			
Nitroglycerin	0.32	1.3	0.810	121%	No	Retain Both
French Drain DU	(RTR05DD0	1A/B), 0-6 inche	es, bgs			
Antimony	0.253	0.362	0.308	35%	Yes	0.308
Copper	17.4	25.2	21.3	37%	Yes	21.3
Lead	106	179	143	51%	No	Retain Both
Zinc	48.4	56.6	52.5	16%	Yes	52.5

Notes:

bgs = below ground surface; DU = Decision Unit; mg/kg = milligrams per kilogram; RPD = relative percent difference A relative percent difference (RPD) that is less than 50% is indicative of a representative sample for a solid matrix.

Attachment 2

Exposure Assessment Equations and Exposure Point Concentrations

Table A2-1 Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Resident (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
	0.00	0.7.1	0 (0)			00		4		
Ingestion	On-Site Resident	Child	Surface Soil		Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	IR-SO	Ingestion Rate of Soil	200		mg/day	USEPA, 2011	Chronic Daily Intake (CDI) (mg/kg-day) =
					Exposure Frequency, Soil	350		days/year	USEPA, 1991	CS x IR-SO x RBA x EF-SO x ED x CF3 x
			Total Soil		Exposure Duration	6		years	Act 2	1/BW x 1/AT
			(Future)		Exposure Duration. 0-2 years	2		years	USEPA, 2005a	
					Age depend. adjust. factor, 0-2 years	10		unitless	USEPA, 2005a	Mutagenic Constituents
					Exposure Duration, 2-6 years	4		years	USEPA, 2005a	Chronic Daily Intake (CDI) (mg/kg-day) =
					Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	CS x IR-SO x RBA x EF-SO x CF3 x
				CF3	Conversion Factor 3	0.000001		kg/mg		[(ED ₀₋₂ x ADAF ₀₋₂) + (ED ₂₋₆ x ADAF ₂₋₆)]
				RBA	Relative Bioavailability Factor	1, 0.6	(a)	unitless	USEPA, 2007	x 1/BW x 1/AT
				BW	Body Weight	15		kg	USEPA, 1991	
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	CDI (Lifetime) (mg/kg-day) = (CDI [child] + CDI [adult])
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
		Adult	Surface Soil	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	IR-SO	Ingestion Rate of Soil	100		mg/day	USEPA, 1991	Chronic Daily Intake (CDI) (mg/kg-day) =
				EF-SO	Exposure Frequency, Soil	350		days/year	USEPA, 1991	CS x IR-SO x RBA x EF-SO x ED x CF3 x
			Total Soil	ED	Exposure Duration	20		years	USEPA, 2014, 2015	1/BW x 1/AT
			(Future)	ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	
				ADAF ₆₋₁₆	Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	Chronic Daily Intake (CDI) (mg/kg-day) =
				ADAF ₁₆₋₂₆	Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	CS x IR-SO x RBA x EF-SO x CF3 x
				CF3	Conversion Factor 3	0.000001		kg/mg		[(ED ₆₋₁₆ x ADAF ₆₋₁₆) + (ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆)]
				RBA	Relative Bioavailability Factor	1, 0.6	(a)	unitless	USEPA, 2007	x 1/BW x 1/AT
				BW	Body Weight	80		kg	USEPA, 2014, 2015	
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	CDI (Lifetime) (mg/kg-day) = (CDI [child] + CDI [adult])
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	

Table A2-1 Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Resident (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

	T		1		1	T	1			<u> </u>
Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	On-Site Resident	Child	Surface Soil	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
Demai	On-one resident	Offilia	(Current)	DABS	Absorption Factor, dermal	Chemical Specific	(a)		USEPA, 2004	Dermally Absorbed Dose (DAD) (mg/kg-day) =
			(Ourient)	SA	Skin Surface Area. Soil Contact	2373	(b)	cm2	USEPA, 2014, 2015	DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT
			Total Soil	SA ₀₋₂	Skin Surface Area, Soil Contact, 0-2 years	2373	(b)	cm2	USEPA, 2014, 2015	BACOGRAZIA GO X EV X EB X GAX A ABACA A AMA
			(Future)	SA ₂₋₆	Skin Surface Area, Soil Contact, 2-6 years	2373	(b)	cm2	USEPA, 2014, 2015	Where:
			(. a.a.o)	SSAF	Soil to Skin Adherence Factor	0.2	(c)	mg/cm2-event	USEPA, 2014, 2015	Absorbed Dose per event (DA-event)
				EF-SO	Exposure Frequency, Soil	350	(-)	days/year	USEPA, 1991	(mg/cm2-event) = CS x CF3 x SSAF x DABS
				EV	Event Frequency	1		events/day	USEPA, 2004	
				ED	Exposure Duration	6		years	Act 2	Mutagenic Constituents
				ED ₀₋₂	Exposure Duration. 0-2 years	2		years	USEPA, 2005a	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				ADAF ₀₋₂	Age depend. adjust. factor, 0-2 years	10		unitless	USEPA, 2005a	DA-event x EF-SO x EV x [(ED ₀₋₂ x ADAF ₀₋₂ x SA ₀₋₂) +
				ED ₂₋₆	Exposure Duration, 2-6 years	4		years	USEPA, 2005a	(ED ₂₋₆ x ADAF ₂₋₆ x SA ₂₋₆)]
				ADAF ₂₋₆	Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	1/BW x 1/AT
				CF3	Conversion Factor 3	0.000001		kg/mg		
				BW	Body Weight	15		kg	USEPA, 1991	DAD (Lifetime) (mg/kg-day) = (DAD [child] + DAD [adult])
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
		Adult	Surface Soil	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	DABS	Absorption Factor, dermal	Chemical Specific	(a)		USEPA, 2004	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				SA	Skin Surface Area, Soil Contact	6032	(d)	cm2	USEPA, 2014, 2015	DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT
			Total Soil	SA ₆₋₁₆	Skin Surface Area, Soil Contact, 6-16 years	6032	(d)	cm2	USEPA, 2014, 2015	
			(Future)	SA ₁₆₋₂₆	Skin Surface Area, Soil Contact, 16-26 years	6032	(d)	cm2	USEPA, 2014, 2015	Where:
				SSAF	Soil to Skin Adherence Factor	0.07	(e)	mg/cm2-event	USEPA, 2014, 2015	Absorbed Dose per event (DA-event)
				EF-SO	Exposure Frequency, Soil	350		days/year	USEPA, 1991	(mg/cm2-event) = CS x CF3 x SSAF x DABS
				EV	Event Frequency	1		events/day	USEPA, 2004	
				ED	Exposure Duration	20		years	USEPA, 2014, 2015	Mutagenic Constituents
				ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				ADAF ₆₋₁₆	Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	DA-event x EF-SO x EV x [(ED ₆₋₁₆ x ADAF ₆₋₁₆ x SA ₆₋₁₆) +
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	(ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆ x SA ₁₆₋₂₆)]
				ı	Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	1/BW x 1/AT
				CF3	Conversion Factor 3	0.000001		kg/mg		

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Resident (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
				BW	Body Weight	80		kg	USEPA, 2014, 2015	DAD (Lifetime) (mg/kg-day) = (DAD [child] + DAD [adult])
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	

Notes:

- (a) Chemical-specific parameters are provided in Attachment A4.
- (b) The child SA and SA₂₋₆ is the weighted average of mean skin surface area values for head, hands, forearms, lower legs, and feet (male and female, birth to < 6 years).
- (c) SSAF value represents a 50th percentile value for a child playing in wet soil. Value derived from Exhibit 3-3 of USEPA Dermal Guidance, Part E of RAGs (USEPA, 2004).
- (d) The adult SA and SA₁₆₋₂₆ represents the weighted average of mean values for head, hands, forearms, and lower legs (male and female, 21+ years old).
- (e) SSAF represents the 95th percentile value for residential adult gardeners. Value found in Exhibit 3-3 of USEPA dermal guidance, Part E of RAGs (USEPA, 2004).

Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.
USEPA, 1991	Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors: Interim Final. March. OSWER 9285.6-03.
USEPA, 2004	Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005.
USEPA, 2005a	Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.
USEPA, 2007	Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.
USEPA, 2011	Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. September. http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
USEPA, 2014	Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120
USEPA, 2015	"Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Resident (Child/Adult), Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Resident	Child	Inhalation of	EC	Exposure Concentration	Site-Specific		μg/m3		Non-Mutagenic Constituents
			Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x EF-SO x ET x ED x 1/AT x
			Outdoor Air	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	2	(b)	hr/day	USEPA, 2011	
				EF-SO	Exposure Frequency, Soil	350		days/year	USEPA, 1991	Where:
				ED	Exposure Duration	6		years	Act 2	CA = (CS/PEF) x CF5
				ED ₀₋₂	Exposure Duration. 0-2 years	2		years	USEPA, 2005a	
				ADAF ₀₋₂	Age depend. adjust. factor, 0-2 years	10		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₂₋₆	Exposure Duration, 2-6 years	4		years	USEPA, 2005a	Exposure Concentration (EC) (μg/m³) =
				ADAF ₂₋₆	Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	CA x ET x EF-SO x [(ED $_{0-2}$ x ADAF $_{0-2}$) +
				CF5	Conversion Factor 5	1000		μg/mg		(ED ₂₋₆ x ADAF ₂₋₆)]
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	x 1/AT x 1/(24 hours/day)
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
										EC (Lifetime) (µg/m³) = (EC [child] + EC [adult])
		Adult	Inhalation of	EC	Exposure Concentration	Site-Specific		μg/m3		Non-Mutagenic Constituents
			Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) $(\mu g/m^3) =$
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	2	(b)	hr/day	USEPA, 2011	
				EF-SO	Exposure Frequency, Soil	350		days/year	USEPA, 1991	Where:
				ED	Exposure Duration	20		years	USEPA, 2014, 2015	CA = (CS/PEF) x CF5
				ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	
					Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	Exposure Concentration (EC) $(\mu g/m^3) =$
					Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	CA x ET x EF-SO x $[(ED_{6-16} \times ADAF_{6-16}) +$
				CF5	Conversion Factor 5	1000		μg/mg		(ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆)]
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	x 1/AT x 1/(24 hours/day)
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	
										EC (Lifetime) (µg/m³) = (EC [child] + EC [adult])

Prepared for Army National Guard

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Resident (Child/Adult), Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route Receptor Population Receptor Age Exposure Point Parameter Code	Value No	ote Units	Rationale/ Reference	Intake Equation/ Model Name
---	----------	-----------	-------------------------	--------------------------------

Notes:

- (a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation).
- (b) The 95th percentile value for the child playing on dirt (120 minutes/day) while the adult supervises the play activities, Table ES-1, 2011 Exposure Factors Handbook.

Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.
USEPA, 2002	Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24
USEPA, 2005a	Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.
USEPA, 1991	Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors: Interim Final. March. OSWER 9285.6-03.
USEPA, 2011	Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. September. http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
USEPA, 2014	Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120
USEPA, 2015	"Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Visitor (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
la mastica	On Cita Vinitar	Child	Surface Soil	cs	Chemical Concentration in Soil	Cita Constitio				Non Mutanonia Constituente
Ingestion	On-Site Visitor	Child	(Current)	IR-SO	Ingestion Rate of Soil	Site-Specific 200		mg/kg mg/day	 USEPA, 2011	Non-Mutagenic Constituents Chronic Daily Intake (CDI) (mg/kg-day) =
			(Current)	EF-SO	Exposure Frequency, Soil	75			ORNL, 2018	CS x IR-SO x RBA x EF-SO x ED x CF3 x
			Total Soil	EF-SO ED	Exposure Frequency, Soil Exposure Duration	75 6		days/year	Act 2	1/BW x 1/AT
			(Future)	ED ₀₋₂	Exposure Duration Exposure Duration. 0-2 years	2		years	USEPA, 2005a	1/6W X 1/A1
			(Future)	-	Age depend. adjust. factor, 0-2 years	10		years unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₂₋₆	Exposure Duration, 2-6 years	10		years	USEPA, 2005a	Chronic Daily Intake (CDI) (mg/kg-day) =
				ADAF ₂₋₆	Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	CS x IR-SO x RBA x EF-SO x CF3 x
				CF3	Conversion Factor 3	0.000001		kg/mg		[(ED ₀₋₂ x ADAF ₀₋₂) + (ED ₂₋₆ x ADAF ₂₋₆)]
				RBA	Relative Bioavailability Factor	1, 0.6	(a)	unitless	USEPA. 2007	x 1/BW x 1/AT
				BW	Body Weight	15	(α)	kg	USEPA, 1991	A I/BW A I/AT
								•	,	
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	CDI (Lifetime) (mg/kg-day) = (CDI [child] + CDI [adult])
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
		Adult	Surface Soil	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	IR-SO	Ingestion Rate of Soil	100		mg/day	USEPA, 1991	Chronic Daily Intake (CDI) (mg/kg-day) =
				EF-SO	Exposure Frequency, Soil	75		days/year	ORNL, 2018	CS x IR-SO x RBA x EF-SO x ED x CF3 x
			Total Soil	ED	Exposure Duration	20		years	USEPA, 2014, 2015	1/BW x 1/AT
			(Future)		Exposure Duration, 6-16 years	10		years	USEPA, 2005a	
					Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	Chronic Daily Intake (CDI) (mg/kg-day) =
					Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	CS x IR-SO x RBA x EF-SO x CF3 x
				CF3	Conversion Factor 3	0.000001		kg/mg		[(ED ₆₋₁₆ x ADAF ₆₋₁₆) + (ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆)]
				RBA	Relative Bioavailability Factor	1, 0.6	(a)	unitless	USEPA, 2007	x 1/BW x 1/AT
				BW	Body Weight	80		kg	USEPA, 2014, 2015	
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	CDI (Lifetime) (mg/kg-day) = (CDI [child] + CDI [adult])
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Visitor (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	On-Site Visitor	Child	Surface Soil	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	DABS	Absorption Factor, dermal	Chemical Specific	(a)		USEPA, 2004	Dermally Absorbed Dose (DAD) (mg/kg-day) =
			,	SA	Skin Surface Area, Soil Contact	2373	(b)	cm2	USEPA, 2014, 2015	DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT
			Total Soil	SA ₀₋₂	Skin Surface Area, Soil Contact, 0-2 years	2373	(b)	cm2	USEPA, 2014, 2015	
			(Future)	SA ₂₋₆	Skin Surface Area, Soil Contact, 2-6 years	2373	(b)	cm2	USEPA, 2014, 2015	Where:
				SSAF	Soil to Skin Adherence Factor	0.2	(c)	mg/cm2-event	USEPA, 2014, 2015	Absorbed Dose per event (DA-event)
				EF-SO	Exposure Frequency, Soil	75		days/year	ORNL, 2018	(mg/cm2-event) = CS x CF3 x SSAF x DABS
				EV	Event Frequency	1		events/day	USEPA, 2004	
				ED	Exposure Duration	6		years	Act 2	Mutagenic Constituents
				ED ₀₋₂	Exposure Duration. 0-2 years	2		years	USEPA, 2005a	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				ADAF ₀₋₂	Age depend. adjust. factor, 0-2 years	10		unitless	USEPA, 2005a	DA-event x EF-SO x EV x [(ED ₀₋₂ x ADAF ₀₋₂ x SA ₀₋₂) +
				ED ₂₋₆	Exposure Duration, 2-6 years	4		years	USEPA, 2005a	(ED ₂₋₆ x ADAF ₂₋₆ x SA ₂₋₆)]
				ADAF ₂₋₆	Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	1/BW x 1/AT
				CF3	Conversion Factor 3	0.000001		kg/mg		
				BW	Body Weight	15		kg	USEPA, 1991	DAD (Lifetime) (mg/kg-day) = (DAD [child] + DAD [adult])
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
		Adult	Surface Soil	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		Non-Mutagenic Constituents
			(Current)	DABS	Absorption Factor, dermal	Chemical Specific	(a)		USEPA, 2004	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				SA	Skin Surface Area, Soil Contact	6032	(d)	cm2	USEPA, 2014, 2015	DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT
			Total Soil	SA ₆₋₁₆	Skin Surface Area, Soil Contact, 6-16 years	6032	(d)	cm2	USEPA, 2014, 2015	
			(Future)	SA ₁₆₋₂₆	Skin Surface Area, Soil Contact, 16-26 years	6032	(d)	cm2	USEPA, 2014, 2015	Where:
				SSAF	Soil to Skin Adherence Factor	0.07	(e)	mg/cm2-event	USEPA, 2014, 2015	Absorbed Dose per event (DA-event)
				EF-SO	Exposure Frequency, Soil	75		days/year	ORNL, 2018	(mg/cm2-event) = CS x CF3 x SSAF x DABS
				EV	Event Frequency	1		events/day	USEPA, 2004	
				ED	Exposure Duration	20		years	USEPA, 2014, 2015	Mutagenic Constituents
				ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	Dermally Absorbed Dose (DAD) (mg/kg-day) =
				ADAF ₆₋₁₆	Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	DA-event x EF-SO x EV x [(ED ₆₋₁₆ x ADAF ₆₋₁₆ x SA ₆₋₁₆) +

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Visitor (Child/Adult), Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	(ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆ x SA ₁₆₋₂₆)]
				ADAF ₁₆₋₂₆	Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	1/BW x 1/AT
				CF3	Conversion Factor 3	0.000001		kg/mg		
				BW	Body Weight	80		kg	USEPA, 2014, 2015	DAD (Lifetime) (mg/kg-day) = (DAD [child] + DAD [adult])
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	

Notes:

- (a) Chemical-specific parameters are provided in Attachment A4.
- (b) The child SA and SA₂₋₆ are the weighted averages of mean skin surface area values for head, hands, forearms, lower legs, and feet (male and female, birth to < 6 years).
- (c) SSAF value represents a 50th percentile value for a child playing in wet soil. Value derived from Exhibit 3-3 of USEPA Dermal Guidance, Part E of RAGs (USEPA, 2004).
- (d) The adult SA and SA₁₆₋₂₆ represent the weighted average of mean values for head, hands, forearms, and lower legs (male and female, 21+ years old).
- (e) SSAF represents the 95th percentile value for residential adult gardeners. Value found in Exhibit 3-3 of USEPA dermal guidance, Part E of RAGs (USEPA, 2004).

Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.
ORNL, 2018	RAIS Preliminary Remediation Goals (PRGs) for Chemicals User's Guide. https://rais.ornl.gov/tools/rais_chemical_prg_guide.html
USEPA, 1991	Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors: Interim Final. March. OSWER 9285.6-03.
USEPA, 2004	Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005.
USEPA, 2005a	Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.
USEPA, 2007	Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.
USEPA, 2011	Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. September. http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
USEPA, 2014	Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120

USEPA, 2015 "Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Recreator or Visitor (Child/Adult), Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

				,			_			
Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Recreator	Child	Inhalation of	EC	Exposure Concentration	Calculated		μg/m3		Non-Mutagenic Constituents
	or Visitor		Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x EF-SO x ET x ED x 1/AT x
			Outdoor Air	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	2	(b)	hr/day	USEPA, 2011	
				EF-SO	Exposure Frequency, Soil	75		days/year	ORNL, 2018	Where:
				ED	Exposure Duration	6		years	Act 2	CA = (CS/PEF) x CF5
				ED ₀₋₂	Exposure Duration. 0-2 years	2		years	USEPA, 2005a	
				ADAF ₀₋₂	Age depend. adjust. factor, 0-2 years	10		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₂₋₆	Exposure Duration, 2-6 years	4		years	USEPA, 2005a	Exposure Concentration (EC) (μg/m³) =
				ADAF ₂₋₆	Age depend. adjust. factor, 2-6 years	3		unitless	USEPA, 2005a	CA x ET x EF-SO x [(ED ₀₋₂ x ADAF ₀₋₂) +
				CF5	Conversion Factor 5	1000		μg/mg		(ED ₂₋₆ x ADAF ₂₋₆)]
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	x 1/AT x 1/(24 hours/day)
				AT-N	Averaging Time (Non-Cancer)	2190		days	ED x 365 days/year	
										EC (Lifetime) (µg/m³) = (EC [child] + EC [adult])
		Adult	Inhalation of	EC	Exposure Concentration	Site-Specific		μg/m3		Non-Mutagenic Constituents
			Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	cs	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	2	(b)	hr/day	USEPA, 2011	
				EF-SO	Exposure Frequency, Soil	75		days/year	ORNL, 2018	Where:
				ED	Exposure Duration	20		years	USEPA, 2014, 2015	CA = (CS/PEF) x CF5
				ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	
				ADAF ₆₋₁₆	Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	Mutagenic Constituents
				ED ₁₆₋₂₆	Exposure Duration, 16-26 years	10		years	USEPA, 2005a	Exposure Concentration (EC) (μg/m³) =
				ADAF ₁₆₋₂₆	Age depend. adjust. factor, 16-26 years	1		unitless	USEPA, 2005a	CA x ET x EF-SO x [(ED ₆₋₁₆ x ADAF ₆₋₁₆) +
				CF5	Conversion Factor 5	1000		μg/mg		(ED ₁₆₋₂₆ x ADAF ₁₆₋₂₆)]
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	x 1/AT x 1/(24 hours/day)
				AT-N	Averaging Time (Non-Cancer)	7300		days	ED x 365 days/year	, , , , , , , , , , , , , , , , , , ,
								-		EC (Lifetime) (µg/m³) = (EC [child] + EC [adult])

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Recreator or Visitor (Child/Adult), Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route Receptor P	Population Receptor Age Exposure Poin	meter Parameter Definition ode	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
---------------------------	---------------------------------------	--------------------------------	-------	------	-------	-------------------------	--------------------------------

Notes:

- (a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation).
- (b) The 95th percentile value for the child playing on dirt (120 minutes/day) while the adult supervises the play activities, Table ES-1, 2011 Exposure Factors Handbook.

Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.
ORNL, 2018	RAIS Preliminary Remediation Goals (PRGs) for Chemicals User's Guide. https://rais.ornl.gov/tools/rais_chemical_prg_guide.html
USEPA, 2002	Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24
USEPA, 2005a	Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.
USEPA, 2011	Exposure Factors Handbook: 2011 Edition. EPA/600/R-09/052F. September. http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252
USEPA, 2014	Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120
USEPA, 2015	"Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Teen Trespasser, Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	On-Site Teen Trespasser	Teen	Surface Soil (Current) Total Soil (Future)	CS IR-SO EF-SO ED ED ₆₋₁₆ ADAF ₆₋₁₆ CF3 RBA BW AT-C AT-N	Chemical Concentration in Soil Ingestion Rate of Soil Exposure Frequency, Soil Exposure Duration Exposure Duration, 6-16 years Age depend. adjust. factor, 6-16 years Conversion Factor 3 Relative Bioavailability Factor Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific 100 24 10 10 3 0.000001 1, 0.6 44 25550 3650	(a) (a) (b) (c)	mg/kg mg/day days/year years years unitless kg/mg unitless kg days days	USEPA, 2011 See notes below See notes below USEPA, 2005a USEPA, 2005a USEPA, 2007 USEPA, 2011 Act 2 ED x 365 days/year	Non-Mutagenic Constituents Chronic Daily Intake (CDI) (mg/kg-day) = CS x IR-SO x RBA x EF-SO x ED x CF3 x 1/BW x 1/AT Mutagenic Constituents Chronic Daily Intake (CDI) (mg/kg-day) = CS x IR-SO x EF-SO x (ED ₆₋₁₆ x ADAF ₆₋₁₆) x CF3 x RBA x 1/BW x 1/AT
Dermal	On-Site Teen Trespasser	Teen	Surface Soil (Current) Total Soil (Future)	CS DABS SA SA ₆₋₁₆ SSAF EF-SO EV ED ED ₆₋₁₆ ADAF ₆₋₁₆ CF3 BW AT-C AT-N	Chemical Concentration in Soil Absorption Factor, dermal Skin Surface Area, Soil Contact Skin Surface Area, Soil Contact, 6-16 years Soil to Skin Adherence Factor Exposure Frequency, Soil Event Frequency Exposure Duration Exposure Duration Exposure Duration, 6-16 years Age depend. adjust. factor, 6-16 years Conversion Factor 3 Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific Chemical Specific 3749 3749 0.3 24 1 10 3 0.000001 44 25550 3650	(b) (d) (d) (e) (a) (a)	mg/kg cm2 cm2 mg/cm2-event days/year events/day years years unitless kg/mg kg days days	USEPA, 2004 USEPA, 2011 USEPA, 2011 USEPA, 2004 See notes below USEPA, 2004 See notes below USEPA, 2005a USEPA, 2005a USEPA, 2011 Act 2 ED x 365 days/year	Non-Mutagenic Constituents Dermally Absorbed Dose (DAD) (mg/kg-day) = DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT Where: Absorbed Dose per event (DA-event) (mg/cm2-event) = CS x CF3 x SSAF x DABS Mutagenic Constituents Dermally Absorbed Dose (DAD) (mg/kg-day) = DA-event x EF-SO x EV x (ED ₆₋₁₆ x ADAF ₆₋₁₆ x SA ₆₋₁₆) x 1/BW x 1/AT

Notes:

- (a) The teen trespasser is ages 6 -16 years old who plays in the wooded area, streams, and secluded areas 6 days per month, 4 months per year (EF = 24 days/year) for 4 hours/event (ET = 4 hours/day).
- (b) Chemical-specific parameters are provided in Attachment A4.
- (c) The average of the mean body weights for children ages 6 to < 11 years and 11 to <16 years old, Table ES-1 of the 2011 Exposure Factors Handbook (EFH). See Table A3-13 for the calculations.
- (d) The teen SA and SA₆₋₁₆ represent the weighted average of the head, forearms, hands, and lower legs. Table 7-2 of the 2011 Exposure Factors Handbook (EFH). See Table A3-14 for the calculations.
- (e) SSAF value represents a 95th percentile value for a teen soccer player in moist field conditions. Value derived from Exhibit 3-3 of USEPA Dermal Guidance, Part E of RAGS (USEPA, 2004).

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Teen Trespasser, Ingestion and Dermal Contact with Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe:	Current/Future
Medium:	Soil
Exposure Medium:	Soil

Exposure Route Receptor Population Receptor Age Exposure Point Parameter Code	Parameter Definition	Value Not	te Units	Rationale/ Reference	Intake Equation/ Model Name
---	----------------------	-----------	----------	-------------------------	--------------------------------

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2004 Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005.

USEPA, 2005a Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.

USEPA, 2007 Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.

USEPA, 2011 Edition. EPA/600/R-09/052F. September. http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Teen Trespasser, Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Teen Trespasser	Teen	Inhalation of Windblown		Exposure Concentration Chemical Concentration in Air	Calculated Site-Specific		μg/m3 μg/m3		Non-Mutagenic Constituents Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	4	(b)	hr/day	See notes below	
				EF-SO	Exposure Frequency, Soil	24	(b)	days/year	See notes below	Where:
				ED	Exposure Duration	10	(b)	years	See notes below	CA = (CS/PEF) x CF5
				ED ₆₋₁₆	Exposure Duration, 6-16 years	10		years	USEPA, 2005a	
				ADAF ₆₋₁₆	Age depend. adjust. factor, 6-16 years	3		unitless	USEPA, 2005a	Mutagenic Constituents
				CF5	Conversion Factor 5	1000		μg/mg		Exposure Concentration (EC) (μg/m³) =
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	CA x ET x EF-SO x ED ₆₋₁₆ x ADAF ₆₋₁₆ x 1/AT x
				AT-N	Averaging Time (Non-Cancer)	3650		days	ED x 365 days/year	1/(24 hours/day)

Notes:

(a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation).

(b) The teen trespasser is ages 6 -16 years old who plays in the wooded area, streams, and secluded areas 6 days per month, 4 months per year (EF = 24 days/year) for 4 hours/event (ET = 4 hours/day).

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2002 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24

USEPA, 2005a Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens. Risk Assessment Forum, EPA, Washington, DC. 20460, EPA/630/R-03/003F. March.

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Current/Future On-Site Outdoor Worker, Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil
Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	On-Site Outdoor Worker	Adult	Surface Soil (Current) Total Soil (Future)	IR-SO EF-SO ED CF3 RBA BW AT-C	Chemical Concentration in Soil Ingestion Rate of Soil Exposure Frequency, Soil Exposure Duration Conversion Factor 3 Relative Bioavailability Factor Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific 50 180 25 0.000001 1, 0.6 80 25550 9125	(a)	mg/kg mg/day days/year years kg/mg unitless kg days	Act 2 Act 2 Act 2 USEPA, 2007 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Chronic Daily Intake (CDI) (mg/kg-day) = CS x IR-SO x RBA x EF-SO x ED x CF3 x 1/BW x 1/AT
Dermal	On-Site Outdoor Worker	Adult	Surface Soil (Current) Total Soil (Future)	DABS SA SSAF EF-SO EV ED CF3 BW AT-C	Chemical Concentration in Soil Absorption Factor, dermal Skin Surface Area, Soil Contact Soil to Skin Adherence Factor Exposure Frequency, Soil Event Frequency Exposure Duration Conversion Factor 3 Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific Chemical Specific 3527 0.12 180 1 25 0.000001 80 25550 9125	(a) (b) (c)	mg/kg cm2 mg/cm2-event days/year events/day years kg/mg kg days days	USEPA, 2004 USEPA, 2014, 2015 USEPA, 2014, 2015 Act 2 USEPA, 2004 Act 2 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Dermally Absorbed Dose (DAD) (mg/kg-day) = DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT Where: Absorbed Dose per event (DA-event) (mg/cm2-event) = CS x CF3 x SSAF x DABS

Notes:

(a) Chemical-specific parameters are provided in Attachment A4.

(b) SA represents the weighted average of mean values for head, hands, and forearms (male and female, 21+ years old).

(c) SSAF represents the arithmetic mean of weighted average body parts specific (hands, forearms, and face) mean adherence factors for adult commercial/industrial activities.

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2004 Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005.

USEPA, 2007 Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.

USEPA, 2014 Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120

USEPA, 2015 "Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Current/Future On-Site Outdoor Worker, Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Outdoor	Adult	Inhalation of	EC	Exposure Concentration	Calculated		μg/m3	-	All Constituents
	Worker		Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) $(\mu g/m^3) =$
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	8		hr/day	Act 2	
				EF-SO	Exposure Frequency, Soil	180		days/year	Act 2	Where:
				ED	Exposure Duration	25		years	Act 2	CA = (CS/PEF) x CF5
				CF5	Conversion Factor 5	1000		μg/mg		
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	9125		days	ED x 365 days/year	

Notes:

(a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation).

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2002 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Future On-Site Utility Worker, Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Medium: Soil Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	On-Site Utility Worker	Adult	Total Soil	IR-SO EF-SO ED CF3 RBA BW AT-C	Chemical Concentration in Soil Ingestion Rate of Soil Exposure Frequency, Soil Exposure Duration Conversion Factor 3 Relative Bioavailability Factor Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific 330 20 1 0.000001 1, 0.6 80 25550 365	(a)	mg/kg mg/day days/year years kg/mg unitless kg days	USEPA, 2002 ORNL, 2018 USEPA, 1991 USEPA, 2007 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Chronic Daily Intake (CDI) (mg/kg-day) = CS x IR-SO x RBA x EF-SO x ED x CF3 x 1/BW x 1/AT
Dermal	On-Site Utility Worker	Adult	Total Soil	DABS SA SSAF EF-SO EV ED CF3 BW AT-C	Chemical Concentration in Soil Absorption Factor, dermal Skin Surface Area, Soil Contact Soil to Skin Adherence Factor Exposure Frequency, Soil Event Frequency Exposure Duration Conversion Factor 3 Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific Chemical Specific 3527 0.2 20 1 1 0.000001 80 25550 365	(b) (c) (d) (a)	mg/kg cm2 mg/cm2-event days/year events/day years kg/mg kg days days	USEPA, 2004 USEPA, 2014, 2015 USEPA, 2004 ORNL, 2018 USEPA, 2004 USEPA, 1991 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Dermally Absorbed Dose (DAD) (mg/kg-day) = DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT Where: Absorbed Dose per event (DA-event) (mg/cm2-event) = CS x CF3 x SSAF x DABS

Notes:

- (a) It is assumed that utility line work would take 20 days out of the year, working typical 8 hour day shifts.
- (b) Chemical-specific parameters are provided in Attachment A4.
- (c) SA represents the weighted average of mean values for head, hands, and forearms (male and female, 21+ years old).
- (d) SSAF represents the arithmetic mean adherence factor for adult commercial/industrial activities, specifically for a utility worker. Value derived from Exhibit 3-3 of USEPA Dermal Guidance, Part E of RAGS (USEPA, 2004).

Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines. Act 2 ORNL, 2018 RAIS Preliminary Remediation Goals (PRGs) for Chemicals User's Guide. https://rais.ornl.gov/tools/rais_chemical_prg_guide.html USEPA, 1991 Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors: Interim Final. March. OSWER 9285.6-03. USEPA, 2002 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24 USEPA, 2004 Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005. USEPA, 2007 Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May. Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120 USEPA, 2014 USEPA, 2015 "Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Future On-Site Utility Worker, Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Medium: Soil Exposure Medium: Outdoor Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Utility	Adult	Inhalation of	EC	Exposure Concentration	Calculated		μg/m3		All Constituents
	Worker		Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	CS	Chemical Concentration in Soil	Site-Specific		mg/kg	-	1/(24 hours/day)
				ET	Exposure Time	8	(b)	hr/day	USEPA, 2014, 2015	
				EF-SO	Exposure Frequency, Soil	20	(b)	days/year	ORNL, 2018	Where:
				ED	Exposure Duration	1		years	USEPA, 1991	CA = (CS/PEF) x CF5
				CF5	Conversion Factor 5	1000		μg/mg		
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	365		days	ED x 365 days/year	

Notes:

(a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation). (b) It is assumed that utility line work would take 20 days out of the year, working typical 8 hour day shifts.

Act 2	Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.
USEPA, 2002	Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24
ORNL, 2018	RAIS Preliminary Remediation Goals (PRGs) for Chemicals User's Guide. https://rais.ornl.gov/tools/rais_chemical_prg_guide.html
USEPA, 1991	Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual Supplemental Guidance Standard Default Exposure Factors: Interim Final. March. OSWER 9285.6-03.
USEPA, 2002	Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24
USEPA, 2014	Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120
USEPA, 2015	"Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations Reasonable Maximum Exposure: Future On-Site Constuction Worker, Ingestion and Dermal Contact with Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Medium: Soil Exposure Medium: Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	On-Site Construction Worker	Adult	Total Soil	IR-SO EF-SO ED CF3 RBA	Chemical Concentration in Soil Ingestion Rate of Soil Exposure Frequency, Soil Exposure Duration Conversion Factor 3 Relative Bioavailability Factor Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific 330 60 1 0.000001 1, 0.6 80 25550 365	(b)	mg/kg mg/day days/year years kg/mg unitless kg days	USEPA, 2002 Proj Judgment USEPA, 2002 USEPA, 2007 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Chronic Daily Intake (CDI) (mg/kg-day) = CS x IR-SO x RBA x EF-SO x ED x CF3 x 1/BW x 1/AT
Dermal	On-Site Construction Worker	Adult	Total Soil	DABS SA SSAF EF-SO EV ED CF3	Chemical Concentration in Soil Absorption Factor, dermal Skin Surface Area, Soil Contact Soil to Skin Adherence Factor Exposure Frequency, Soil Event Frequency Exposure Duration Conversion Factor 3 Body Weight Averaging Time (Cancer) Averaging Time (Non-Cancer)	Site-Specific Chemical Specific 3527 0.3 60 1 0.000001 80 25550 365	(b) (c) (d)	mg/kg cm2 mg/cm2-event days/year events/day years kg/mg kg days days	USEPA, 2004 USEPA, 2014, 2015 USEPA, 2004 Proj Judgment USEPA, 2004 USEPA, 2002 USEPA, 2014, 2015 Act 2 ED x 365 days/year	All Constituents Dermally Absorbed Dose (DAD) (mg/kg-day) = DA-event x EF-SO x EV x ED x SA x 1/BW x 1/AT Where: Absorbed Dose per event (DA-event) (mg/cm2-event) = CS x CF3 x SSAF x DABS

Notes:

(a) It is assumed that excavation activities are likely to take 3 months (5 days/week x 4 weeks/month x 3 months/year) at this site which is less than a quarter acre in size.

- (b) Chemical-specific parameters are provided in Attachment A4.
- (c) SA represents the weighted average of mean values for head, hands, and forearms (male and female, 21+ years old).
- (d) SSAF represents the 95th percentile adherence factor for adult commercial/industrial activities, specifically for the construction worker. Value derived from Exhibit 3-3 of USEPA Dermal Guidance, Part E of RAGS (USEPA, 2004).

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2002 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24

USEPA, 2004 Risk Assessment Guidance for Superfund, Volume 1, Human Health Evaluation Manual, Part E, Supplemental Guidance for Dermal Risk Assessment, Final, July, EPA/540/R/99/005.

USEPA, 2007 Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.

USEPA, 2014 Human Health Evaluation Manual, Update of Standard Default Exposure Factors. OSWER-Directive-9200-1-120

USEPA, 2015 "Frequently Asked Questions (FAQS) About Update of Standard Default Exposure Factors" dated September 14, 2015. https://rais.ornl.gov/documents/FAQs-ExpF-Directive2.pdf

Values Used for Daily Intake Calculations

Reasonable Maximum Exposure: Future On-Site Construction Worker, Inhalation of Wind-blown Dust in Outdoor Air from Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future

Medium: Soil

Exposure Medium: Outdoor Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Note	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	On-Site Utility	Adult	Inhalation of	EC	Exposure Concentration	Calculated		μg/m3		All Constituents
	Worker		Windblown	CA	Chemical Concentration in Air	Site-Specific		μg/m3		Exposure Concentration (EC) (μg/m³) =
			Dust in	PEF	Particulate Emissions Factor	Site-Specific	(a)	m3/kg	USEPA, 2002	CA x ET x EF-SO x ED x 1/AT x
			Outdoor Air	CS	Chemical Concentration in Soil	Site-Specific		mg/kg		1/(24 hours/day)
				ET	Exposure Time	8		hr/day	Act 2	
				EF-SO	Exposure Frequency, Soil	60	(b)	days/year	Proj Judgment	Where:
				ED	Exposure Duration	1		years	USEPA, 2002	CA = (CS/PEF) x CF5
				CF5	Conversion Factor 5	1000		μg/mg	-	
				AT-C	Averaging Time (Cancer)	25550		days	Act 2	
				AT-N	Averaging Time (Non-Cancer)	365		days	ED x 365 days/year	

Notes:

(a) Inhalation of particulates from soils is assumed using a site-specific PEF. No volatiles were identified as chemicals of potential concern (See Attachment A4 for PEF derivation).

(b) It is assumed that excavation activities are likely to take 3 months (5 days/week x 4 weeks/month x 3 months/year) at this site which is less than a quarter acre in size.

Act 2 Pennsylvania Land Recycling and Environmental Remediation Standards Act of 1995 and Title 25 Chapter 250 guidelines.

USEPA, 2002 Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, December. OSWER 9355.4-24

Table A2-13 Values Used for Body Weight Calculations Teen Trespasser Body Weight Calculations Ridgway Training Range, Pennsylvania

Rece	ptor Age Range (Years):	10	
	Mean Body	Time Weight	Adjusted Body
	Weight	Factor (1)	Weight
Age Group	(kg)	(%)	(kg)
6 to <11 years	31.8	0.5	16
11 to <16 years	56.8	0.5	28
Во	dy Weight (BW) Total (kg	g):	44

Notes:

Source: USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/ 600/ R-090/052F, September 2011.

Table ES-1. Summary of Exposure Factor Recommendations, Chapter 8, Body Weight, page xvii (1) Time-weight factor is derived by dividing the age group timeframe (years) by the receptor age range (years; yellow-highlighted cell).

Values Used for Skin Surface Areas Calculations for Teen Trespasser Ridgway Training Range, Pennsylvania Exposure Media: Soil Table A2-14

37/10		(cm2)	Skin Surface Area (SA) Totals (cm2):	Skin Surface A					
	-	1120	2172	5430	028	1211	2690	260	16 to <21 years
2202	0.50	1050	1932	4830	720	1022	2270	730	11 to <16 years
1547	0.50	730	1244	3110	510	089	1510	099	6 to <11 years
6-16 years	(%)	cm²	cm ²	cm ₂	cm ²	cm²	cm _z	cm ₂	Age Group
Soil (2)	Factor (1)	Feet	Lower Legs	regs	Hands	Forearms	Arms	Head	
	Weight		'-2, Page 7-6)	, 2011; Table 7	Part ^g (USEPA,	Mean Surface Area by Body Part 9 (USEPA, 2011; Table 7-2, Page 7-6)	Mean Surfac		
years)	Time-								
Youth (6-16	10	ange (Years):	Receptor Age Range (Years): 10 Youth (6-16						

- = not applicable; cm² = square centimeters; SA = skin surface area; USEPA = U.S. Environmental Protection Agency

Sources: USEPA, 2011. Exposure Factors Handbook: 2011 Edition. EPA/ 600/ R-090/052F, September 2011.

Surface area values from USEPA (2011) were converted into cm² by multiplying the skin surface areas (m²) by a conversion factor of 10,000 cm²/m².

- Time-weight factor is derived by dividing the age group timeframe (years) by the receptor age range (years; yellow-highlighted cell). (7)
 - For soil exposure, the weighted mean values for head, forearms, hands and lower legs are used.

	1101.01		IF HP 1. O. I	
	UCL SI	atistics for Unc	ensored Full Data Sets	
User Selected Options				
·	ProUCL 5.110/27/2018 10:45:3) AM		
,	ProUCLInput_KLgw2.xls	J AIVI		
	OFF			
	95%			
Number of Bootstrap Operations	2000			
arget Berm Antimony Surface Soil				
		General	Statistics	
	Total Number of Observations	6	Number of Distinct Observations	6
	Total Namber of Observations		Number of Missing Observations	1
	Minimum	0.195	Mean	34.2
	Maximum	89.5	Median	25.17
		38.33	Std. Error of Mean	15.65
	SD			
	Coefficient of Variation	1.121	Skewness	0.502
No	te: Sample size is small (e.g.,	<10), if data a	re collected using ISM approach, you should use	
gui	dance provided in ITRC Tech I	Reg Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
			yshev UCL to estimate EPC (ITRC, 2012).	
CI			nparametric and All UCL Options of ProUCL 5.1	
	,			
		Normal (GOF Test	
	Shapiro Wilk Test Statistic	0.854	Shapiro Wilk GOF Test	
	5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.284	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.325	Data appear Normal at 5% Significance Level	
			11	
	Data ap	opear Normai a	t 5% Significance Level	
		Accuming Nor	mal Distribution	
95% No.	mal UCL	Assuming Non	95% UCLs (Adjusted for Skewness)	
3070 1401	95% Student's-t UCL	65.73	95% Adjusted-CLT UCL (Chen-1995)	63.36
	93 % Student's-t OCL	05.75	95% Modified-t UCL (Johnson-1978)	66.26
			95% Modified-t OCE (Johnson-1978)	00.20
			GOF Test	
	A-D Test Statistic	0.47	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significance Leve	el
	K-S Test Statistic	0.264	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	el
	Detected data app	ear Gamma Di	stributed at 5% Significance Level	
			Statistics	
	k hat (MLE)	0.397	k star (bias corrected MLE)	0.31
	Theta hat (MLE)	86.13	Theta star (bias corrected MLE)	110.4
	nu hat (MLE)	4.765	nu star (bias corrected)	3.716
	MLE Mean (bias corrected)	34.2	MLE Sd (bias corrected)	61.46
			Approximate Chi Square Value (0.05)	0.613
	Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.29
		Accuming Com	nma Distribution	
		207.4	95% Adjusted Gamma UCL (use when n<50)	438.1
QE9/ Approximate C	amma LICI /uco whom n>=F0\\		95% Aujusieu Gamma UCL (use when n<50)	4JO. I
95% Approximate G	amma UCL (use when n>=50))	207.4		
95% Approximate G	amma UCL (use when n>=50))		I GOF Test	
95% Approximate G		Lognorma	I GOF Test Shapiro Wilk Lognormal GOF Test	
	amma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value		I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	

Prepared for Army National Guard

AECOM
1 of 12

5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level	
		at 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	-1.635	Mean of logged Data	1.873
Maximum of Logged Data	4.494	SD of logged Data	2.721
-	Assuming Logno	ormal Distribution	
95% H-UCL	79518617	90% Chebyshev (MVUE) UCL	238.2
95% Chebyshev (MVUE) UCL	315.7	97.5% Chebyshev (MVUE) UCL	423.3
99% Chebyshev (MVUE) UCL	634.6		
•		tion Free UCL Statistics	
Data appear to follow	v a Discernible	Distribution at 5% Significance Level	
No.		Adhedes For 100 a	
NOT 95% CLT UCL	59.93	stribution Free UCLs 95% Jackknife UCL	65.73
95% CLT UCL 95% Standard Bootstrap UCL	59.93 57.47	95% Jackknife UCL 95% Bootstrap-t UCL	65.73
<u> </u>	57.47	·	59.17
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	52.94	95% Percentile Bootstrap UCL	J9.17
95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	81.14	95% Chebyshev(Mean, Sd) UCL	102.4
97.5% Chebyshev(Mean, Sd) UCL	131.9	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	189.9
97.3% Chebyshev(Weah, 3u) OCL	131.9	33 % Chebyshev (Mean, Su) OCL	105.5
	Suggested	UCL to Use	
95% Student's-t UCL	65.73		
	30.70		
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
		ta size, data distribution, and skewness.	
There were additional over beautiful and the	and the set the set of		
		nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician.	
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician. Statistics	6
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations	6
However, simulations results will not cover all Reaget Berm Copper Surface Soll Total Number of Observations	General	ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	1
However, simulations results will not cover all Readers and Service Soll Total Number of Observations Minimum	General 6	Statistics Number of Distinct Observations Number of Missing Observations Mean	1 470.5
However, simulations results will not cover all Readers Soll Total Number of Observations Minimum Maximum	General 6 16.9 1830	Statistics Number of Distinct Observations Number of Missing Observations Mean Median	1 470.5 177.5
However, simulations results will not cover all	General 6 16.9 1830 703.4	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	1 470.5 177.5 287.2
However, simulations results will not cover all Reading Set Berm Copper Surface Soll Total Number of Observations Minimum Maximum	General 6 16.9 1830	Statistics Number of Distinct Observations Number of Missing Observations Mean Median	1 470.5 177.5
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 <10), if data al	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 , <10), if data as Reg Guide on Is int to use Cheby	Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 , <10), if data as Reg Guide on Is int to use Cheby	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012).	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 <10), if data as Reg Guide on Is int to use Chebyed using the No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012).	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 <10), if data as Reg Guide on Is int to use Chebyed using the No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). paparametric and All UCL Options of ProUCL 5.1	1 470.5 177.5 287.2
However, simulations results will not cover all	General 6 16.9 1830 703.4 1.495 .<10), if data at Reg Guide on Batto use Chebyed using the Normal 6 0.736	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1	1 470.5 177.5 287.2
However, simulations results will not cover all Res get Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guldance provided in ITRC Tech For example, you may wa Chebyshev UCL can be compute Shapiro Wilk Test Statistic	General 6 16.9 1830 703.4 1.495 .<10), if data at Reg Guide on Batto use Chebyed using the Normal 6 0.736	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). onparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	1 470.5 177.5 287.2
However, simulations results will not cover all Res get Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech For example, you may wa Chebyshev UCL can be compute Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	General 6 16.9 1830 703.4 1.495 .<10), if data at Reg Guide on Batte to use Chebed using the Normal 6 0.736 0.738 0.264	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	1 470.5 177.5 287.2
However, simulations results will not cover all Reading Set Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech in For example, you may was Chebyshev UCL can be computed to the computed of the computed in ITRC Tech in Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	General 6 16.9 1830 703.4 1.495 .<10), if data at Reg Guide on Batte to use Cheb; ed using the No.736 0.736 0.738 0.264 0.325	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). onparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	1 470.5 177.5 287.2
However, simulations results will not cover all Reading Set Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech in For example, you may was Chebyshev UCL can be computed to the computed of the computed in ITRC Tech in Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	General 6 16.9 1830 703.4 1.495 .<10), if data at Reg Guide on Batte to use Cheb; ed using the No.736 0.736 0.738 0.264 0.325	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level	1 470.5 177.5 287.2
However, simulations results will not cover all Reading Set Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech in For example, you may was Chebyshev UCL can be computed to the computed of the computed in ITRC Tech in Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear A	General 6 16.9 1830 703.4 1.495 .<10), if data ar Reg Guide on Br nt to use Chebred using the No Normal (1) 0.736 0.788 0.264 0.325 Approximate No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Syshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilllefors GOF Test Data appear Normal at 5% Significance Level Immal Distribution	1 470.5 177.5 287.2
However, simulations results will not cover all Reading Set Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech in For example, you may was Chebyshev UCL can be computed to the computed of the computed in ITRC Tech in Shapiro Wilk Test Statistic Shapiro Wilk Critical Value Lilliefors Test Statistic Shapiro Critical Value Data appear A	General 6 16.9 1830 703.4 1.495 .<10), if data ar Reg Guide on Br nt to use Chebred using the No Normal (1) 0.736 0.788 0.264 0.325 Approximate No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness re collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. yshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data appear Normal at 5% Significance Level wmal at 5% Significance Level mal Distribution 95% UCLs (Adjusted for Skewness)	1 470.5 177.5 287.2 1.944
However, simulations results will not cover all Reading Set Berm Copper Surface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech in For example, you may was Chebyshev UCL can be computed to the computed of the computed in ITRC Tech in Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear A	General 6 16.9 1830 703.4 1.495 .<10), if data ar Reg Guide on Br nt to use Chebred using the No Normal (1) 0.736 0.788 0.264 0.325 Approximate No	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Syshev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilllefors GOF Test Data appear Normal at 5% Significance Level Immal Distribution	1 470.5 177.5 287.2

AECOM 2 of 12 Prepared for Army National Guard

	C	COETast	
A D Total Obstation		GOF Test	
A-D Test Statistic	0.331	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Significance Leve	el .
K-S Test Statistic	0.234	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.348	Detected data appear Gamma Distributed at 5% Significance Level	el
ретестеd data арр	ear Gamma D	istributed at 5% Significance Level	
	0	Obstaller	
LL AUS		Statistics	0.007
k hat (MLE)	0.512 918.3	k star (bias corrected MLE) Theta star (bias corrected MLE)	0.367
Theta hat (MLE)		, ,	
nu hat (MLE)	6.148	nu star (bias corrected) MLE Sd (bias corrected)	4.407
MLE Mean (bias corrected)	470.5	, ,	776.3
Adiana di mala fi O'ma'f	0.0400	Approximate Chi Square Value (0.05)	0.889
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.452
		District.	
		mma Distribution	4507
95% Approximate Gamma UCL (use when n>=50))	2333	95% Adjusted Gamma UCL (use when n<50)	4587
		al GOF Test	
Shapiro Wilk Test Statistic	0.924	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.177	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognorma	at 5% Significance Level	
	Lognorm	al Statistics	
Minimum of Logged Data	2.827	Mean of logged Data	4.919
Maximum of Logged Data	7.512	SD of logged Data	1.908
A	ssuming Logr	ormal Distribution	
95% H-UCL	452817	90% Chebyshev (MVUE) UCL	1523
95% Chebyshev (MVUE) UCL	1988	97.5% Chebyshev (MVUE) UCL	2634
99% Chebyshev (MVUE) UCL	3904		
Nonpara	ametric Distrib	ution Free UCL Statistics	
Data appear to follow	v a Discernible	Distribution at 5% Significance Level	
Nor	parametric Di	stribution Free UCLs	
95% CLT UCL	942.8	95% Jackknife UCL	1049
95% Standard Bootstrap UCL	898.9	95% Bootstrap-t UCL	2969
95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	936.8
95% BCA Bootstrap UCL		3575. 51551 255538449 662	
90% Chebyshev(Mean, Sd) UCL	1332	95% Chebyshev(Mean, Sd) UCL	1722
97.5% Chebyshev(Mean, Sd) UCL	2264	99% Chebyshev(Mean, Sd) UCL	3328
57.576 Gliebyshev(misall, 3u) OCL		33 % Onebysnev(mean, 3d) OCL	5020
	Suggeste	d UCL to Use	
95% Student's-t UCL	1049		
55 % Students-t OCL	1040		
Millian a data ant £-11	rovimote /e -	normal) distribution passing one of the COT to-t	
		normal) distribution passing one of the GOF test	
when applicable, it is suggested to use a UC	∟ pased upon	a distribution (e.g., gamma) passing both GOF tests in ProUCL	
Make Occasion and the state of the	050/ 1101	and the help the country polarithe mark to the CENT LIGHT	
		rovided to help the user to select the most appropriate 95% UCL.	
		ata size, data distribution, and skewness.	
		mulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	al World data s	ets; for additional insight the user may want to consult a statistician.	
Target Berm Lead Surface Soil			

Prepared for Army National Guard

AECOM
3 of 12

	General	Statistics	
Total Number of Observation	s 7	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimur	n 41.2	Mean	5347
Maximur	n 17500	Median	1130
SI	D 6875	Std. Error of Mean	2599
Coefficient of Variatio	n 1.286	Skewness	1.036
Note: Sample size is small (e.c.	<10) if data a	re collected using ISM approach, you should use	
	•	ISM (ITRC, 2012) to compute statistics of interest.	
		syshev UCL to estimate EPC (ITRC, 2012).	
	-	onparametric and All UCL Options of ProUCL 5.1	
	Normal	GOF Test	
Shapiro Wilk Test Statisti		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Valu	e 0.803	Data appear Normal at 5% Significance Level	
Lilliefors Test Statisti		Lilliefors GOF Test	
5% Lilliefors Critical Valu		Data appear Normal at 5% Significance Level	
		at 5% Significance Level	
	- Ippour Horman u	ton digitimation coron	
	Assuming Nor	rmal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UC	∟ 10396	, , ,	10708
		95% Modified-t UCL (Johnson-1978)	10566
	Gamma	GOF Test	
A-D Test Statisti		Anderson-Darling Gamma GOF Test	
5% A-D Critical Valu		Detected data appear Gamma Distributed at 5% Significance Leve	el .
K-S Test Statisti		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Valu		Detected data appear Gamma Distributed at 5% Significance Leve	al
		istributed at 5% Significance Level	
		Statistics	
k hat (MLE	*	k star (bias corrected MLE)	0.307
Theta hat (MLE	<u> </u>	` '	17422
nu hat (MLE	<u> </u>	nu star (bias corrected)	4.297
MLE Mean (bias corrected	i) 5347	MLE Sd (bias corrected)	9651
		Approximate Chi Square Value (0.05)	0.842
Adjusted Level of Significanc	e 0.0158	Adjusted Chi Square Value	0.478
	Assuming Gar	mma Distribution	
95% Approximate Gamma UCL (use when n>=50)		95% Adjusted Gamma UCL (use when n<50)	48049
	Lognorma	al GOF Test	
Shapiro Wilk Test Statisti		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Valu		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statisti		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Valu		Data appear Lognormal at 5% Significance Level	
5% Lillelois Childai valu		l at 5% Significance Level	
Data or	/pour cognitional	at 070 Organication Level	
Data ap	·		
Data ap		al Statistics	
Data ap Minimum of Logged Dat		al Statistics Mean of logged Data	6.786
	a 3.718		
Minimum of Logged Dat Maximum of Logged Dat	a 3.718 a 9.77	Mean of logged Data SD of logged Data	6.786 2.625
Minimum of Logged Dat Maximum of Logged Dat	a 3.718 a 9.77 Assuming Logno	Mean of logged Data SD of logged Data ormal Distribution	2.625
Minimum of Logged Dat Maximum of Logged Dat	a 3.718 a 9.77 Assuming Logno	Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL	

AECOM 4 of 12 Prepared for Army National Guard

Nonpara	metric Distribu	tion Free UCL Statistics	
<u> </u>		Distribution at 5% Significance Level	
··			
Nor	parametric Dis	tribution Free UCLs	
95% CLT UCL	9621	95% Jackknife UCL	10396
95% Standard Bootstrap UCL	9320	95% Bootstrap-t UCL	14439
95% Hall's Bootstrap UCL	8948	95% Percentile Bootstrap UCL	9797
95% BCA Bootstrap UCL	9947		
90% Chebyshev(Mean, Sd) UCL	13143	95% Chebyshev(Mean, Sd) UCL	16674
97.5% Chebyshev(Mean, Sd) UCL	21575	99% Chebyshev(Mean, Sd) UCL	31203
	Suggested	UCL to Use	
95% Student's-t UCL	10396		
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are	based upon dat	a size, data distribution, and skewness.	
These recommendations are based upon the re	esults of the sim	ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician.	
Target Berm Zinc Surface Soil			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	1
Minimum	62.2	Mean	132.6
Maximum	292	Median	105.1
SD	85.43	Std. Error of Mean	34.88
Coefficient of Variation	0.644	Skewness	1.652
Note: Sample size is small (e.g.,	<10), if data ar	e collected using ISM approach, you should use	
		SM (ITRC, 2012) to compute statistics of interest.	
		/shev UCL to estimate EPC (ITRC, 2012).	
		nparametric and All UCL Options of ProUCL 5.1	
	, and an		
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.831	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.739	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.235	Data appear Normal at 5% Significance Level	
		5% Significance Level	
Data ap	poar Horrial Bl	. O A Organication Level	
	Accuming Non	mal Distribution	
95% Normal UCL	Assuming 140H	95% UCLs (Adjusted for Skewness)	
90% NOTHAL UCL		95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	
	202.0		215 1
95% Student's-t UCL	202.9	, ,	215.1
	202.9	95% Adjusted-CLT OCE (Criefi-1995) 95% Modified-t UCL (Johnson-1978)	215.1 206.8
		95% Modified-t UCL (Johnson-1978)	
95% Student's-t UCL	Gamma	95% Modified-t UCL (Johnson-1978) GOF Test	
95% Student's-t UCL A-D Test Statistic	Gamma (95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test	206.8
95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value	Gamma 0.321	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Leve	206.8
95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic	Gamma (0.321 0.701 0.188	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	206.8
95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma (0.321 0.701 0.188 0.334	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Leve Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Leve	206.8
95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma (0.321 0.701 0.188 0.334	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test	206.8
95% Student's-t UCL A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	Gamma (0.321 0.701 0.188 0.334 eear Gamma Did	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level	206.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data app	Gamma (0.321	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level Statistics	206.8
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data app	Gamma 0.321 0.701 0.188 0.334 eeer Gamma Did Gamma 3.602	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level Statistics k star (bias corrected MLE)	206.8 el
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data app k hat (MLE) Theta hat (MLE)	Gamma 0.321 0.701 0.188 0.334 eeer Gamma Did Gamma 3.602 36.81	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	206.8 el 1.912 69.35
A-D Test Statistic 5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data app	Gamma 0.321 0.701 0.188 0.334 eeer Gamma Did Gamma 3.602	95% Modified-t UCL (Johnson-1978) GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level Statistics k star (bias corrected MLE)	206.8 el

Prepared for Army National Guard

AECOM
5 of 12

		Approximate Chi Square Value (0.05)	13.05
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	10.46
, ,			
	Assuming Gar	mma Distribution	
95% Approximate Gamma UCL (use when n>=50))	233.2	95% Adjusted Gamma UCL (use when n<50)	290.9
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.948	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.153	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level	
Data арр	ear Lognorma	at 5% Significance Level	
	Lognorm	al Statistics	
Minimum of Logged Data	4.13	Mean of logged Data	4.742
Maximum of Logged Data	5.677	SD of logged Data	0.568
maximam or Edgged 2 did	0.077	CD of logged Data	0.000
A	ssuming Logn	ormal Distribution	
95% H-UCL	274.7	90% Chebyshev (MVUE) UCL	221.6
95% Chebyshev (MVUE) UCL	262.7	97.5% Chebyshev (MVUE) UCL	319.8
99% Chebyshev (MVUE) UCL	431.9		
Nonpara	metric Distrib	ution Free UCL Statistics	
Data appear to follow	a Discernible	Distribution at 5% Significance Level	
	-	stribution Free UCLs	
95% CLT UCL	190	95% Jackknife UCL	202.9
95% Standard Bootstrap UCL	184.1	95% Bootstrap-t UCL	292.4
95% Hall's Bootstrap UCL	460.9	95% Percentile Bootstrap UCL	187.2
95% BCA Bootstrap UCL	204.5	05% Obstacles (Mass 0.4) 1101	004.0
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	237.2 350.4	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	284.6 479.6
97.5% Chebyshev(Mean, 3u) OCL	330.4	99% Chebyshev(Mean, Su) OCL	479.0
	Suggested	I UCL to Use	
95% Student's-t UCL	202.9		
Note: Suggestions regarding the selection of a S	95% UCL are p	rovided to help the user to select the most appropriate 95% UCL.	
Recommendations are	based upon da	ata size, data distribution, and skewness.	
These recommendations are based upon the re	esults of the sir	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	l World data se	ets; for additional insight the user may want to consult a statistician.	
arget Berm Antimony Total Soil			
		Charlest -	
Total Number of Observations	Genera 8	Statistics Number of Distinct Observations	8
i otal number of observations	O	Number of Distinct Observations Number of Missing Observations	1
Minimum	0.195	Number of Missing Observations Mean	30.68
Maximum	89.5	Median	20.14
SD	33.96	Std. Error of Mean	12.01
Coefficient of Variation	1.107	Skewness	0.759
	<u> </u>	1	
Note: Sample size is small (e.g.,	<10), if data a	re collected using ISM approach, you should use	
guidance provided in ITRC Tech I	Reg Guide on	ISM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheb	yshev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be compute	ed using the N	onparametric and All UCL Options of ProUCL 5.1	
		GOF Test	
Shapiro Wilk Test Statistic	0.862	Shapiro Wilk GOF Test	

AECOM 6 of 12 Prepared for Army National Guard

FOU Observe MUL Octive I Volum	0.010	Data Named at 50/ 0:: 5 1	
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.271	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level	
Data ap	pear Normal a	t 5% Significance Level	
	Assuming Non	mal Distribution	
95% Normal UCL	Assuming Non	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	53.43	95% Adjusted-CLT UCL (Chen-1995)	53.87
30% 014401110 1 3 3 2	00.10	95% Modified-t UCL (Johnson-1978)	53.96
	Gamma	GOF Test	
A-D Test Statistic	0.386	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.768	Detected data appear Gamma Distributed at 5% Significance Leve	l
K-S Test Statistic	0.217	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.31	Detected data appear Gamma Distributed at 5% Significance Leve	ıl
Detected data app	ear Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.471	k star (bias corrected MLE)	0.377
Theta hat (MLE)	65.21	Theta star (bias corrected MLE)	81.3
nu hat (MLE)	7.528	nu star (bias corrected)	6.038
MLE Mean (bias corrected)	30.68	MLE Sd (bias corrected)	49.94
		Approximate Chi Square Value (0.05)	1.66
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	1.146
		nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	111.6	95% Adjusted Gamma UCL (use when n<50)	161.6
		100=	
Observe Will Took Outliefe	=	I GOF Test	
Shapiro Wilk Test Statistic	0.875	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.234 0.283	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level at 5% Significance Level	
Бака арр	ear Logiloilliai	at 0 % Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	-1.635	Mean of logged Data	2.061
Maximum of Logged Data	4.494	SD of logged Data	2.378
A	ssuming Logna	ormal Distribution	
95% H-UCL		90% Chebyshev (MVUE) UCL	197.8
95% Chebyshev (MVUE) UCL	260.2	97.5% Chebyshev (MVUE) UCL	346.8
99% Chebyshev (MVUE) UCL	517		
	-	· ·	
•		tion Free UCL Statistics	
Data appear to follow	a Discemible	Distribution at 5% Significance Level	-
	=	tribution Free UCLs	
95% CLT UCL	50.43	95% Jackknife UCL	53.43
95% Standard Bootstrap UCL	48.98	95% Bootstrap-t UCL	61.64
95% Hall's Bootstrap UCL	52.62	95% Percentile Bootstrap UCL	49.9
95% BCA Bootstrap UCL	51.33	050/ Obahisahasi/Mars 0.0 UO	92.01
90% Chebyshev(Mean, Sd) UCL	66.7	95% Chebyshev(Mean, Sd) UCL	83.01
97.5% Chebyshev(Mean, Sd) UCL	105.7	99% Chebyshev(Mean, Sd) UCL	150.1
	Suggested	UCL to Use	
95% Student's-t UCL	Suggested 53.43	000 10 050	
95% Students-t UCL	JJ.43		
Note: Suggestions regarding the soloction of a C	95% LICL are pr	ovided to help the user to select the most appropriate 95% UCL.	
inote. Suggestions regarding the selection of a s	20 % OCL are pr	ovided to help the user to select the most appropriate 95% OCL.	

AECOM 7 of 12 Prepared for Army National Guard

necommendations are	hased upon da	ta size, data distribution, and skewness.	
These recommendations are based upon the r		nulation studies summarized in Singh, Maichle, and Lee (2006).	
		ts; for additional insight the user may want to consult a statistician.	
nowever, simulations results will not cover all Ne.	ai wonu uata se	ns, for additional insignit the user may want to consult a statistician.	
Toward Bown Common Todal Coll			
Target Berm Copper Total Soil			
		Statistics	
Total Number of Observations	8	Number of Distinct Observations	8
		Number of Missing Observations	1
Minimum	16.9	Mean	481.1
Maximum	1830	Median	181.6
SD	641.2	Std. Error of Mean	226.7
Coefficient of Variation	1.333	Skewness	1.6
Note: Sample size is small (e.g.	, <10), if data a	re collected using ISM approach, you should use	
guidance provided in ITRC Tech	Reg Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
	_	yshev UCL to estimate EPC (ITRC, 2012).	
		onparametric and All UCL Options of ProUCL 5.1	
Onobysilor OOL can be comput	on doing the MC	mparametric and rin GOE Options of F1000E 0.1	
	Mannal	GOF Test	
Charles Mally Took Oracles			
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value		Data appear Normal at 5% Significance Level	
Data appear /	Approximate No	rmal at 5% Significance Level	
	Assuming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	910.6	95% Adjusted-CLT UCL (Chen-1995)	991
		95% Modified-t UCL (Johnson-1978)	932
	1		
	Gamma	GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.758	Detected data appear Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level	1
		stributed at 5% Significance Level	
Detected data app	pear Gamma Di	stributed at 5% Significance Level	
		6. d d	
		Statistics	0.455
k hat (MLE)		k star (bias corrected MLE)	0.436
Theta hat (MLE)		Theta star (bias corrected MLE)	
nu hat (MLE)		nu star (bias corrected)	6.969
MLE Mean (bias corrected)	481.1	MLE Sd (bias corrected)	729
		Annestiments Chi Course Value (0.05)	
		Approximate Chi Square Value (0.05)	2.154
Adjusted Level of Significance	0.0195	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	2.154 1.542
Adjusted Level of Significance	0.0195		
Adjusted Level of Significance	l		
Adjusted Level of Significance 95% Approximate Gamma UCL (use when n>=50))	Assuming Gar	Adjusted Chi Square Value	
	Assuming Gar	Adjusted Chi Square Value	1.542
	Assuming Gar	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50)	1.542
95% Approximate Gamma UCL (use when n>=50))	Assuming Gan	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50)	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	Assuming Gard 1557 Lognorma 0.923	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	Assuming Gard 1557 Lognorma 0.923 0.818	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	Assuming Gar 1557 Lognorma 0.923 0.818 0.191	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Assuming Gar 1557 Lognorma 0.923 0.818 0.191 0.283	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Assuming Gar 1557 Lognorma 0.923 0.818 0.191 0.283	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Assuming Gard 1557 Lognorma 0.923 0.818 0.191 0.283 Dear Lognormal	Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level at 5% Significance Level	1.542
95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	Assuming Gare 1557 Lognorma 0.923 0.818 0.191 0.283 Dear Lognorma Lo	Adjusted Chi Square Value nma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level	1.542

AECOM 8 of 12 Prepared for Army National Guard

Maximum of Logged Data	7.512	SD of logged Data	1.788
aa o. 25ggod 5a.a.	7.0.2	35 th tigget but	
	Assuming Logno	ormal Distribution	
95% H-UCL	33183	90% Chebyshev (MVUE) UCL	1565
95% Chebyshev (MVUE) UCL	2026	97.5% Chebyshev (MVUE) UCL	2666
99% Chebyshev (MVUE) UCL	3924		
	!		
Nonpar	ametric Distribu	tion Free UCL Statistics	
Data appear to follow	v a Discernible	Distribution at 5% Significance Level	
NO 95% CLT UCL	nparametric Dis	tribution Free UCLs 95% Jackknife UCL	010.6
	833.9		910.6
95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	2327	95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	858.5
95% BCA Bootstrap UCL	968	95% Percentile Bootstrap OCL	636.3
90% Chebyshev(Mean, Sd) UCL	1161	95% Chebyshev(Mean, Sd) UCL	1469
97.5% Chebyshev(Mean, Sd) UCL	1897	99% Chebyshev(Mean, Sd) UCL	2737
57.5% Chabyshov(maaii, Gd) GGE	1007	30% Chasyshov(Maan, ca) CCL	2707
	Suggested	UCL to Use	
95% Student's-t UCL	910.6		
	l		
When a data set follows an app	proximate (e.g.,	normal) distribution passing one of the GOF test	
When applicable, it is suggested to use a UC	L based upon a	distribution (e.g., gamma) passing both GOF tests in ProUCL	
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
	based upon dat	a size, data distribution, and skewness.	
Recommendations are			
	esults of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
These recommendations are based upon the the However, simulations results will not cover all Re		nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	
These recommendations are based upon the	al World data se	ts; for additional insight the user may want to consult a statistician.	
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil	al World data se	ts; for additional insight the user may want to consult a statistician. Statistics	
These recommendations are based upon the the However, simulations results will not cover all Re	al World data se	ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations	9
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations	General	ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum	General 9 41.2	ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean	0 4957
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum Maximum	General 9 41.2 17500	Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 4957 1130
These recommendations are based upon the the However, simulations results will not cover all Research Format Lead Total Soil Total Number of Observations Minimum Maximum SD	General 9 41.2 17500 6162	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 4957 1130 2054
These recommendations are based upon the the However, simulations results will not cover all Research Form Lead Total Soil Total Number of Observations Minimum Maximum	General 9 41.2 17500	Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 4957 1130
These recommendations are based upon the the However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation	General 9 41.2 17500 6162 1.243	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 4957 1130 2054
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g.	General 9 41.2 17500 6162 1.243 < 10), if data al	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 4957 1130 2054
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech	General 9 41.2 17500 6162 1.243 <10), if data all Reg Guide on Is	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 4957 1130 2054
These recommendations are based upon the However, simulations results will not cover all Re Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we	General 9 41.2 17500 6162 1.243 , <10), if data at Reg Guide on Is int to use Cheby	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	0 4957 1130 2054
These recommendations are based upon the However, simulations results will not cover all Re Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we	General 9 41.2 17500 6162 1.243 , <10), if data at Reg Guide on Is int to use Cheby	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Is a statistician.	0 4957 1130 2054
These recommendations are based upon the interest However, simulations results will not cover all Research Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we Chebyshev UCL can be comput	General 9 41.2 17500 6162 1.243 .<10), if data at Reg Guide on Is at the use Chebyed using the Normal General Comment of the C	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In order to estimate EPC (ITRC, 2012). In parametric and All UCL Options of ProUCL 5.1	0 4957 1130 2054
These recommendations are based upon the in However, simulations results will not cover all Research Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we Chebyshev UCL can be comput	General 9 41.2 17500 6162 1.243 , <10), if data ar Reg Guide on Is art to use Chebyed using the Normal (0.82)	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test	0 4957 1130 2054
These recommendations are based upon the interest However, simulations results will not cover all Research Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we Chebyshev UCL can be comput	General 9 41.2 17500 6162 1.243 .<10), if data ar Reg Guide on Is nt to use Chebyed using the No Normal (0.82 0.829	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	0 4957 1130 2054
These recommendations are based upon the I However, simulations results will not cover all Re Target Berm Lead Total Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech For example, you may we Chebyshev UCL can be comput Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	General 9 41.2 17500 6162 1.243 .<10), if data ar Reg Guide on Is art to use Chebyed using the Normal 0 0.82 0.829 0.288	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 4957 1130 2054
These recommendations are based upon the interest that the second state of the second	General 9 41.2 17500 6162 1.243 . <10), if data ar Reg Guide on Is at to use Chebyed using the No Normal 0 0.82 0.829 0.288 0.274	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Vishev UCL to estimate EPC (ITRC, 2012). Imparametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	0 4957 1130 2054
These recommendations are based upon the interest that the second state of the second	General 9 41.2 17500 6162 1.243 . <10), if data ar Reg Guide on Is at to use Chebyed using the No Normal 0 0.82 0.829 0.288 0.274	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 4957 1130 2054
These recommendations are based upon the interest that the second state of the second	General 9 41.2 17500 6162 1.243 <10), if data ar Reg Guide on Is at to use Chebyed using the No Normal 0 0.82 0.829 0.288 0.274 Not Normal at 5	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 GOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level S% Significance Level	0 4957 1130 2054
These recommendations are based upon the interest However, simulations results will not cover all Research However, simulations and substitutions of the Deservations of Minimum Maximum Maximum SD Coefficient of Variation and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coef	General 9 41.2 17500 6162 1.243 <10), if data ar Reg Guide on Is at to use Chebyed using the No Normal 0 0.82 0.829 0.288 0.274 Not Normal at 5	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Per collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Very Personal Compute Statistics of Interest. Very	0 4957 1130 2054
These recommendations are based upon the interest that the second in the interest that the second interest that the secon	General 9 41.2 17500 6162 1.243	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Pe collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Veney UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Skignificance Level Mal Distribution 95% UCLs (Adjusted for Skewness)	0 4957 1130 2054 1.173
These recommendations are based upon the interest However, simulations results will not cover all Research However, simulations and substitutions of the Deservations of Minimum Maximum Maximum SD Coefficient of Variation and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coefficient of Variations of Coefficient of Variations and Coef	General 9 41.2 17500 6162 1.243 <10), if data ar Reg Guide on Is at to use Chebyed using the No Normal 0 0.82 0.829 0.288 0.274 Not Normal at 5	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Pe collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Very UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0 4957 1130 2054 1.173
These recommendations are based upon the interest that the second in the interest that the second interest that the secon	General 9 41.2 17500 6162 1.243	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Pe collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Veney UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Skignificance Level Mal Distribution 95% UCLs (Adjusted for Skewness)	0 4957 1130 2054 1.173
These recommendations are based upon the interest that the second in the interest that the second interest that the secon	General 9 41.2 17500 6162 1.243	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Pe collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Very County Cou	0 4957 1130 2054 1.173
These recommendations are based upon the interest that the second in the interest that the second interest that the secon	General 9 41.2 17500 6162 1.243	Statistics Number of Distinct Observations Number of Missing Observations Number of Missing Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness Pe collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Very UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level Mal Distribution 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0 4957 1130 2054 1.173

AECOM 9 of 12 Prepared for Army National Guard

	0.700		
5% A-D Critical Value K-S Test Statistic	0.783 0.194	Detected data appear Gamma Distributed at 5% Significance Leve	91
5% K-S Critical Value		Kolmogorov-Smirnov Gamma GOF Test	
		Detected data appear Gamma Distributed at 5% Significance Level	əı
Detected data app	ear Gamma Di	stributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)	0.43	k star (bias corrected MLE)	0.361
Theta hat (MLE)	11522	Theta star (bias corrected MLE)	13735
nu hat (MLE)	7.744	nu star (bias corrected)	6.496
MLE Mean (bias corrected)	4957	MLE Sd (bias corrected)	8251
		Approximate Chi Square Value (0.05)	1.898
Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	1.421
	Assuming Gan	nma Distribution	
95% Approximate Gamma UCL (use when n>=50)			22661
Observe Will Tool Ourists		I GOF Test	
Shapiro Wilk Test Statistic	0.886	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.829	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.216	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.274	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormai	at 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	3.718	Mean of logged Data	6.997
Maximum of Logged Data	9.77	SD of logged Data	2.368
/	Assuming Logno	ormal Distribution	
95% H-UCL	4794800	90% Chebyshev (MVUE) UCL	28402
95% Chebyshev (MVUE) UCL	37314	97.5% Chebyshev (MVUE) UCL	49683
99% Chebyshev (MVUE) UCL	73980		
·		tion Free UCL Statistics	
Data appear to follow	v a Discemible	Distribution at 5% Significance Level	
No	narametric Dis	tribution Free UCLs	
95% CLT UCL	8335	95% Jackknife UCL	8776
95% Standard Bootstrap UCL	8078		10997
95% Hall's Bootstrap UCL	9295	95% Percentile Bootstrap UCL	8262
95% BCA Bootstrap UCL		3370 Fercentile Bookstrap OCL	0202
90% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL	13910
97.5% Chebyshev(Mean, Sd) UCL		99% Chebyshev(Mean, Sd) UCL	
22.3 333,33 (34, 002			
	Suggested	UCL to Use	
		·	
95% Adjusted Gamma UCL	22661		
		is the maximum observation	
Recommend	ded UCL exceed		
Recommend Note: Suggestions regarding the selection of a	ded UCL exceed	ds the maximum observation ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.	
Recommend Note: Suggestions regarding the selection of a Recommendations are	ded UCL exceed 95% UCL are probased upon date	ovided to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations.	ded UCL exceed 95% UCL are probased upon date	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations.	ded UCL exceed 95% UCL are probased upon date	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Res	ded UCL exceed 95% UCL are probased upon date	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Res	ded UCL exceed 95% UCL are probased upon date	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Res	ded UCL exceed 95% UCL are pr based upon dat esults of the sin al World data se	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations.	ded UCL exceed 95% UCL are pr based upon dat esults of the sin al World data se	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	8

AECOM 10 of 12 Prepared for Army National Guard

Minimum	62.2	Mean	136.5
Maximum	292	Median	112
SD	75.79	Std. Error of Mean	26.8
Coefficient of Variation	0.555	Skewness	1.37
Note: Sample size is small (e.g.,	<10), if data a	re collected using ISM approach, you should use	
guidance provided in ITRC Tech	Reg Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheb	yshev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be compute	ed using the No	onparametric and All UCL Options of ProUCL 5.1	
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.879	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.818	Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic	0.226	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.283	Data appear Normal at 5% Significance Level	
Data aj	pear Normal a	t 5% Significance Level	
	A	and Diethinian	
95% Normal UCL	Assuming Nor	mal Distribution 95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	187.2	95% Adjusted-CLT UCL (Chen-1995)	194.4
55% Statement OCE		95% Modified-t UCL (Johnson-1978)	189.4
		, , , , , , , , , , , , , , , , , , , ,	
	Gamma	GOF Test	
A-D Test Statistic	0.241	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.719	Detected data appear Gamma Distributed at 5% Significance Leve	I
K-S Test Statistic	0.184	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.295	Detected data appear Gamma Distributed at 5% Significance Leve	I
Detected data app	ear Gamma D	istributed at 5% Significance Level	
Lbss (AUE)	Gamma 4.326	Statistics	0.707
k hat (MLE) Theta hat (MLE)	31.54	k star (bias corrected MLE) Theta star (bias corrected MLE)	2.787 48.96
nu hat (MLE)	69.22	nu star (bias corrected)	44.59
MLE Mean (bias corrected)	136.5	MLE Sd (bias corrected)	81.74
mee mean (sias conceica)	100.0	Approximate Chi Square Value (0.05)	30.28
Adjusted Level of Significance	0.0195	Adjusted Chi Square Value	27.33
<u> </u>			
	Assuming Gar	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	201	95% Adjusted Gamma UCL (use when n<50)	222.7
	Lognorma	al GOF Test	
Shapiro Wilk Test Statistic	0.972	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.818	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.151	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.283	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal	at 5% Significance Level	
		10.11.11	
Minimum of Logged Data	Lognorma 4.13	al Statistics Mean of logged Data	4.796
Maximum of Logged Data Maximum of Logged Data	5.677	SD of logged Data	0.513
waxiinuiii oi Logged Data	3.077	SD 61 logged Data	0.010
A	Assuming Logn	ormal Distribution	
95% H-UCL	218.8	90% Chebyshev (MVUE) UCL	210.2
95% Chebyshev (MVUE) UCL	243.9	97.5% Chebyshev (MVUE) UCL	290.8
99% Chebyshev (MVUE) UCL	382.9		
		ution Free UCL Statistics	
Data appear to follow	v a Discemible	Distribution at 5% Significance Level	

AECOM 11 of 12 Prepared for Army National Guard

Nor	parametric Di	stribution Free UCLs	
95% CLT UCL	180.5	95% Jackknife UCL	187.2
95% Standard Bootstrap UCL	178.5	95% Bootstrap-t UCL	227.6
95% Hall's Bootstrap UCL	332.3	95% Percentile Bootstrap UCL	183.7
95% BCA Bootstrap UCL	187.8		
90% Chebyshev(Mean, Sd) UCL	216.9	95% Chebyshev(Mean, Sd) UCL	253.3
97.5% Chebyshev(Mean, Sd) UCL	303.8	99% Chebyshev(Mean, Sd) UCL	403.1
	Suggeste	d UCL to Use	
95% Student's-t UCL	187.2		
Note: Suggestions regarding the selection of a S	95% UCL are p	provided to help the user to select the most appropriate 95% UCL.	
Recommendations are	based upon da	ata size, data distribution, and skewness.	
These recommendations are based upon the re	esults of the si	mulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	l World data s	ets; for additional insight the user may want to consult a statistician.	

	UCL St	atistics for Unc	ensored Full Data Sets	
	002.00		onorda i dii bada oolo	
User Selected Options				
Date/Time of Computation	ProUCL 5.110/27/2018 10:46:32	2 AM		
From File	ProUCLInput_KLgw2_a.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Soil Pile Antimony Surface Soil				
		General	Statistics	
	Total Number of Observations	7	Number of Distinct Observations	7
			Number of Missing Observations	0
	Minimum	2.24	Mean	21.43
	Maximum	58.5	Median	10.2
	SD	23.29	Std. Error of Mean	8.801
	Coefficient of Variation	1.087	Skewness	1.137
			1	
N	ote: Sample size is small (e.g.,	<10), if data ar	re collected using ISM approach, you should use	
gu	idance provided in ITRC Tech F	Reg Guide on Is	SM (ITRC, 2012) to compute statistics of interest.	
	For example, you may wa	nt to use Cheby	yshev UCL to estimate EPC (ITRC, 2012).	
C	Chebyshev UCL can be compute	ed using the No	nparametric and All UCL Options of ProUCL 5.1	
		Normal (GOF Test	
	Shapiro Wilk Test Statistic	0.773	Shapiro Wilk GOF Test	
	5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.32	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level	
	Data I	Not Normal at 5	5% Significance Level	
		Assuming Non	mal Distribution	
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	38.53	95% Adjusted-CLT UCL (Chen-1995)	39.95
			95% Modified-t UCL (Johnson-1978)	39.16
		Gamma	GOF Test	
	A-D Test Statistic	0.406	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.727	Detected data appear Gamma Distributed at 5% Significance Leve	I
	K-S Test Statistic	0.209	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.32	Detected data appear Gamma Distributed at 5% Significance Leve	I
	Detected data app	ear Gamma Di	stributed at 5% Significance Level	
		Gamma	Statistics	
	k hat (MLE)	1.019	k star (bias corrected MLE)	0.677
	Theta hat (MLE)	21.03	Theta star (bias corrected MLE)	31.63
	nu hat (MLE)	14.26	nu star (bias corrected)	9.485
	MLE Mean (bias corrected)	21.43	MLE Sd (bias corrected)	26.04
	·		Approximate Chi Square Value (0.05)	3.622
	Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	2.617
			·	
		Assuming Gam	nma Distribution	
95% Approximate	Gamma UCL (use when n>=50)	56.11	95% Adjusted Gamma UCL (use when n<50)	77.67
		Lognorma	I GOF Test	
	Shapiro Wilk Test Statistic	0.948	Shapiro Wilk Lognormal GOF Test	
	5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level	
	Lilliefors Test Statistic	0.172	Lilliefors Lognormal GOF Test	
				

Prepared for Army National Guard

AECOM
1 of 17

5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data ap	pear Lognormal	at 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	0.806	Mean of logged Data	2.5
Maximum of Logged Data	4.069	SD of logged Data	1.19
	•		
	Assuming Logno	ormal Distribution	
95% H-UCI	. 194.5	90% Chebyshev (MVUE) UCL	50.35
95% Chebyshev (MVUE) UCI	63.43	97.5% Chebyshev (MVUE) UCL	81.59
99% Chebyshev (MVUE) UCI	. 117.3		
	1		
Nonpa	ametric Distribu	tion Free UCL Statistics	
Data appear to follo	w a Discernible	Distribution at 5% Significance Level	
No.	nparametric Dis	tribution Free UCLs	
95% CLT UCI	=	95% Jackknife UCL	38.53
95% Standard Bootstrap UCI		95% Bootstrap-t UCL	89.46
95% Hall's Bootstrap UCI		95% Percentile Bootstrap UCL	35.39
95% BCA Bootstrap UCI		30701 Glocinia Bodistiap OCE	
90% Chebyshev(Mean, Sd) UCI		95% Chebyshev(Mean, Sd) UCL	59.79
97.5% Chebyshev(Mean, Sd) UCI		99% Chebyshev(Mean, Sd) UCL	109
97.5% Chebyshev(iviedit, Su) OCI	70.39	33 % Chebyshev(Mean, 3u) OCL	103
	Cummantad	UCL to Use	
050/ Advant d O 1100		UCL to use	
95% Adjusted Gamma UCI	. 77.67		
Recommer	ded UCL exceed	is the maximum observation	
Note: Suggestions regarding the selection of a Recommendations ar	95% UCL are proper based upon dat	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the	95% UCL are pro-	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Re	95% UCL are pro-	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the	95% UCL are pro-	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Re	95% UCL are pro- e based upon dat results of the sim- eal World data se	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re	95% UCL are pro- e based upon data results of the sim- al World data se	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	7
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolvent Police Copper Surface Soil	95% UCL are pro- e based upon dat results of the sim- eal World data se	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician.	7 0
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolvent Police Copper Surface Soil	95% UCL are pro- e based upon data results of the sim- al World data se General	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolved Pile Copper Surface Soil Total Number of Observations	95% UCL are pro- le based upon data results of the sim- lal World data se General 7	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. rulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolved Pile Copper Surface Soil Total Number of Observations	95% UCL are pro- le based upon data results of the sim- lal World data ser General 7 76.6 1740	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean	0 488.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolved Pile Copper Surface Soil Total Number of Observations Minimum Maximum	95% UCL are pro- le based upon data results of the sim- lal World data ser General 7 76.6 1740 1607	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolved Pile Copper Surface Soil Total Number of Observations: Minimum Maximum	95% UCL are pro- le based upon data results of the sim- lal World data ser General 7 76.6 1740 1607	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 488.4 202
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Resolved Pile Copper Surface Soil Total Number of Observations Minimum Maximum St. Coefficient of Variation	95% UCL are pro- le based upon dat results of the sim- al World data ser General 7 76.6 1740 607 1.243	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. utlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re oil Pile Copper Surface Soil Total Number of Observations Minimum Maximum St Coefficient of Variation	95% UCL are pro- be based upon data results of the sim- all World data set General 7 76.6 1740 607 1.243	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. utlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re oil Pile Copper Surface Soil Total Number of Observations Minimum Maximum St Coefficient of Variation Note: Sample size is small (e.g. guidance provided in ITRC Tech	95% UCL are pro- a based upon data results of the sim- all World data set General 7 76.6 1740 607 1.243 , <10), if data ar Reg Guide on IS	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. utlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re oil Pile Copper Surface Soil Total Number of Observations Minimum Maximum SI Coefficient of Variation Note: Sample size is small (e.g. guldance provided in ITRC Tech	95% UCL are pro- a based upon data results of the sim- all World data ser General 7 76.6 1740 607 1.243 7, <10), if data ar Reg Guide on Is ant to use Cheby	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. reshev UCL to estimate EPC (ITRC, 2012).	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re oil Pile Copper Surface Soil Total Number of Observations Minimum Maximum SI Coefficient of Variation Note: Sample size is small (e.g. guldance provided in ITRC Tech	95% UCL are pro- be based upon data results of the sim- all World data ser General 7 76.6 1740 607 1.243 7, <10), if data ar Reg Guide on Is ant to use Cheby	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. utlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations ar These recommendations are based upon the However, simulations results will not cover all Re oil Pile Copper Surface Soil Total Number of Observations Minimum Maximum SI Coefficient of Variation Note: Sample size is small (e.g. guldance provided in ITRC Tech	95% UCL are pro- be based upon data results of the sim- all World data ser General 7 76.6 1740 607 1.243 ., <10), if data ar Reg Guide on Is ant to use Cheby ted using the No	Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of Interest. Interest of Size (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulations resp	95% UCL are pro- be based upon date results of the simular results o	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. Inshev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulations resp	95% UCL are pro- be based upon data results of the sim- all World data ser General 7 76.6 1740 607 1.243 7, <10), if data are guide on is and to use Cheby ted using the Normal Co. 0.72	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	95% UCL are pro- be based upon date results of the simular results o	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In the collected using ISM approach of Prouch 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	General General 7 76.6 1740 607 1.243 7, <10), if data ar Reg Guide on is ant to use Cheby ted using the No Normal C 0.72 0.803 0.35	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	General General Total To	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. utilation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	General General Total To	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. unlation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	95% UCL are pro- le based upon dat results of the sim- al World data ser General 7 76.6 1740 607 1.243 Reg Guide on IS ant to use Cheby ted using the No Normal C 0.72 0.803 0.304 Not Normal at 5	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Response to the However, simulatio	95% UCL are pro- le based upon dat results of the sim- al World data ser General 7 76.6 1740 607 1.243 Reg Guide on IS ant to use Cheby ted using the No Normal C 0.72 0.803 0.304 Not Normal at 5	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. The value of the the	0 488.4 202 229.4
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations results will not cover all R	95% UCL are prospered to based upon data results of the similar world data set of the similar wo	ovided to help the user to select the most appropriate 95% UCL. a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level Significance Level	0 488.4 202 229.4

AECOM 2 of 17 Prepared for Army National Guard

		95% Modified-t UCL (Johnson-1978)	961.6
	Gamma	GOF Test	
A-D Test Statistic	0.566	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.727	Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.286	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.319	Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	ear Gamma D	Distributed at 5% Significance Level	
		- Obelladia	
k hat (MLE)	1.032	a Statistics k star (bias corrected MLE)	0.68
Theta hat (MLE)	473.3	Theta star (bias corrected MLE)	713.1
nu hat (MLE)	14.45	nu star (bias corrected)	9.588
MLE Mean (bias corrected)	488.4	MLE Sd (bias corrected)	590.1
MEE Moun (state controlled)	400.4	Approximate Chi Square Value (0.05)	3.686
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	2.669
		mma Distribution 95% Adjusted Gamma UCL (use when n<50)	1754
95% Approximate Gamma UCL (use when n>=50)	1270	95% Adjusted Gamma OCL (use when n<50)	1754
	Lognorm	al GOF Test	
Shapiro Wilk Test Statistic	0.921	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.217	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognorma	l at 5% Significance Level	
	Lognorm	al Statistics	
Minimum of Logged Data	4.339	Mean of logged Data	5.634
Maximum of Logged Data	7.462	SD of logged Data	1.09
A	ssuming Logr	normal Distribution	
95% H-UCL	2946	90% Chebyshev (MVUE) UCL	1012
95% Chebyshev (MVUE) UCL	1266	97.5% Chebyshev (MVUE) UCL	1618
99% Chebyshev (MVUE) UCL	2309		
Nonpara	metric Distrib	ution Free UCL Statistics	
<u> </u>		Distribution at 5% Significance Level	
	•	stribution Free UCLs	
95% CLT UCL	865.8 831.4	95% Jackknife UCL 95% Bootstrap-t UCL	934.2 3231
QE% Standard Roctatron LICI	001.4	95% BOUISTrap-t UCL	863.9
95% Standard Bootstrap UCL	3042	0E% Parantila Pastates LICI	
95% Hall's Bootstrap UCL	3042	95% Percentile Bootstrap UCL	000.0
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	1032		
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	1032 1177	95% Chebyshev(Mean, Sd) UCL	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	1032		
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	1032 1177 1921 Suggestee	95% Chebyshev(Mean, Sd) UCL	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL	1032 1177 1921 Suggestee	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL	1032 1177 1921 Suggested 1754	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL d UCL to Use	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL	1032 1177 1921 Suggested 1754	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL	1032 1177 1921 Suggester 1754	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL d UCL to Use	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Adjusted Gamma UCL Recommend Note: Suggestions regarding the selection of a	1032 1177 1921 Suggester 1754	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL d UCL to Use	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL Recommend Note: Suggestions regarding the selection of a Recommendations are	1032 1177 1921 Suggester 1754 Ied UCL excee	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL d UCL to Use eds the maximum observation provided to help the user to select the most appropriate 95% UCL.	1488
95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Adjusted Gamma UCL Recommend Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations are based upon the recommendations.	1032 1177 1921 Suggester 1754 ded UCL exceed 95% UCL are placed upon described	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL d UCL to Use eds the maximum observation provided to help the user to select the most appropriate 95% UCL. ata size, data distribution, and skewness.	1488

AECOM 3 of 17 Prepared for Army National Guard

		Statistics	
Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum		Mean	3326
Maximum	8980	Median	1660
SD		Std. Error of Mean	1235
Coefficient of Variation	0.983	Skewness	1.243
Note: Sample size is small (e.g.,	<10), if data ar	re collected using ISM approach, you should use	
	· · ·	SM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheby	/shev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be comput	ed using the No	nparametric and All UCL Options of ProUCL 5.1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.787	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.319	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.304	Data Not Normal at 5% Significance Level	
		is Significance Level	
95% Normal UCL	Assuming Norr	mal Distribution 95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	5726	95% Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	5978
95 % Students-t UCL	5720	, , ,	
		95% Modified-t UCL (Johnson-1978)	5823
	Gamma (GOF Test	
A-D Test Statistic	0.473	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.723	Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.239	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.318	Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	l Dear Gamma Dis	stributed at 5% Significance Level	
		0.11.1	
k hat (MLE)	1.384	Statistics k star (bias corrected MLE)	0.886
Theta hat (MLE)	2403	Theta star (bias corrected MLE)	3753
nu hat (MLE)	19.38	nu star (bias corrected)	12.41
	3326	MLE Sd (bias corrected)	3533
MLE Mean (bias corrected)	3320	` ,	
A.F	0.0450	Approximate Chi Square Value (0.05)	5.495
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	4.19
	Assuming Gam	nma Distribution	
95% Approximate Gamma UCL (use when n>=50)	7508	95% Adjusted Gamma UCL (use when n<50)	9847
	Lognormol	GOF Test	
Shapiro Wilk Test Statistic	0.928	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.803	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.191	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.304	Data appear Lognormal at 5% Significance Level	
		at 5% Significance Level	
		-	
	Lognorma	I Statistics	
Minimum of Logged Data	6.51	Mean of logged Data	7.707
Maximum of Logged Data	9.103	SD of logged Data	0.96
	ooumina Lasaa	armal Diotribution	
		ormal Distribution	6790
95% H-UCL 95% Chebyshev (MVUE) UCL		90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	6790 10627

Prepared for Army National Guard

AECOM
4 of 17

Nonpara	ametric Distribu	tion Free UCL Statistics	
Data appear to follow	v a Discemible	Distribution at 5% Significance Level	
		tribution Free UCLs	F700
95% CLT UCL 95% Standard Bootstrap UCL		95% Jackknife UCL 95% Bootstrap-t UCL	5726 13046
95% Standard Bootstrap UCL		95% Percentile Bootstrap UCL	5267
95% BCA Bootstrap UCL		55 % Percentile Bootstrap OCL	3207
90% Chebyshev(Mean, Sd) UCL		95% Chebyshev(Mean, Sd) UCL	8711
97.5% Chebyshev(Mean, Sd) UCL		99% Chebyshev(Mean, Sd) UCL	15617
	Suggested	UCL to Use	
95% Adjusted Gamma UCL	9847		
Recommend	led UCL exceed	ds the maximum observation	
		ovided to help the user to select the most appropriate 95% UCL.	
	<u> </u>	a size, data distribution, and skewness.	
		nulation studies summarized in Singh, Maichle, and Lee (2006).	
nowever, simulations results will not cover all Rea	ai vvoriu data se	ts; for additional insight the user may want to consult a statistician.	
Soil Pile Zinc Surface Soil			
	General	Statistics	
Total Number of Observations	7	Number of Distinct Observations	7
		Number of Missing Observations	0
Minimum	106	Mean	180.7
Maximum	314	Median	134
SD	83.56	Std. Error of Mean	31.58
Coefficient of Variation	0.462	Skewness	0.788
	<u> </u>	re collected using ISM approach, you should use	
		SM (ITRC, 2012) to compute statistics of interest.	
	<u> </u>	/shev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be compute	ad using the No	nparametric and All UCL Options of ProUCL 5.1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value		Data appear Normal at 5% Significance Level	
		t 5% Significance Level	
	Assuming Non	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	242.1	95% Adjusted-CLT UCL (Chen-1995)	242.7
		95% Modified-t UCL (Johnson-1978)	243.6
		GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	-1
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	eı
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	ol.
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level stributed at 5% Significance Level	eı
Detected data app	ear Gamma Di	Surputed at 570 Significance Level	
	Gamma	Statistics	
k hat (MLE)		k star (bias corrected MLE)	3.467
K Hat (WLL)		it stai (bias consited MEE)	

Prepared for Army National Guard

AECOM
5 of 17

The test (AUE)	20.00	The transfer (block as a second of MIC)	50.10
Theta hat (MLE)		Theta star (bias corrected MLE)	52.12
nu hat (MLE)	82.61	nu star (bias corrected)	48.54
MLE Mean (bias corrected)	180.7	MLE Sd (bias corrected)	97.05
A.F		Approximate Chi Square Value (0.05)	33.55
Adjusted Level of Significance	0.0158	Adjusted Chi Square Value	29.83
		Programme and the state of the	
		nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	261.5	95% Adjusted Gamma UCL (use when n<50)	294.1
		I GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal	at 5% Significance Level	
		ll Statistics	
Minimum of Logged Data		Mean of logged Data	5.11
Maximum of Logged Data	5.749	SD of logged Data	0.444
		ormal Distribution	
95% H-UCL		90% Chebyshev (MVUE) UCL	271.1
95% Chebyshev (MVUE) UCL	312.4	97.5% Chebyshev (MVUE) UCL	369.6
99% Chebyshev (MVUE) UCL	482		
Nonpara	ametric Distribu	tion Free UCL Statistics	
Data appear to follow	v a Discernible	Distribution at 5% Significance Level	
Nor	nparametric Dis	tribution Free UCLs	
95% CLT UCL	232.7	95% Jackknife UCL	242.1
95% Standard Bootstrap UCL	228.7	95% Bootstrap-t UCL	289.5
95% Hall's Bootstrap UCL	233.1	95% Percentile Bootstrap UCL	232.4
95% BCA Bootstrap UCL	237.1		
90% Chebyshev(Mean, Sd) UCL	275.5	95% Chebyshev(Mean, Sd) UCL	318.4
97.5% Chebyshev(Mean, Sd) UCL	377.9	99% Chebyshev(Mean, Sd) UCL	494.9
	1		
	Suggested	UCL to Use	
95% Student's-t UCL	242.1		
	1		
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are	based upon dat	ta size, data distribution, and skewness.	
These recommendations are based upon the re	esults of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician.	
Soil Pile Antimony Subsurface Soil			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	7
Minimum	36.5	Mean	253.6
Maximum	1080	Median	69.35
SD	411.3	Std. Error of Mean	167.9
Coefficient of Variation	1.622	Skewness	2.29
	1		
Note: Sample size is small (e.g.,	, <10), if data a	re collected using ISM approach, you should use	
guidance provided in ITRC Tech	Reg Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheb	yshev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be compute	ed using the No	nparametric and All UCL Options of ProUCL 5.1	
2 1			

AECOM 6 of 17 Prepared for Army National Guard

	Normal GOF	Test	
Shapiro Wilk Test Statistic	0.627	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.36	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level	
	Not Normal at 5% S	<u> </u>	
	A N 1 I	District	
95% Normal UCL	Assuming Normal [95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	591.9	95% Adjusted-CLT UCL (Chen-1995)	697.5
		95% Modified-t UCL (Johnson-1978)	618.1
	Gamma GOF	Toet	
A-D Test Statistic	0.707	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.724	Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.271	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.345	Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	ear Gamma Distrib	uted at 5% Significance Level	
		·	
	Gamma Stati		
k hat (MLE)	0.696	k star (bias corrected MLE)	0.459
Theta hat (MLE)	364.4	Theta star (bias corrected MLE)	552.4
nu hat (MLE)	8.351	nu star (bias corrected)	5.509
MLE Mean (bias corrected)	253.6	MLE Sd (bias corrected)	374.3
		Approximate Chi Square Value (0.05)	1.394
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	0.781
	Assuming Gamma I	Distribution	
95% Approximate Gamma UCL (use when n>=50)	1002	95% Adjusted Gamma UCL (use when n<50)	1790
Shapiro Wilk Test Statistic	Lognormal GO 0.839	OF Test Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.261	Lilliefors Lognormal GOF Test	
Elillototo Test Statistic	0.325	Data appear Lognormal at 5% Significance Level	
5% Lilliefors Critical Value		Data appear Lognormal at 5% dignificance Level	
5% Lilliefors Critical Value Data app	ear Lognormal at 59	% Significance Level	
	•	·	
Data app	Lognormal Sta	atistics	4 667
Data app	Lognormal Sta	atistics Mean of logged Data	
Data app	Lognormal Sta	atistics	
Minimum of Logged Data Maximum of Logged Data	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data al Distribution	1.336
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL	
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data al Distribution	1.336
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL	1.336
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	1.336
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL	1.336
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow	Lognormal Sta 3.597 6.985 ssuming Lognormal 6145 687.3 1300 metric Distribution	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level	1.336
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow	Lognormal Sta 3.597 6.985 ssuming Lognormal 6145 687.3 1300 metric Distribution a Discernible Distriparametric Distribution	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level	1.336 538.4 893.9
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Non 95% CLT UCL	Lognormal Sta 3.597 6.985 ssuming Lognormal 6145 687.3 1300 metric Distribution of a Discernible Distribution parametric Distribution 29.8	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level attion Free UCLs 95% Jackknife UCL	1.336 538.4 893.9
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Non 95% CLT UCL 95% Standard Bootstrap UCL	Lognormal Sta 3.597 6.985 ssuming Lognormal 6145 687.3 1300 metric Distribution of a Discernible Distribution parametric Distribution 529.8 505.5	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level ution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1.336 538.4 893.9 591.9 2943
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Non 95% CLT UCL 95% Standard Bootstrap UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level attion Free UCLs 95% Jackknife UCL	893.9 591.9
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Non 95% CLT UCL 95% Standard Bootstrap UCL 95% BCA Bootstrap UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data IDistribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tribution at 5% Significance Level stion Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	538.4 893.9 591.9 2943 569.1
Minimum of Logged Data Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Non 95% CLT UCL 95% Standard Bootstrap UCL	Lognormal Sta 3.597 6.985	Mean of logged Data SD of logged Data I Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL Free UCL Statistics ribution at 5% Significance Level ution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1.336 538.4 893.9 591.9 2943

AECOM 7 of 17 Prepared for Army National Guard

95% Adjusted Gamma UCL	1790		
Recommend	led UCL exceed	is the maximum observation	
		ovided to help the user to select the most appropriate 95% UCL.	
		a size, data distribution, and skewness.	
· · · · · · · · · · · · · · · · · · ·		ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Re	al World data se	ts; for additional insight the user may want to consult a statistician.	
Soil Pile Copper Subsurface Soil			
ion i no coppor cascanace con			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	6
		Number of Missing Observations	7
Minimum	675	Mean	1054
Maximum	2060	Median	938
SD	508.3	Std. Error of Mean	207.5
Coefficient of Variation	0.482	Skewness	2.122
	•	•	
Note: Sample size is small (e.g.	, <10), if data ar	e collected using ISM approach, you should use	
guidance provided in ITRC Tech	Reg Guide on I	SM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheby	shev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be comput	ed using the No	nparametric and All UCL Options of ProUCL 5.1	
	Normal (GOF Test	
Shapiro Wilk Test Statistic	0.715	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.393	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level	
Data	Not Normal at 5	% Significance Level	
	Assuming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1472	95% Adjusted-CLT UCL (Chen-1995)	1587
		95% Modified-t UCL (Johnson-1978)	1502
		GOF Test	
A-D Test Statistic	0.711	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.698	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level	
Data Not G	amma Distribute	ed at 5% Significance Level	
		Statistics	0
k hat (MLE)		k star (bias corrected MLE)	3.563
Theta hat (MLE)	152.6	Theta star (bias corrected MLE)	295.7
nu hat (MLE)		nu star (bias corrected)	42.75
MLE Mean (bias corrected)	1054	MLE Sd (bias corrected)	558.1
	0.0400	Approximate Chi Square Value (0.05)	28.76
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	24.7
	Annum! 0	nes Distribution	
050/ Agazania - Common HOL (common SO)		nma Distribution	1004
95% Approximate Gamma UCL (use when n>=50))	1566	95% Adjusted Gamma UCL (use when n<50)	1824
		LOOF Total	
<u> </u>		GOF Test	
Shapiro Wilk Test Statistic	0.821	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.335	Lilliefors Lognormal GOF Test	

Prepared for Army National Guard

AECOM
8 of 17

5% Lilliefors Critical Value	0.325	Data Not Lognormal at 5% Significance Level	
		normal at 5% Significance Level	
	proximate ang.		
	Lognorma	I Statistics	
Minimum of Logged Data	6.515	Mean of logged Data	6.886
Maximum of Logged Data	7.63	SD of logged Data	0.395
ind.iiii or Loggod Sala	7.00	OD 0. logged Data	0.000
	Assuming Logno	ormal Distribution	
95% H-UCL	1617	90% Chebyshev (MVUE) UCL	1547
95% Chebyshev (MVUE) UCL	1776	97.5% Chebyshev (MVUE) UCL	2093
99% Chebyshev (MVUE) UCL	2715	37.678 G.1685,6.164 (1111 GZ.) GGZ	
Nonpara	ametric Distribu	tion Free UCL Statistics	
		Distribution at 5% Significance Level	
Julia appear to tollor			
Nor	narametric Dis	tribution Free UCLs	
95% CLT UCL	1395	95% Jackknife UCL	1472
95% Standard Bootstrap UCL	1363	95% Bootstrap-t UCL	2079
95% Hall's Bootstrap UCL	3038	95% Percentile Bootstrap UCL	1429
95% BCA Bootstrap UCL	1509	33 % reiceitule bootstrap oct	1723
90% Chebyshev(Mean, Sd) UCL	1676	95% Chebyshev(Mean, Sd) UCL	1958
90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	2349	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	3118
97.5% Criebysriev(Mean, Sd) UCL	2349	99% Criebysriev(wear, 5d) UCL	3116
	Ouranadad	HOLAs Has	
050/ 05-4		UCL to Use	1500
95% Student's-t UCL		or 95% Modified-t UCL	1502
050/ 111101			
or 95% H-UCL	1617		
		nvided to help the user to select the most appropriate 95% LICI	
Note: Suggestions regarding the selection of a	I 95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a	95% UCL are probased upon dat	a size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations are based upon the recommendations.	95% UCL are probased upon datesults of the sim	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations are based upon the recommendations.	95% UCL are probased upon datesults of the sim	a size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea	95% UCL are probased upon dates sults of the simal World data se	a size, data distribution, and skewness. Intuition studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations results will not cover all Recommendations results will not cover all Recomputes and output the Recommendations results will not cover all Recomputes and output the Recommendations results will not cover all Recommendations results will not cover all Recommendations are suggested as a recommendation of a recommendation are recommendations are suggested as a recommendation of a recommendation are recommendations are suggested as a recommendation of a recommendation are recommendations are suggested as a recommendation of a recommendation	95% UCL are probased upon date esults of the simal World data setutbuts H-statisti	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the recommendations results will not cover all Recommendations results will not cover all Recomputes and or H-statistic often results in unstable (both high	95% UCL are probased upon datesults of the simal World data seattputs H-statisting and low) value.	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide.	
Note: Suggestions regarding the selection of a Recommendations are Recommendations are based upon the recommendations are based upon the recommendations results will not cover all Recommendations results will not cover all Recommendations results in unstable (both high it is therefore recommendations).	95% UCL are pribased upon date esults of the simal World data se utputs H-statisti ghand low) valuended to avoid to	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. tes of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Recomputed ProUCL computes and or H-statistic often results in unstable (both high it is therefore recomme	95% UCL are pribased upon date esults of the simal World data se utputs H-statisti ghand low) valuended to avoid to	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Recomputed ProUCL computes and or H-statistic often results in unstable (both high it is therefore recomme	95% UCL are pribased upon date esults of the simal World data se utputs H-statisti ghand low) valuended to avoid to	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. tes of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the results will not cover all Recommendations results will not cover all Recomputes and or H-statistic often results in unstable (both higher than the second recommendation). It is therefore recommendations are preferred to describe the selection of the sele	95% UCL are pribased upon date esults of the simal World data se utputs H-statisti ghand low) valuended to avoid to	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. tes of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the results will not cover all Recommendations results will not cover all Recomputes and or H-statistic often results in unstable (both higher than the second recommendation). It is therefore recommendations are preferred to describe the selection of the sele	95% UCL are pribased upon date esults of the simal World data se utputs H-statisti ghand low) valuended to avoid to	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. tes of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and or H-statistic often results in unstable (both higher than the compute of the c	95% UCL are price based upon dat esults of the simal World data selection at World data selection at the world to avoid the compute UCL95	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Its based UCLs for historical reasons only. Its of UCL95 as shown in examples in the Technical Guide. The use of H-statistic based 95% UCLs. It for skewed data sets which do not follow a gamma distribution.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rec ProUCL computes and ou H-statistic often results in unstable (both higher than the computer of the computer	95% UCL are price based upon date esults of the simal World data selection at World data selection at UCL95 ended to avoid the compute UCL95 General	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. he use of H-statistic based 95% UCLs. for skewed data sets which do not follow a gamma distribution. Statistics	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the results will not cover all Recommendations results will not cover all Recomputes and or H-statistic often results in unstable (both higher than the second recommendation). It is therefore recommendations are preferred to describe the selection of the sele	95% UCL are price based upon dat esults of the simal World data selection at World data selection at the world to avoid the compute UCL95	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Gulde. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations	6
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the results will not cover all Recommendations results will not cover all Recommendations results will not cover all Recommendations results in unstable (both higher than the selection of the results in unstable (both higher than the selection of the selectio	95% UCL are price based upon date esults of the simal World data selection and World data selection and world to avoid the compute UCL95	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Gulde. the use of H-statistic based 95% UCLs. for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations	7
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the similar World data selection and World data selection and world to avoid the compute UCL95 General 6	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean	7 18933
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the similal World data selection all World data selection and the selection	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	7 18933 10220
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the similar World data selection and World data selection and world to avoid the compute UCL95 General 6	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean	7 18933
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the similal World data selection all World data selection and the selection	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	7 18933 10220
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the simal World data selection and World data selection and world to avoid the compute UCL95 General 6 4920 57200 20227	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of th	95% UCL are price based upon date esults of the simal World data selected by the selected by t	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recomment Use of nonparametric methods are preferred to a DI Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g.,	95% UCL are price based upon date suits of the simal World data selection at World and Example UCL95 General 6 4920 57200 20227 1.068	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to a Use of nonparametric methods are preferred to a DI Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech)	95% UCL are price based upon date suits of the simal World data selection at World and Indiana selection at World	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to a Use of nonparametric methods are preferred to a Di Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech For example, you may was	95% UCL are price based upon date esults of the simal World data selection all World data selection all World data selection and world the selection all world data selection all world and selection all the sele	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to a Use of nonparametric methods are preferred to a Di Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech For example, you may was	95% UCL are price based upon date esults of the simal World data selection all World data selection all World data selection and world the selection all world data selection all world and selection all the sele	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In the collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to a Use of nonparametric methods are preferred to a Di Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech For example, you may was	95% UCL are probased upon date sults of the simal World data selected by the s	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. les of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In the collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest.	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to a Use of nonparametric methods are preferred to a DI Pile Lead Subsurface Soil Total Number of Observations Minimum Maximum SD Coefficient of Variation Note: Sample size is small (e.g., guidance provided in ITRC Tech For example, you may was	95% UCL are probased upon date sults of the simal World data selected by the s	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its of uccless as shown in examples in the Technical Guide. It is of uccless as shown in examples in the Technical Guide.	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the second of the statistic often results in unstable (both higher than the second of the second	95% UCL are probased upon date sults of the similar World data selected upon date sults of the similar World data selected upon date sults of the similar world to avoid the selected upon data selected up	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). ts; for additional insight the user may want to consult a statistician. c based UCLs for historical reasons only. tes of UCL95 as shown in examples in the Technical Guide. the use of H-statistic based 95% UCLs. if or skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness te collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. rshev UCL to estimate EPC (ITRC, 2012). Inparametric and All UCL Options of ProUCL 5.1	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both higher than the selection of the	95% UCL are probased upon date esults of the similar World data selected by the selected by th	a size, data distribution, and skewness. ulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its; for additional insight the user may want to consult a statistician. Its of uccless as shown in examples in the Technical Guide. It is of uccless as shown in the Technical Guide. It is of u	7 18933 10220 8258
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the r However, simulations results will not cover all Rea ProUCL computes and ou H-statistic often results in unstable (both high It is therefore recommendations are preferred to output the selection of the s	95% UCL are probased upon date esults of the similar World data selected by the selected by th	a size, data distribution, and skewness. fulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. C based UCLs for historical reasons only. Ites of UCL95 as shown in examples in the Technical Guide. The use of H-statistic based 95% UCLs. If for skewed data sets which do not follow a gamma distribution. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness The collected using ISM approach, you should use SM (ITRC, 2012) to compute statistics of interest. In parametric and All UCL Options of ProUCL 5.1 Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	7 18933 10220 8258

AECOM 9 of 17 Prepared for Army National Guard

l			
	Assuming Non	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	35573	95% Adjusted-CLT UCL (Chen-1995)	38948
		95% Modified-t UCL (Johnson-1978)	36576
	Commo	GOF Test	
A-D Test Statistic	0.463	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.403	Detected data appear Gamma Distributed at 5% Significance Leve	اد
K-S Test Statistic	0.278	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	l Dear Gamma Dis	stributed at 5% Significance Level	
		Statistics	
k hat (MLE)	1.344	k star (bias corrected MLE)	0.783
Theta hat (MLE)		Theta star (bias corrected MLE)	24169
nu hat (MLE)	16.13	nu star (bias corrected)	9.4
MLE Mean (bias corrected)	18933	MLE Sd (bias corrected)	21392
Adjusted Level of Significance	0.0122	Approximate Chi Square Value (0.05) Adjusted Chi Square Value	3.571 2.401
Adjusted Level of Significance	0.0122	Adjusted Crit Square Value	۷.40 I
	Assuming Gam	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))		95% Adjusted Gamma UCL (use when n<50)	74122
		· · · · · · · · · · · · · · · · · · ·	
	Lognorma	GOF Test	
Shapiro Wilk Test Statistic	0.897	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.259	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.325	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal	at 5% Significance Level	
	Lognorma	I Statistics	
Minimum of Logged Data	8.501	Mean of logged Data	0.422
	10.95	SD of logged Data	9.433 0.966
Maximum of Logged Data	10.95		
Maximum of Logged Data			
Maximum of Logged Data	Assuming Logno	SD of logged Data	
Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL	Assuming Logno 112093 48690	SD of logged Data	0.966
Maximum of Logged Data A 95% H-UCL	Assuming Logno 112093 48690	SD of logged Data rmal Distribution 90% Chebyshev (MVUE) UCL	0.966 39146
Maximum of Logged Data ### P5% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	Assuming Logno 112093 48690 87959	SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	0.966 39146
Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare	Assuming Logno 112093 48690 87959	SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics	0.966 39146
Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare	Assuming Logno 112093 48690 87959	SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	0.966 39146
Maximum of Logged Data ### 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare Data appear to follow	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible	SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics	0.966 39146
Maximum of Logged Data ### 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare Data appear to follow	Assuming Logno 112093 48690 87959 ametric Distribu v a Discemible	SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level	0.966 39146
Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible nparametric Dis	SD of logged Data symal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL	0.966 39146 61938
Maximum of Logged Data A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible nparametric Dis 32516 31387	SD of logged Data symal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL tion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL	0.966 39146 61938
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 132516 31387 100268 36123	SD of logged Data primal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ition Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Noi 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 132516 31387 100268 36123 43707	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 132516 31387 100268 36123 43707	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Noi 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 12093 32516 31387 100268 36123 43707 70503	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL stion Free UCL Statistics Distribution at 5% Significance Level tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 12516 31387 100268 36123 43707 70503	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Noi 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discernible 12516 31387 100268 36123 43707 70503	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discemible 12093 32516 31387 100268 36123 43707 70503 Suggested 35573	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL UCL to Use	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discemible 100268 31387 100268 36123 43707 70503 Suggested 35573	spread Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL UCL to Use	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Assuming Logno 112093 48690 87959 ametric Distribu v a Discemible 100268 31387 100268 36123 43707 70503 Suggested 35573	sprmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL UCL to Use	0.966 39146 61938 35573 87513 32963
Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow Not 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Assuming Logno 112093 48690 87959 Ametric Distribu v a Discemible 100268 332516 31387 100268 36123 43707 70503 Suggested 35573 Proximate (e.g., r	spread Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Free UCL Statistics Distribution at 5% Significance Level 101 tribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL UCL to Use	0.966 39146 61938 35573 87513 32963

Prepared for Army National Guard AECOM 10 of 17

		ulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	al World data set	ts; for additional insight the user may want to consult a statistician.	
Dila Zina Subaurfeaa Sail			
Pile Zinc Subsurface Soil			
	General	Statistics	
Total Number of Observations	6	Number of Distinct Observations	6
Total Number of Observations	Ü	Number of Missing Observations	7
Minimum	165	Mean	244
Maximum	443	Median	213.5
SD		Std. Error of Mean	40.62
Coefficient of Variation	0.408	Skewness	2.215
Note: Sample size is small (e.g.,	, <10), if data ar	e collected using ISM approach, you should use	
guidance provided in ITRC Tech	Reg Guide on IS	SM (ITRC, 2012) to compute statistics of interest.	
For example, you may wa	nt to use Cheby	shev UCL to estimate EPC (ITRC, 2012).	
Chebyshev UCL can be comput	ed using the No	nparametric and All UCL Options of ProUCL 5.1	
	Normal C	GOF Test	
Shapiro Wilk Test Statistic	0.669	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.429	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.325	Data Not Normal at 5% Significance Level	
Data	Not Normal at 5	% Significance Level	
	Assuming Norr	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	325.9	95% Adjusted-CLT UCL (Chen-1995)	350.1
		95% Modified-t UCL (Johnson-1978)	332
	Commo	GOF Test	
A-D Test Statistic	0.974	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.698	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value		Data Not Gamma Distributed at 5% Significance Level	
		ed at 5% Significance Level	
Data No. G		at the original data to the	
	Gamma	Statistics	
k hat (MLE)	9.531	k star (bias corrected MLE)	4.877
Theta hat (MLE)	25.6	Theta star (bias corrected MLE)	50.04
nu hat (MLE)	114.4	nu star (bias corrected)	58.52
MLE Mean (bias corrected)	244	MLE Sd (bias corrected)	110.5
		Approximate Chi Square Value (0.05)	41.93
Adjusted Level of Significance	0.0122	Adjusted Chi Square Value	36.92
	Assuming Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	340.5	95% Adjusted Gamma UCL (use when n<50)	386.7
		GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.788	Data Not Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.393	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.325	Data Not Lognormal at 5% Significance Level	
Data N	ot Lognormal at	5% Significance Level	
		10. d d	
	Lognorma	I Statistics	
***	F 100		
Minimum of Logged Data Maximum of Logged Data	5.106 6.094	Mean of logged Data SD of logged Data	5.444 0.335

Prepared for Army National Guard AECOM 11 of 17

,	Assuming Logno	ormal Distribution	
95% H-UCL	344.9	90% Chebyshev (MVUE) UCL	341.8
95% Chebyshev (MVUE) UCL	386.9	97.5% Chebyshev (MVUE) UCL	449.4
99% Chebyshev (MVUE) UCL	572.3		
Nonnar	ametric Distribu	tion Free UCL Statistics	
·		emible Distribution (0.05)	
No	nparametric Dis	tribution Free UCLs	
95% CLT UCL	310.8	95% Jackknife UCL	325.9
95% Standard Bootstrap UCL	. 304.1	95% Bootstrap-t UCL	965.6
95% Hall's Bootstrap UCL	712.9	95% Percentile Bootstrap UCL	320
95% BCA Bootstrap UCL	. 330.3		
90% Chebyshev(Mean, Sd) UCL	365.9	95% Chebyshev(Mean, Sd) UCL	421.1
97.5% Chebyshev(Mean, Sd) UCL	. 497.7	99% Chebyshev(Mean, Sd) UCL	648.2
	Suggested	UCL to Use	
95% Student's-t UCL		or 95% Modified-t UCL	332
33 % StateIII S-t OCE	1 020.0	or 35 % modified t OCL	55 <u>E</u>
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
		a size, data distribution, and skewness.	
These recommendations are based upon the	results of the sin	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Re	al World data se	ts; for additional insight the user may want to consult a statistician.	
il Pile Antimony Total Soil			
	General	Statistics	
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	0
Minimum	2.24	Mean	128.6
Maximum	1080	Median	40.4
SC	292	Std. Error of Mean	80.99
Coefficient of Variation	2.271	Skewness	3.364
	Normal	GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.389	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Data Not Normal at 5% Significance Level	
Data	Not Normal at 5	5% Significance Level	
	Assuming Non	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	272.9	95% Adjusted-CLT UCL (Chen-1995)	342.5
		95% Modified-t UCL (Johnson-1978)	285.5
	Commo	GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.795	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.258	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.251	Data Not Gamma Distributed at 5% Significance Level	
Data Not G	iamma Distribut	ed at 5% Significance Level	
	0	Shadadia	
k hat (MLE		Statistics k star (bias corrected MLE)	0.415
Theta hat (MLE)		Theta star (bias corrected MLE)	310.1
nu hat (MLE)		nu star (bias corrected)	10.78
nu nat (MLL,	12.20	nu stai (bias correcteu)	10.70

Prepared for Army National Guard AECOM 12 of 17

MLE Mean (bias corrected			
	128.6	MLE Sd (bias corrected)	199.7
		Approximate Chi Square Value (0.05)	4.435
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	3.871
	Assuming Gar	nma Distribution	
95% Approximate Gamma UCL (use when n>=50)	312.6	95% Adjusted Gamma UCL (use when n<50)	358
	· į		
	Lognorma	I GOF Test	
Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.139	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.234	Data appear Lognormal at 5% Significance Level	
		at 5% Significance Level	
Data ap	pour Lognorma	at 0% digimicance cover	
		al Statistics	
Minimum of Lanced Date			2.5
Minimum of Logged Data		Mean of logged Data	3.5
Maximum of Logged Data	6.985	SD of logged Data	1.648
		ormal Distribution	
95% H-UCI	885.2	90% Chebyshev (MVUE) UCL	267.1
95% Chebyshev (MVUE) UCI	340.2	97.5% Chebyshev (MVUE) UCL	441.7
99% Chebyshev (MVUE) UCI	641.1		
	1		
Nonpa	ametric Distribu	tion Free UCL Statistics	
Data appear to folio	w a Discernible	Distribution at 5% Significance Level	
		·	
No	nparametric Dis	stribution Free UCLs	
95% CLT UCI	261.8	95% Jackknife UCL	272.9
95% Standard Bootstrap UCI		95% Bootstrap-t UCL	1169
95% Hall's Bootstrap UCI		95% Percentile Bootstrap UCL	278.5
95% BCA Bootstrap UCI		33701 elcentile Bootstrap GCE	270.5
· · · · · · · · · · · · · · · · · · ·		050/ Obstacles (Massa Od) 1101	404.0
90% Chebyshev(Mean, Sd) UCI		95% Chebyshev (Mean, Sd) UCL	481.6
97.5% Chebyshev(Mean, Sd) UCI	634.3	99% Chebyshev(Mean, Sd) UCL	934.4
	0	1101 4-11	
000 01-1-1-1 44-1-2 03 110		UCL to Use	
99% Chebyshev (Mean, Sd) UCI		UCL to Use	
	934.4		
Note: Suggestions regarding the selection of a	934.4 95% UCL are pr	rovided to help the user to select the most appropriate 95% UCL.	
Note: Suggestions regarding the selection of a Recommendations and	934.4 95% UCL are pre-	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness.	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Re	934.4 95% UCL are pre- e based upon daresults of the sin	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pi e based upon da results of the sin all World data se	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006).	
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pi e based upon da results of the sin eal World data se	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). ets; for additional insight the user may want to consult a statistician.	13
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pi e based upon da results of the sin eal World data se	rovided to help the user to select the most appropriate 95% UCL. Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Statistics	13 0
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations.	934.4 95% UCL are pi e based upon da results of the sin eal World data se	rovided to help the user to select the most appropriate 95% UCL. Ita size, data distribution, and skewness. Inulation studies summarized in Singh, Maichle, and Lee (2006). Its; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations	
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Response to the Pile Copper Total Soil Total Number of Observations	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). tits; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Response to the Pile Copper Total Soil Total Number of Observations	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). tts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 749.2 733
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Resold Pile Copper Total Soil Total Number of Observations Minimum Maximum St.	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060 0 614.7	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). tts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 749.2 733 170.5
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Response to the Police Copper Total Soil Total Number of Observations Minimum Maximum	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060 0 614.7	rovided to help the user to select the most appropriate 95% UCL. ta size, data distribution, and skewness. nulation studies summarized in Singh, Maichle, and Lee (2006). tts; for additional insight the user may want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 749.2 733
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations results will not cover all Recommendations are based upon the However, simulations are based upon the H	General General 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6 76.6	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 749.2 733 170.5
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations results will not cover al	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060 0 614.7 1 0.82 Normal	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 749.2 733 170.5
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations results	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060 0 614.7 1 0.82 Normal	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test	0 749.2 733 170.5
Note: Suggestions regarding the selection of a Recommendations and These recommendations are based upon the However, simulations results will not cover all Recommendations results resul	934.4 95% UCL are pi e based upon da results of the sin eal World data se General 13 76.6 1 2060 1 614.7 1 0.82 Normal 2 0.882 2 0.866	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test Data appear Normal at 5% Significance Level	0 749.2 733 170.5
Note: Suggestions regarding the selection of a Recommendations are These recommendations are based upon the However, simulations results will not cover all Re soil Pile Copper Total Soil Total Number of Observations Minimum Maximum SE Coefficient of Variation Shapiro Wilk Test Statistic	934.4 95% UCL are pi e based upon da results of the sin hall World data se General 13 76.6 2060 614.7 0.82 Normal 0.882 0.866 0.0202	statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test	0 749.2 733 170.5

AECOM 13 of 17 Prepared for Army National Guard

	Assuming Nor	rmal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	1053	95% Adjusted-CLT UCL (Chen-1995)	1078
		95% Modified-t UCL (Johnson-1978)	1061
	Gamma	GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.752	Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.241	Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	Dear Gamma D	istributed at 5% Significance Level	
	Gamma	Statistics	
k hat (MLE)		k star (bias corrected MLE)	1.105
Theta hat (MLE)	546.9	Theta star (bias corrected MLE)	678
nu hat (MLE)	35.62	nu star (bias corrected)	28.73
MLE Mean (bias corrected)	749.2	MLE Sd (bias corrected)	712.7
		Approximate Chi Square Value (0.05)	17.5
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	16.26
	Assuming Gar	mma Distribution	
95% Approximate Gamma UCL (use when n>=50))		95% Adjusted Gamma UCL (use when n<50)	1324
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		al GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.23	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormai	at 5% Significance Level	
Data api		at 5% Significance Level	
Minimum of Logged Data	Lognorma		6.212
•	Lognorma 4.339	al Statistics	6.212
Minimum of Logged Data Maximum of Logged Data	Lognorma 4.339 7.63	al Statistics Mean of logged Data SD of logged Data	
Minimum of Logged Data Maximum of Logged Data	Lognorma 4.339 7.63 Assuming Logn	al Statistics Mean of logged Data SD of logged Data ormal Distribution	1.04
Minimum of Logged Data Maximum of Logged Data / 95% H-UCL	Lognorma 4.339 7.63 Assuming Logn 2054	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL	1.04
Minimum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906	al Statistics Mean of logged Data SD of logged Data ormal Distribution	1.04
Minimum of Logged Data Maximum of Logged Data / 95% H-UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL	1.04
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar	Lognoma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL utton Free UCL Statistics	1.04
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar	Lognoma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu	Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	1.04
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow	4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distrible	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL utton Free UCL Statistics	1.04
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow	4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distrible	Al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ution Free UCL Statistics Distribution at 5% Significance Level	1.04
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL strion Free UCL Statistics Distribution at 5% Significance Level	1.04 1564 2381
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follow	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL attion Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs	1.04 1564 2381 1053
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL attion Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1.04 1564 2381 1053 1139
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227	al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL attion Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	1.04 1564 2381 1053 1139
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discemible 1030 1020 1227 1085 1261	Al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ution Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	1564 2381 1053 1139 1023
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonper Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227 1085 1261 1814	Al Statistics Mean of logged Data SD of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ution Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL	1.04 1564 2381 1053 1139 1023
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonper Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227 1085 1261 1814 Suggested	Al Statistics Mean of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ution Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL	1.04 1564 2381 1053 1139 1023
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227 1085 1261 1814 Suggested 1053	Mean of logged Data SD of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL intion Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL	1.04 1564 2381 1053 1139 1023
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227 1085 1261 1814 Suggested 1053	Mean of logged Data SD of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100 Stribution at 5% Significance Level 100 Stribution Free UCLs 10	1.04 1564 2381 1053 1139 1023
Minimum of Logged Data Maximum of Logged Data Maximum of Logged Data 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpar Data appear to follor No 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL 95% Student's-t UCL Note: Suggestions regarding the selection of a	Lognorma 4.339 7.63 Assuming Logn 2054 1906 3315 ametric Distribu v a Discernible 1030 1020 1227 1085 1261 1814 Suggested 1053	Mean of logged Data SD of logged Data SD of logged Data ormal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL intion Free UCL Statistics Distribution at 5% Significance Level stribution Free UCLs 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL 99% Chebyshev (Mean, Sd) UCL	1.04 1564 2381 1053 1139 1023

AECOM 14 of 17 Prepared for Army National Guard

Pile Lead Total Soil			
		Statistics	
Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	0
Minimum	672	Mean	10529
Maximum	57200	Median	6040
SD	15537	Std. Error of Mean	4309
Coefficient of Variation	1.476	Skewness	2.641
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.642	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value		Data Not Normal at 5% Significance Level	
Data	NOT NOTHAL ALS	5% Significance Level	
	Assuming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	18210	95% Adjusted-CLT UCL (Chen-1995)	20990
		95% Modified-t UCL (Johnson-1978)	18736
A-D Test Statistic		GOF Test Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	
			ol.
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Level istributed at 5% Significance Level	eı
k hat (MLE)		Statistics k star (bias corrected MLE)	0.655
Theta hat (MLE)	13424	Theta star (bias corrected MLE)	16084
nu hat (MLE)	20.39	nu star (bias corrected)	17.02
MLE Mean (bias corrected)	10529	MLE Sd (bias corrected)	13014
	1	Approximate Chi Square Value (0.05)	8.687
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	7.852
		nma Distribution	-
95% Approximate Gamma UCL (use when n>=50)		95% Adjusted Gamma UCL (use when n<50)	22825
		3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	
6) · 1100 = 6 · ·		al GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value		Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value		Data appear Lognormal at 5% Significance Level	
Data app	pear Lognormal	at 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	6.51	Mean of logged Data	8.503
Maximum of Logged Data	10.95	SD of logged Data	1.285
	Assuming Logge	ormal Distribution	
95% H-UCL		90% Chebyshev (MVUE) UCL	22100
		- , , ,	
95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL		97.5% Chebyshev (MVUE) UCL	35173
	1		
Nonpar	ametric Distribu	ution Free UCL Statistics	
Data appear to follow	w a Discernible	Distribution at 5% Significance Level	

Prepared for Army National Guard AECOM 15 of 17

Nor	nparametric Dis	tribution Free UCLs	
95% CLT UCL	17617	95% Jackknife UCL	18210
95% Standard Bootstrap UCL	17424	95% Bootstrap-t UCL	33536
95% Hall's Bootstrap UCL	47654	95% Percentile Bootstrap UCL	17811
95% BCA Bootstrap UCL	21982		·
90% Chebyshev(Mean, Sd) UCL	23457	95% Chebyshev(Mean, Sd) UCL	29313
97.5% Chebyshev(Mean, Sd) UCL	37440	99% Chebyshev(Mean, Sd) UCL	53405
	1		
	Suggested	UCL to Use	
95% Adjusted Gamma UCL	22825		
Note: Suggestions regarding the selection of a	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
Recommendations are	based upon dat	ta size, data distribution, and skewness.	
These recommendations are based upon the r	esults of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Re	al World data se	ts; for additional insight the user may want to consult a statistician.	
		<u> </u>	
Soil Pile Zinc Total Soil			
	General	Statistics	
Total Number of Observations		Number of Distinct Observations	13
		Number of Missing Observations	0
Minimum	106	Mean	209.9
Maximum		Median	211
SD		Std. Error of Mean	25.86
Coefficient of Variation		Skewness	1.3
		G.C.III.G.G	
	Normal (GOF Test	
Shapiro Wilk Test Statistic		Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value		Data appear Normal at 5% Significance Level	
Lilliefors Test Statistic		Lilliefors GOF Test	
5% Lilliefors Critical Value		Data appear Normal at 5% Significance Level	
		t 5% Significance Level	
5444 4	ppour Normal de	tow digitalious cover	
	Assuming Non	mal Distribution	
95% Normal UCL	Assuming Non	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	256	95% Adjusted-CLT UCL (Chen-1995)	262.4
55 % Students-t OCL	230	95% Modified-t UCL (Johnson-1978)	257.6
		33 % MOUNTEU-L OOL (301118011-1376)	201.0
	Gamma	GOF Test	
A-D Test Statistic		Anderson-Darling Gamma GOF Test	
5% A-D Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	
K-S Test Statistic		Kolmogorov-Smirnov Gamma GOF Test	<u></u>
5% K-S Critical Value		Detected data appear Gamma Distributed at 5% Significance Leve	
		stributed at 5% Significance Level	
Detected data app	var dannila Di	Calibatos at 0 /0 Cigninicanos E0701	
	Commo	Statistics	
k hat (MLE)	ale:	k star (bias corrected MLE)	4.821
Theta hat (MLE)		Theta star (bias corrected MLE)	43.54
	161.2	nu star (bias corrected)	125.4
nu hat (MLE) MLE Mean (bias corrected)	209.9	nu star (bias corrected) MLE Sd (bias corrected)	95.61
MLE Mean (bias corrected)	203.3	Approximate Chi Square Value (0.05)	100.5
Adjusted Loyal of Circiffeeee	0.0301	Approximate Cni Square Value (0.05) Adjusted Chi Square Value	97.32
Adjusted Level of Significance	0.0301	Aujusteu Chi Square Value	91.32
	Accumina C	nma Distribution	
OE9/ Approximate Common LIQL (see also see EQ)		nma Distribution	270.4
95% Approximate Gamma UCL (use when n>=50))	261.9	95% Adjusted Gamma UCL (use when n<50)	270.4
	lamam:-	LCOE Test	
	Lognorma	I GOF Test	

Prepared for Army National Guard AECOM 16 of 17

Shapiro Wilk Test Statistic	0.946	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.19	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.234	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal	at 5% Significance Level	
	Lognorma	al Statistics	
Minimum of Logged Data	4.663	Mean of logged Data	5.264
Maximum of Logged Data	6.094	SD of logged Data	0.419
A		ormal Distribution	
95% H-UCL		90% Chebyshev (MVUE) UCL	283.8
95% Chebyshev (MVUE) UCL	317.5	97.5% Chebyshev (MVUE) UCL	364.3
99% Chebyshev (MVUE) UCL	456.1		
·		ution Free UCL Statistics	
Data appear to follow	v a Discemible	Distribution at 5% Significance Level	
	-	stribution Free UCLs	
95% CLT UCL	252.5	95% Jackknife UCL	256
95% Standard Bootstrap UCL	250.2	95% Bootstrap-t UCL	270.6
95% Hall's Bootstrap UCL		95% Percentile Bootstrap UCL	254.7
95% BCA Bootstrap UCL	260.5		
90% Chebyshev(Mean, Sd) UCL	287.5	95% Chebyshev(Mean, Sd) UCL	322.6
97.5% Chebyshev(Mean, Sd) UCL	371.4	99% Chebyshev(Mean, Sd) UCL	467.2
		UCL to Use	
95% Student's-t UCL	256		
55 5 5	<u> </u>	rovided to help the user to select the most appropriate 95% UCL.	
	•	ta size, data distribution, and skewness.	
•		nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	al World data se	ets; for additional insight the user may want to consult a statistician.	

	UCL St	atistics for Unc	ensored Full Data Sets	
	1			
User Selected Options				
Date/Time of Computation	ProUCL 5.110/27/2018 10:47:58	8 AM		
From File	ProUCLInput_KLgw2_b.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
Firing Point Nitroglycerin Surface Soil				
			Statistics	
	Total Number of Observations	9	Number of Distinct Observations	9
			Number of Missing Observations	0
	Minimum	0.002	Mean	0.575
	Maximum	1.3	Median	0.55
	SD	0.433	Std. Error of Mean	0.144
	Coefficient of Variation	0.753	Skewness	0.72
			·	
N	lote: Sample size is small (e.g.,	<10), if data ar	re collected using ISM approach, you should use	
			SM (ITRC, 2012) to compute statistics of interest.	
			/shev UCL to estimate EPC (ITRC, 2012).	
(nparametric and All UCL Options of ProUCL 5.1	
		Normal (GOF Test	
	Shapiro Wilk Test Statistic	0.911	Shapiro Wilk GOF Test	
	<u> </u>	0.829	-	
	5% Shapiro Wilk Critical Value		Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.2	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.274	Data appear Normal at 5% Significance Level	
	Data ap	opear Normal at	t 5% Significance Level	
		Assuming Non	mal Distribution	
95% N	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	0.844	95% Adjusted-CLT UCL (Chen-1995)	0.85
			95% Modified-t UCL (Johnson-1978)	0.85
		Gamma	GOF Test	
	A-D Test Statistic	0.687	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.748	Detected data appear Gamma Distributed at 5% Significance Level	
	K-S Test Statistic	0.28	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.288	Detected data appear Gamma Distributed at 5% Significance Level	
	Detected data app		stributed at 5% Significance Level	
		Gamma	Statistics	
	k hat (MLE)	0.872	k star (bias corrected MLE)	0.655
	Theta hat (MLE)	0.66	Theta star (bias corrected MLE)	0.878
	nu hat (MLE)	15.69		11.8
	MLE Mean (bias corrected)	0.575	MLE Sd (bias corrected)	0.711
	will wiedii (bias collected)	0.575	Approximate Chi Square Value (0.05)	5.093
			Approximate Uni Square value (0.05)	
	Adjusted Level of Charles	0.0224		4 202
	Adjusted Level of Significance	0.0231	Adjusted Chi Square Value	4.203
			Adjusted Chi Square Value	4.203
		Assuming Gam	Adjusted Chi Square Value	
95% Approximate			Adjusted Chi Square Value	1.614
95% Approximate		Assuming Gam	Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50)	
95% Approximate		Assuming Gam	Adjusted Chi Square Value	
95% Approximate		Assuming Gam	Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50)	
95% Approximate	Gamma UCL (use when n>=50))	Assuming Gam 1.332 Lognorma	Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50)	
95% Approximate	Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	Assuming Gam 1.332 Lognorma 0.671	Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50) I GOF Test Shapiro Wilk Lognormal GOF Test	

Prepared for Army National Guard

AECOM
1 of 2

Maximum of Logged Data 0.262 SD of logged Data 1.98	5% Lilliefors Critical Value	0.274	Data Not Lognormal at 5% Significance Level	
Minimum of Logged Data -6.215 Mean of logged Data -1.22	Data No	Lognormal at 5% Sign	ificance Level	
Minimum of Logged Data -6.215 Mean of logged Data -1.22		Lognormal Statistic	s s	
Maximum of Logged Data 0.262 SD of logged Data 1.98	Minimum of Logged Data	-		-1.226
95% H-UCL 96.3 90% Chebyshev (MVUE) UCL 5.001 97.5% Chebyshev (MVUE) UCL 6.66 99% Chebyshev (MVUE) UCL 9.748 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLS Significance Level	Maximum of Logged Data	0.262	SD of logged Data	1.958
95% H-UCL 96.3 90% Chebyshev (MVUE) UCL 5.001 97.5% Chebyshev (MVUE) UCL 6.66 99% Chebyshev (MVUE) UCL 9.748 Nonparametric Distribution Free UCL Statistics Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLS Significance Level				
95% Chebyshev (MVUE) UCL 5.001 97.5% Chebyshev (MVUE) UCL 6.66				
Suggested UCL to Use 9.748 99% Chebyshev (MVUE) UCL 9.748 99% Chebyshev (MVUE) UCL 9.748			, , ,	3.848
Nonparametric Distribution Free UCL Statistics Data appear to follow a Discemible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs	, , ,		97.5% Chebyshev (MVUE) UCL	6.602
Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs	99% Chebyshev (MVUE) UCL	9.748		
Data appear to follow a Discernible Distribution at 5% Significance Level Nonparametric Distribution Free UCLs	Nonnere	netric Distribution Free	LICI Statistics	
Nonparametric Distribution Free UCLs 95% CLT UCL 0.813 95% Jackknife UCL 0.8 95% Standard Bootstrap UCL 0.792 95% Bootstrap-t UCL 0.9 95% Hall's Bootstrap UCL 1.114 95% Percentile Bootstrap UCL 0.8 95% BCA Bootstrap UCL 0.835 90% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.2 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use	•			
95% CLT UCL 0.813 95% Jackknife UCL 0.88 95% Standard Bootstrap UCL 0.792 95% Bootstrap-t UCL 0.99 95% Hall's Bootstrap UCL 1.114 95% Percentile Bootstrap UCL 0.81 95% BCA Bootstrap UCL 0.835 95% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use	Data appear to follow	a Discernible Distributi	on at 5% Significance Level	
95% CLT UCL 0.813 95% Jackknife UCL 0.88 95% Standard Bootstrap UCL 0.792 95% Bootstrap-t UCL 0.99 95% Hall's Bootstrap UCL 1.114 95% Percentile Bootstrap UCL 0.81 95% BCA Bootstrap UCL 0.835 95% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use	Non	orometrie Dietribution	Ema HOLa	
95% Standard Bootstrap UCL 0.792 95% Bootstrap-t UCL 0.99 95% Hall's Bootstrap UCL 1.114 95% Percentile Bootstrap UCL 0.81 95% BCA Bootstrap UCL 0.835 90% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0	•			0.944
95% Hall's Bootstrap UCL 1.114 95% Percentile Bootstrap UCL 0.80 95% BCA Bootstrap UCL 0.835 90% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use				
95% BCA Bootstrap UCL 0.835 90% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use	·		•	
90% Chebyshev(Mean, Sd) UCL 1.008 95% Chebyshev(Mean, Sd) UCL 1.20 97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use	·		95% Percentile Bootstrap UCL	0.806
97.5% Chebyshev(Mean, Sd) UCL 1.477 99% Chebyshev(Mean, Sd) UCL 2.0 Suggested UCL to Use			250, 01 4 4 44 0 1140	1.005
Suggested UCL to Use	, , , , ,		, ,	
•	97.5% Chebysnev(Mean, Sd) UCL	1.4//	99% Chebyshev(Mean, Sd) UCL	2.012
95% Student's-t UCL 0.844		Suggested UCL to U	lse .	
	95% Student's-t UCL	0.844		
		ļ		
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.	Note: Suggestions regarding the selection of a 9	5% UCL are provided to	help the user to select the most appropriate 95% UCL.	
Recommendations are based upon data size, data distribution, and skewness.		•		
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).	These recommendations are based upon the re	sults of the simulation st	udies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.	•			

	UCL Sta	atistics for Unc	ensored Full Data Sets	
User Selected Options				
Date/Time of Computation	ProUCL 5.110/27/2018 10:49:56	i AM		
From File	ProUCLInput_KLgw2_d.xls			
Full Precision	OFF			
Confidence Coefficient	95%			
Number of Bootstrap Operations	2000			
French Drain Antimony Sediment				
		Conoral	Statistics	
	Total Number of Observations	10	Number of Distinct Observations	10
	Total Number of Observations	10	Number of Missing Observations	1
	Minimum	0.092	Mean	0.298
	Maximum	0.638	Median	0.298
	SD	0.036	Std. Error of Mean	0.277
	Coefficient of Variation	0.133	Skewness	1.084
	Coemcient of variation	0.022	Skewiiess	1.00+
		Normal (GOF Test	
	Shapiro Wilk Test Statistic	0.937	Shapiro Wilk GOF Test	
	5% Shapiro Wilk Critical Value	0.842	Data appear Normal at 5% Significance Level	
	Lilliefors Test Statistic	0.174	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.262	Data appear Normal at 5% Significance Level	
	Data ap	pear Normal at	t 5% Significance Level	
		Assuming Non	mal Distribution	
95% No	ormal UCL		95% UCLs (Adjusted for Skewness)	
	95% Student's-t UCL	0.388	95% Adjusted-CLT UCL (Chen-1995)	0.397
			95% Modified-t UCL (Johnson-1978)	0.391
			GOF Test	
	A-D Test Statistic	0.133	Anderson-Darling Gamma GOF Test	
	5% A-D Critical Value	0.729	Detected data appear Gamma Distributed at 5% Significance Level	
	K-S Test Statistic	0.108	Kolmogorov-Smirnov Gamma GOF Test	
	5% K-S Critical Value	0.268	Detected data appear Gamma Distributed at 5% Significance Level	
	Detected data appo	ear Gamma Di	stributed at 5% Significance Level	
		Commo	Statistics	
	k hat (MLE)	4.147	k star (bias corrected MLE)	2.97
	Theta hat (MLE)	0.0718	Theta star (bias corrected MLE)	0.1
	nu hat (MLE)	82.94	nu star (bias corrected)	59.39
	MLE Mean (bias corrected)	0.298	MLE Sd (bias corrected)	0.173
	(bido corrected)		Approximate Chi Square Value (0.05)	42.67
	Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	40.22
	,		/ Myssica official value	
		Assuming Gam	nma Distribution	
95% Approximate 0	Gamma UCL (use when n>=50))	0.414	95% Adjusted Gamma UCL (use when n<50)	0.44
			1	
		Lognorma	I GOF Test	
	Shapiro Wilk Test Statistic	0.986	Shapiro Wilk Lognormal GOF Test	
	5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
	Lilliefors Test Statistic	0.122	Lilliefors Lognormal GOF Test	
	5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
	Data appe	ear Lognormal	at 5% Significance Level	
			I Statistics	
	Minimum of Logged Data	-2.386	Mean of logged Data	-1.337

AECOM 1 of 6 Prepared for Army National Guard

Maximum of Logged Data	-0.449	SD of logged Data	0.545
A	ssuming Logno	ormal Distribution	
95% H-UCL	0.461	90% Chebyshev (MVUE) UCL	0.458
95% Chebyshev (MVUE) UCL	0.529	97.5% Chebyshev (MVUE) UCL	0.629
99% Chebyshev (MVUE) UCL	0.824		
Nonnere	metric Distribu	ition Free UCL Statistics	
		Distribution at 5% Significance Level	
Non	parametric Dis	tribution Free UCLs	
95% CLT UCL	0.379	95% Jackknife UCL	0.388
95% Standard Bootstrap UCL	0.374	95% Bootstrap-t UCL	0.421
95% Hall's Bootstrap UCL	0.522	95% Percentile Bootstrap UCL	0.38
95% BCA Bootstrap UCL	0.402		
90% Chebyshev(Mean, Sd) UCL	0.445	95% Chebyshev(Mean, Sd) UCL	0.512
97.5% Chebyshev(Mean, Sd) UCL	0.605	99% Chebyshev(Mean, Sd) UCL	0.787
	Suggested	UCL to Use	
95% Student's-t UCL	0.388	001 10 000	
30% Stadon 0 1 0 0 2			
Note: Suggestions regarding the selection of a 9	95% UCL are pr	rovided to help the user to select the most appropriate 95% UCL.	
		ta size, data distribution, and skewness.	
These recommendations are based upon the re	sults of the sim	nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	World data se	ts; for additional insight the user may want to consult a statistician.	
French Drain Copper Sediment			
		A	
Total Number of Observations	10	Statistics Number of Distinct Observations	10
Total Number of Observations		Number of Missing Observations	1
Minimum	6.63	Mean	22.47
Maximum	38.7	Median	21
SD	10.04	Std. Error of Mean	3.175
Coefficient of Variation	0.447	Skewness	-0.00302
		·	
		GOF Test	
Shapiro Wilk Test Statistic	0.962	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value Lilliefors Test Statistic	0.842	Data appear Normal at 5% Significance Level Lilliefors GOF Test	
Lilliefors Test Statistic 5% Lilliefors Critical Value	0.161	Data appear Normal at 5% Significance Level	
		t 5% Significance Level	
Data ap	- Jan Monthal Cl		
	Assuming Nor	mal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	28.29	95% Adjusted-CLT UCL (Chen-1995)	27.69
		95% Modified-t UCL (Johnson-1978)	28.29
		GOF Test	
A-D Test Statistic	0.334	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.729	Detected data appear Gamma Distributed at 5% Significance Leve	1
K-S Test Statistic 5% K-S Critical Value	0.19	Kolmogorov-Smirnov Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Leve	ı
		stributed at 5% Significance Level	1
регостои чака арр	- Gaillia Di	Sansacou de 570 Organiconico Estor	
	Gamma	Statistics	
k hat (MLE)	4.581	k star (bias corrected MLE)	3.273
Theta hat (MLE)	4.906	Theta star (bias corrected MLE)	6.866

Prepared for Army National Guard AECOM 2 of 6

	1		
nu hat (MLE)	91.62	nu star (bias corrected)	65.47
MLE Mean (bias corrected)	22.47	MLE Sd (bias corrected)	12.42
		Approximate Chi Square Value (0.05)	47.85
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	45.24
	Accuming Con	nma Distribution	
95% Approximate Gamma UCL (use when n>=50))	30.75	95% Adjusted Gamma UCL (use when n<50)	32.52
		I GOF Test	
Shapiro Wilk Test Statistic	0.918	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.219	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal	at 5% Significance Level	
Minimum of Lorend Date		al Statistics	2.999
Minimum of Logged Data		Mean of logged Data	
Maximum of Logged Data	3.656	SD of logged Data	0.539
	Assuming Logn	ormal Distribution	
95% H-UCL	34.91	90% Chebyshev (MVUE) UCL	34.74
95% Chebyshev (MVUE) UCL	40.13	97.5% Chebyshev (MVUE) UCL	47.61
99% Chebyshev (MVUE) UCL	62.31	57.5% Chebyshev (WVOL) OCL	47.01
33% Greekster (MV 32) 332	02.01		
Nonpara	ametric Distribu	tion Free UCL Statistics	
Data appear to follow	v a Discernible	Distribution at 5% Significance Level	
	-	tribution Free UCLs	00.00
95% CLT UCL		95% Jackknife UCL	28.29
95% Standard Bootstrap UCL	27.37	95% Bootstrap-t UCL	28.35
95% Hall's Bootstrap UCL	27.57	95% Percentile Bootstrap UCL	27.44
95% BCA Bootstrap UCL	27.56		
90% Chebyshev(Mean, Sd) UCL	32	95% Chebyshev(Mean, Sd) UCL	36.31
97.5% Chebyshev(Mean, Sd) UCL	42.3	99% Chebyshev(Mean, Sd) UCL	54.07
	Suggested	UCL to Use	
95% Student's-t UCL	28.29		
	Į.		
Note: Suggestions regarding the selection of a s	95% UCL are pr	ovided to help the user to select the most appropriate 95% UCL.	
		ta size, data distribution, and skewness.	
		nulation studies summarized in Singh, Maichle, and Lee (2006).	
However, simulations results will not cover all Rea	ai World data se	ts; for additional insight the user may want to consult a statistician.	
Note: For highly pegatively-skewed data or	onfidence limite	(e.g., Chen, Johnson, Lognormal, and Gamma) may not be	
		de adjustments for positively skewed data sets.	
nch Drain Lead Sediment			
Tatal Minister of Observation	General 11	Statistics Number of Distinct Observations	11
Total Number of Observations	11	Number of Distinct Observations Number of Missing Observations	11 0
•	17.6	Mean	121.6
Matina time come	17.0		106
Minimum	359	Manding!	
Maximum		Median	
Maximum SD	95.12	Std. Error of Mean	28.68
Maximum	95.12		28.68
Maximum SD	95.12 0.782	Std. Error of Mean	

AECOM 3 of 6 Prepared for Army National Guard

5% Shapiro Wilk Critical Value	0.05	Data Named at 50/ Oiif I and	
Lilliefors Test Statistic	0.85 0.217	Data appear Normal at 5% Significance Level Lilliefors GOF Test	
5% Lilliefors Critical Value	0.217	Data appear Normal at 5% Significance Level	
		5% Significance Level	
	pour Horman at V	O/O Organication Lovel	
	Assuming Norm	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	173.6	95% Adjusted-CLT UCL (Chen-1995)	183.9
		95% Modified-t UCL (Johnson-1978)	176
	Gamma G	OF Test	
A-D Test Statistic	0.148	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.739	Detected data appear Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.122	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.259	Detected data appear Gamma Distributed at 5% Significance Leve	el
Detected data app	ear Gamma Dis	tributed at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	1.942	k star (bias corrected MLE)	1.473
Theta hat (MLE)	62.64	Theta star (bias corrected MLE)	82.59
nu hat (MLE)	42.72	nu star (bias corrected)	32.4
MLE Mean (bias corrected)	121.6	MLE Sd (bias corrected)	100.2
		Approximate Chi Square Value (0.05)	20.39
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	18.85
95% Approximate Gamma UCL (use when n>=50))	Assuming Gamr 193.3	ma Distribution 95% Adjusted Gamma UCL (use when n<50)	209.1
3370 Approximate damina doc (use when he -30))	133.3	33 % Adjusted Callinia GOL (use when it 500)	203.1
	Lognormal	GOF Test	
Shapiro Wilk Test Statistic	0.981	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	-
Lilliefors Test Statistic	0.113	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level	
Data app	ear Lognormal a	at 5% Significance Level	
	Lognormal	Statistics	
Minimum of Logged Data	2.868	Mean of logged Data	4.522
	1		
Maximum of Logged Data	5.881	SD of logged Data	0.828
•		**	0.828
A	ssuming Lognor	rmal Distribution	0.828
95% H-UCL	assuming Lognor	rmal Distribution 90% Chebyshev (MVUE) UCL	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL	ssuming Lognor 261.8 266.9	rmal Distribution	
95% H-UCL	assuming Lognor	rmal Distribution 90% Chebyshev (MVUE) UCL	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL	261.8 266.9 449.3	rmal Distribution 90% Chebyshev (MVUE) UCL	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare	261.8 266.9 449.3	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare Data appear to follow	261.8 266.9 449.3 ametric Distributi	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Distribution at 5% Significance Level	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare Data appear to follow	261.8 266.9 449.3 ametric Distributi	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics	222.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor	assuming Lognor 261.8 266.9 449.3 ametric Distributi v a Discernible D	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Distribution at 5% Significance Level	222.6 328.5 173.6
95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpare Data appear to follow	assuming Lognor 261.8 266.9 449.3 ametric Distributi a Discemible D aparametric Distri	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL ion Free UCL Statistics Distribution at 5% Significance Level ribution Free UCLs	222.6 328.5
P5% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor 95% CLT UCL 95% Standard Bootstrap UCL	assuming Lognor 261.8 266.9 449.3 ametric Distributi a Discemible Disparametric Distributi 168.8 167.3	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL idon Free UCL Statistics Distribution at 5% Significance Level ribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	222.6 328.5 173.6 204.4
P5% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL	assuming Lognor 261.8 266.9 449.3 ametric Distributi a Discernible Distributi 168.8 167.3 384.4	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL idon Free UCL Statistics Distribution at 5% Significance Level ribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL	222.6 328.5 173.6 204.4
P5% Chebyshev (MVUE) UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	261.8 266.9 449.3 metric Distributi a Discernible Distributi 168.8 167.3 384.4 176.1	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 200 Free UCL Statistics Distribution at 5% Significance Level ribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL	222.6 328.5 173.6 204.4 168.7
A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	261.8 266.9 449.3 metric Distributi a Discernible D parametric Distr 168.8 167.3 384.4 176.1 207.7	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100n Free UCL Statistics Distribution at 5% Significance Level ribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev (Mean, Sd) UCL	222.6 328.5 173.6 204.4 168.7
A 95% H-UCL 95% Chebyshev (MVUE) UCL 99% Chebyshev (MVUE) UCL Nonpara Data appear to follow Nor 95% CLT UCL 95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL 95% BCA Bootstrap UCL 95% BCA Bootstrap UCL	261.8 266.9 449.3 metric Distributi a Discernible D parametric Distr 168.8 167.3 384.4 176.1 207.7	rmal Distribution 90% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 97.5% Chebyshev (MVUE) UCL 100n Free UCL Statistics 101stribution at 5% Significance Level 102stribution Free UCLs 95% Jackknife UCL 95% Bootstrap-t UCL 95% Percentile Bootstrap UCL 95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	222.6 328.5 173.6 204.4 168.7

AECOM 4 of 6 Prepared for Army National Guard

December delices are	hannel ones det	to also data distribution and also make		
		ta size, data distribution, and skewness.		
		nulation studies summarized in Singh, Maichle, and Lee (2006).		
However, simulations results will not cover all Rea	al World data se	ts; for additional insight the user may want to consult a statistician.		
French Drain Zinc Sediment				
	General	Statistics		
Total Number of Observations	10	Number of Distinct Observations	10	
		Number of Missing Observations	1	
Minimum	34.7	Mean	51.77	
Maximum	71.1	Median	52.85	
SD	10.98	Std. Error of Mean	3.472	
Coefficient of Variation	0.212	Skewness	-0.0514	
	<u> </u>			
	Normal (GOF Test		
Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value		Data appear Normal at 5% Significance Level		
Lilliefors Test Statistic	0.172	Lilliefors GOF Test		
5% Lilliefors Critical Value		Data appear Normal at 5% Significance Level		
		t 5% Significance Level		
Data ap	/poar (Notified at	2 0 0 Organication Level		
Assuming Normal Distribution 95% UCLs (Adjusted for Skewness)				
		1		
95% Student's-t UCL	58.13	95% Adjusted-CLT UCL (Chen-1995)	57.42	
		95% Modified-t UCL (Johnson-1978)	58.12	
Gamma GOF Test				
A-D Test Statistic	0.377	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.725	Detected data appear Gamma Distributed at 5% Significance Leve	·l	
K-S Test Statistic	0.198	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.266	Detected data appear Gamma Distributed at 5% Significance Leve	ıl	
Detected data appear Gamma Distributed at 5% Significance Level				
	Gamma	Statistics		
k hat (MLE)	23.58	k star (bias corrected MLE)	16.57	
Theta hat (MLE)	2.196	Theta star (bias corrected MLE)	3.124	
nu hat (MLE)	471.5	nu star (bias corrected)	331.4	
MLE Mean (bias corrected)	51.77	MLE Sd (bias corrected)	12.72	
(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		Approximate Chi Square Value (0.05)	290.2	
Adjusted Level of Significance	0.0267	Adjusted Chi Square Value	283.5	
/ lajactor 2010. 01 Digililior	0.0207	/ ajastos em equale raiso		
Accuming Commo Distribution				
Assuming Gamma Distribution 95% Approximate Gamma UCL (use when n>=50)) 59.12 95% Adjusted Gamma UCL (use when n<50) 60.51				
95% Approximate Gamma OCL (use when n>=50))	J9.1Z	95 % Adjusted Garrina OCL (use when n<50)	1 6.00	
		LOOF Took		
AL 1 MEN T 1 A 1 A 1		I GOF Test		
Shapiro Wilk Test Statistic		Shapiro Wilk Lognormal GOF Test		
5% Shapiro Wilk Critical Value	0.842	Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic		Lilliefors Lognormal GOF Test		
5% Lilliefors Critical Value	0.262	Data appear Lognormal at 5% Significance Level		
Data app	ear Lognormal	at 5% Significance Level		
	Lognorma	ll Statistics		
Minimum of Logged Data	3.547	Mean of logged Data	3.925	
Maximum of Logged Data	4.264	SD of logged Data	0.221	
	<u></u>	-		
4	ssuming Logna	ormal Distribution		
95% H-UCL	59.75	90% Chebyshev (MVUE) UCL	62.72	
95% Chebyshev (MVUE) UCL	67.67	97.5% Chebyshev (MVUE) UCL	74.54	
33.73 S.1.33, S.1.31 (MV 6E) 33E	1	57.575 S.155/S.157 (MV GE) GGE		

AECOM 5 of 6 Prepared for Army National Guard

99% Chebyshev (MVUE) UCL	88.03				
Nonpara	Nonparametric Distribution Free UCL Statistics				
Data appear to follow a Discernible Distribution at 5% Significance Level					
Nonparametric Distribution Free UCLs					
95% CLT UCL	57.48	95% Jackknife UCL	58.13		
95% Standard Bootstrap UCL	57.27	95% Bootstrap-t UCL	57.78		
95% Hall's Bootstrap UCL	57.84	95% Percentile Bootstrap UCL	57.12		
95% BCA Bootstrap UCL	57.14				
90% Chebyshev(Mean, Sd) UCL	62.19	95% Chebyshev(Mean, Sd) UCL	66.9		
97.5% Chebyshev(Mean, Sd) UCL	73.45	99% Chebyshev(Mean, Sd) UCL	86.31		
Suggested UCL to Use					
95% Student's-t UCL	58.13				
Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.					
Recommendations are based upon data size, data distribution, and skewness.					
These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).					
However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.					
The second state of the se					
Note: For highly negatively-skewed data, confidence limits (e.g., Chen, Johnson, Lognormal, and Gamma) may not be					
reliable. Chen's and Johnson's methods provide adjustments for positively skewed data sets.					
reliable. Cherrs and Johnson's methods provide adjustments for positively skewed data sets.					

		TARGET BERM DU	ERM DU			FIRING POINT DU
Sample ID	Antimony	Copper	Fead	Zinc	Sample ID	Nitroglycerin
RTR01IS01, Units mg/kg	24.8	636	5720	158	RTR03IS01, Units mg/kg	3.7
RTR01IS02, Units mg/kg	27	481	6180	149	RTR03IS02, Units mg/kg	4.4
RTR01IS03, Units mg/kg	40.1	612	8770	165	RTR03IS03, Units mg/kg	21
Arithmetic Mean	30.6	276	0689	157	Arithmetic Mean	9.7
Standard Deviation	8.27	83.4	1644	8.02	Standard Deviation	9.79
CV = SD / mean	0.27	0.145	0.239	0.051	CV = SD / mean	1.01
count (r)	3	3	3	3	count (r)	3
alpha (95% = 0.05)	0.05	0.05	0.05	0.05	alpha (95% = 0.05)	0.05
t(alpha, df=r-1)	2.92	2.92	2:92	2:92	t(alpha, df=r-1)	2.92
Student's t UCL	44.6	717	2996	171	Student's t UCL	26.2
Chebychev UCL	51.5	786	11028	178	Chebychev UCL	34.3
			BACKGROUND DU	DO		
Sample ID	Antimony	Copper	Геаd	Zinc	Nitroglycerin	
RTR04IS01, Units mg/kg	0.244	12	59.2	33.2	0.46	
RTR04IS02, Units mg/kg	0.682	12.7	81.8	33.5	0.44	
RTR04IS03, Units mg/kg	0.626	10.5	82.3	23	0.38	
Arithmetic Mean	0.517	11.7	74.4	29.9	0.427	
Standard Deviation	0.238	1.12	13.2	2.98	0.042	
CV = SD / mean	0.461	960.0	0.177	0.200	860:0	
count (r)	3	3	3	3	3	
alpha (95% = 0.05)	0.05	0.05	90'0	90'0	0.05	
t(alpha, df=r-1)	2.92	2.92	2.92	2:92	2.92	
Student's t UCL	0.919	13.6	2.96	40.0	0.497	
Chebychev UCL	1.12	14.6	108	44.9	0.531	

Notes:

CV = Coefficient of Variation; DU = Decision Unit; ITRC = Interstate Technology & Regulatory Council; mg/kg = milligrams per kilogram; SD = Standard Deviation;
UCL = Upper Confidence Limit

Source: ITRC 2012. Incremental Sampling Methodology, February 2012. https://www.itrcweb.org//SM-1/4_2_2_UCL_Calculation_Method.html

AECOM 1 of 1

Attachment 3

Transport and Fate Modeling

Revision Number: 0 Revision Date: November 2018

This page intentionally left blank.

Lead in Soil

TABLE OF CONTENTS

Revision Number: 0

Revision Date: November 2018

INTRODUCT	TION1
GENERATIO	N OF DUST FROM SOIL1
DERMAL CO	NTACT WITH SOIL2
LEAD MODE	LING3
REFERENCE	S6
	LIST OF TABLES
Table A3-1	Site-Specific Particulate Emission Factor
Table A3-2	Site-Specific Particulate Emission Factor from Generation of Dust from Soil from
	Unpaved Roads
Table A3-3	Dermal Absorption Factors and Gastrointestinal Absorptions Factors
Table A3-4	Calculation of Blood Lead Concentrations (PbBs) and Risk for the Outdoor Worker
	Scenario
Table A3-5	Calculation of Blood Lead Concentrations (PbBs) and Risk for the Construction and
	Utility Worker Scenarios
Table A3-6	Adult Lead Methodology Model Results for the On-Site Worker Scenario
Table A3-7	Adult Lead Methodology Model Results for the On-Site Construction/Utility Worker
	Scenario
Table A3-8	Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for Child Resident,

ACRONYMS AND ABBREVIATIONS

Revision Number: 0

Revision Date: November 2018

ALM Adult Lead Methodology BKSF biokinetic slope factor

CDC Centers of Disease Control and Prevention

COPC constituent of potential concern

DABS dermal absorption factor

DU decision unit

EPC exposure point concentration

GIABS gastrointestinal factor

GSD geometric standard deviation
HHRA human health risk assessment

IEUBK Integrated Exposure Uptake Biokinetic

IR ingestion rate

IRIS Integrated Risk Information System ISM incremental sampling methodology

m³/kg meters cubed per kilogramμg/dL micrograms per decilitermg/kg milligrams per kilogram

NHANES National Health and Nutrition Examination Survey
OLEM Office of Land and Emergency Management

PbB blood lead concentration PEF particulate emission factor

RAGS Risk Assessment Guidance for Superfund relative bioavailability absorption factor

USEPA United States Environmental Protection Agency

INTRODUCTION

Environmental transport and fate models are needed when data for constituent concentrations in certain exposure media and/or at certain exposure locations are not available. A transport and fate model may be a simple cross-media transfer calculation (e.g., volatilization from soil) or complex mathematical simulation. This attachment describes the methods and models for evaluating generation of dust from soil. No volatiles were identified as constituents of potential concern (COPCs), therefore soil-to-outdoor air volatilization factors were not needed for the human health risk assessment (HHRA) calculations. Also, this Attachment documents the constituent-specific parameters used to estimate dermal exposure to soil. Finally, lead was identified as a soil COPC for soil; residential and worker exposure to lead in soil was modeled.

Revision Number: 0

Revision Date: November 2018

Modeling the environmental transport and fate of constituents requires the use of simplified assumptions to simulate the environment. In reality, migration, dispersion, uptake, and degradation of constituents in environmental media involve many complex processes that are not always accurately represented in models. Although the use of models does introduce a source of uncertainty into the overall risk calculations, models are useful tools for developing a general understanding of constituent movement in the environment, which allows the quantitative evaluation of some exposure pathways that would otherwise be limited to a qualitative or descriptive evaluation. The uncertainties associated with modeling environmental transport and fate is discussed in the uncertainty assessment in the HHRA report.

GENERATION OF DUST FROM SOIL

In addition to direct exposure to soil contaminants, human receptors (e.g., the recreational user, outdoor worker, resident, trespasser, utility worker, and construction worker) may be exposed to windblown dust from soils. U.S. Environmental Protection Agency (USEPA) *Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites* ("Supplemental Guidance"; USEPA 2002a) provides the methodology for deriving a particulate emissions factor (PEF) to evaluate this exposure pathway.

The PEF relates the concentration of the constituent in soil with the concentration of dust particles in the air. The PEF is a representation of an annual average emission rate based on wind erosion that should be compared with chronic health criteria. However, it is not appropriate for evaluating the potential for more acute exposures. Table A3-1 presents the equation for deriving the PEF for the receptors listed above (USEPA 2002a). The Ridgway Training Range is roughly 0.22 acre. The area used in the PEF calculation was 0.5 acre which is the model default; any area smaller than 0.5 acre would distort the PEF calculations (USEPA 1996 and 2002a). The former range is primarily covered in grass, other vegetation, and the structures associated with the historic baffled small-arms range; for conservatism, the model default of 50% vegetative site cover was assumed. The

vegetation present is likely to 1) prevent soil particulates from being eroded and suspended in air and 2) hinder transported particulates from settling on the ground surface.

Revision Number: 0

Revision Date: November 2018

The "Supplemental Guidance" recommends using the PEF equation presented in Table A3-1 for residential and commercial/industrial scenarios (USEPA 2002a). Therefore a site-specific PEF of 1.27E+09 cubic meters per kilogram (m³/kg) was used for the on-site visitor, resident, trespasser, and outdoor worker scenarios. This PEF is appropriate for assessing exposure to wind-blown particulates under a non-excavation scenario.

The "Supplemental Guidance" provides a separate PEF equation for a construction or utility worker scenarios because it is likely that more dust will be generated during excavation activities for utility line repair or construction project (USEPA 2002a). It was assumed that the excavation occurred during a 3-month long time period (i.e., 5 days/week \times 4 weeks/month \times 3 months/year). The inhalation-of-fugitive-dust pathway analysis suggests that the most significant contribution to exposure comes from disturbance of surface soil by traffic on unpaved roads (USEPA 2002a). Should heavy construction be conducted on the former range, USEPA's "Supplemental Guidance" may be used to derive a separate PEF equation using as much site-specific data as possible (number of hauling trucks, length of unpaved roadway, etc.) to assess fugitive dust exposure for the future construction worker (USEPA 2002a). USEPA default values for equation constants and areal extent were used to derive a construction worker specific dispersion factor (Q_{sr}) 23.02 g/m²-s per kg/m³ and assumed a fleet of standard construction equipment (i.e. employee vehicles, full-size pickup trucks, backhoe, bulldozer, and excavator). An unpaved road PEF of 1.07E+07 m³/kg was calculated for the site as presented in Table A3-2 and used as the PEF for the on-site construction and utility worker scenarios.

DERMAL CONTACT WITH SOIL

Metals can exist in a variety of chemical and physical forms in the environment, and not all forms of a given metal are absorbed to the same extent. The relative bioavailability factor (RBA) is the fraction of an ingested dose that crosses the gastrointestinal epithelium and becomes available for distribution to internal target tissues and organs (USEPA 2007). Table A3-3 presents the RBAs used in the HHRA. For the Ridgway training range, the default RBA of 1 was used for antimony, copper, and nitroglycerin.

USEPA's Office of Research and Development reviewed available experimental data for dermal absorption from contaminated soil and recommended constituent- and class-specific dermal absorption (DABS) factors which are summarized in Exhibit 3-4 in the USEPA *Risk Assessment Guidance for Superfund* (RAGS) Part E guidance (USEPA 2004). The recommendations accounted for the uncertainty associated with different soil types, loading rates, constituent concentrations and other conditions that affect how readily a constituent that is adhered to soil particulates may

pass through the skin barrier of a potential receptor. The DABS values used in the HHRA are documented in Table A3-3.

Revision Number: 0

Revision Date: November 2018

Dermal toxicity values are not available in USEPA's Integrated Risk Information System (IRIS) or other USEPA sources. Therefore, USEPA's RAGS Part E dermal guidance was used for estimating dermal exposure to soil (USEPA 2004). USEPA (2004) recommends adjusting oral toxicity values using gastrointestinal absorption factors (GIABS) to evaluate dermal exposure routes for some constituents. Table A3-3 presents the GIABS values used in the HHRA. The oral-to-dermal adjustment is not required for constituents where 100 percent (i.e., GIABS=1) absorption is assumed (USEPA 2004). A cutoff of 50% gastrointestinal absorption is recommended to reflect the intrinsic variability in the analysis of absorption studies. USEPA (2004) recommends using a GIABS of 15% (GIABS=0.15) for antimony, indicating that the metal is poorly absorbed through the skin and gastrointestinal tract. For the other Ridgway training range COPCs, a default GIABS of 100 percent (GIABS=1) was assumed.

LEAD MODELING

Because most human health effects data for lead are correlated with concentrations in the blood rather than an external dose, the standard cancer risk and non-cancer hazard approach for evaluating health effects cannot be applied to lead.

The Centers for Disease Control and Prevention (CDC) estimates that about a half million US children (ages 1-5) have blood lead levels above 5 micrograms per deciliter (μ g/dL); CDC has adopted a blood lead concentration (PbB) threshold of 5 μ g/dL or lower to be protective of children (CDC, 2015). The new toxicity information however has not been fully incorporated into USEPA methodologies for evaluating the exposure of children or adults to lead (USEPA 2018a). The HHRA used the existing USEPA PbB threshold of 10 μ g/dL (USEPA 2010) and evaluated the PbB threshold of 5 μ g/dL in the uncertainty assessment. The goal is to limit the risk to no more than a 5% probability for a young child's or a fetus of a pregnant female worker PbB concentration to exceed the target PbB level in the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK) and Adult Lead Methodology (ALM) models, respectively (USEPA 2010 and 2017a). If the probability of 5% is exceeded, then adverse health effects from exposure to lead are possible for the hypothetical child resident or the fetus of the adult female worker.

USEPA's ALM model (version date 6/14/17) was used to estimate risk from exposure to lead in soil for the non-residential adult receptors (USEPA 2017a). Tables A3-4 and A3-5 document the parameter values used in the ALM modeling for the outdoor worker and construction/utility worker scenarios. The baseline PbB is intended to represent the best estimate of a reasonable central value of PbB in women of child-bearing age who are not exposed to lead-contaminated non-residential soil or dust at a site. The USEPA (2017b) Office of Land and Emergency Management (OLEM) Directive recommends using a default baseline value of 0.6 micrograms per deciliter (µg/dL) based

on the most recent six years of PbB data (2009-2014) from the National Health and Nutrition Examination Survey (NHANES) representing women 17-45 years of age; therefore, a baseline PbB

Revision Date: November 2018

Revision Number: 0

level of 0.6 μ g/dL was used in the ALM model (USEPA, 2017a,b). The USEPA OLEM Directive (2017b) also recommends using a geometric standard deviation PbB of 1.8.

The ALM guidance recommends using central tendency values for soil ingestion and exposure frequency (USEPA 2010). A central tendency soil ingestion rate (IRs) of 0.05 grams/day was used for the outdoor worker calculations and is also the ALM model default value (USEPA 2011 and 2017a). For the construction/utility worker ALM calculations, a higher central tendency IRs of 0.1 grams/day was used (USEPA 2011) was to better represent digging activities for the two scenarios. USEPA recommends using the mean concentration as the exposure point concentration (EPC) in the lead models (USEPA 2018b).

USEPA's target threshold for lead is to limit the risk to no more than a 5 percent chance fetuses exposed to lead would exceed a PbB of 5 μ g/dL (USEPA 2010). As shown in Table A3-4 and A3-5, the probability threshold of no more than 5 percent was exceeded for every decision unit (DU) and soil EPC for the outdoor worker scenario for both target PbB thresholds (5 and 10 μ g/dL), except for the Background Reference Area DU incremental sampling methodology (ISM) where the surface soil EPC is below the USEPA residential soil action level of 400 mg/kg. Assuming a target PbB threshold of 10 μ g/dL, the construction/utility worker results were above 5 percent probability for the Target Berm DU ISM surface soil and Soil Pile discrete total soil EPCs. Similar to the outdoor worker results, the construction/utility worker results were above the target 5 percent probability when a target PbB threshold of 5 μ g/dL was assumed. It should be noted that the target PbB threshold of 5 μ g/dL is considered the ALM model default PbB threshold (USEPA 2017a). Tables A3-6 and A3-7 summarize the ALM model results for the on-site outdoor worker and construction/utility worker scenario, respectively.

The IEUBK Model (Windows version 1.1, Build 11) consists of four modules (exposure, uptake, biokinetics, and variability) that mathematically and statistically link environmental lead exposure to PbB for a population of children (USEPA 2002b, 2010). USEPA's IEUBK Model was used to assess potential risks for the following scenario for children ages 12 to 72 months (USEPA 2017c). The USEPA IEUBK model predicts the chance that a typical child (ages 0 to 6 years) would have a PbB exceeding the target PbB threshold from background sources (e.g., diet, lead-based paint, drinking water, and indoor dust) as well as exposure to lead in soil at the site.

Table A3-8 presents the parameter values used in the IEUBK Model. Similar to the ALM results, the IEUBK probability results exceeded 5 percent for every DU and soil medium, except for the Background Reference Area DU ISM surface soil EPC which is below the USEPA residential soil action level of 400 mg/kg. The IEUBK model exceeded the probability threshold of 5 percent at a

target PbB threshold of 10 μ g/dL; therefore the model was not run using 5 μ g/dL since adverse health effects were already noted at the higher target PbB threshold of 10 μ g/dL.

Revision Number: 0

Revision Date: November 2018

For the on-site outdoor worker scenario, the Target Berm and Soil Pile DU surface soil and total soil results exceed the 5% probability to limit the risk to no more than a 5% probability for a fetus PbB of a pregnant female worker PbB to exceed the target PbB level; As shown in Table A3-6, the fetal PbBs also exceed the target PbB thresholds of 5 μ g/dL and 10 μ g/dL. Outdoor worker results are protective of the adult visitor; therefore adverse health effects from exposure to lead in soils are possible for the outdoor worker and the adult visitor.

For the construction/utility worker scenarios, the 5% probability threshold is exceeded for the Target Berm DU ISM surface soil and Soil Pile DU discrete total soil when a target PbB threshold of 10 μ g/dL is assumed; the fetal PbBs also exceed the 10 μ g/dL target PbB threshold (Table A3-7). When a target PbB threshold of 5 μ g/dL is assumed, the surface soil and total soil results for the Target Berm and Soil Pile DUs exceed the target thresholds (5% probability and fetal PbB concentrations).

For the hypothetical child resident, the IEUBK model results exceeded the 5% probability threshold in all cases when the target PbB threshold of 10 μ g/dL was assumed (Table A3-8). The IEUBK model was not run using the target PbB threshold of 5 μ g/dL due to the high probability percentage results when the 10 μ g/dL PbB threshold was used. The hypothetical child resident results are protective of the child visitor scenario; therefore adverse health effects from exposure to lead in soils for the hypothetical child resident and child visitor are possible at the MRS.

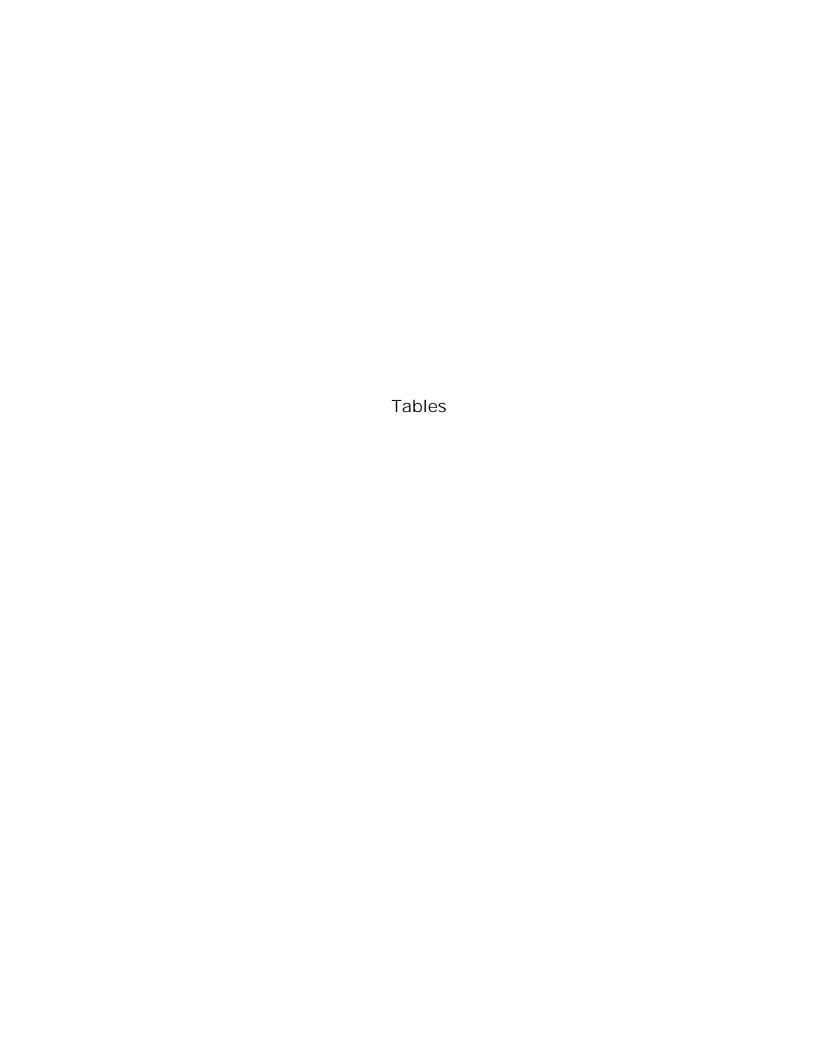
Assuming a 10 μ g/dL PbB threshold, lead is identified as a surface soil and total soil COC for the outdoor worker at the Target Berm and Soil Pile DUs. Lead is also a surface soil COC at the Target Berm DU and a total soil COC for the Soil Pile DU for the construction/utility workers. However, if a 5 μ g/dL PbB threshold is assumed for the construction/utility worker evaluation, lead becomes a surface soil and total soil COC for both DUs. The 2017 release of the ALM model lists 5 μ g/dL as the model default target PbB level of concern (USEPA 2017a).

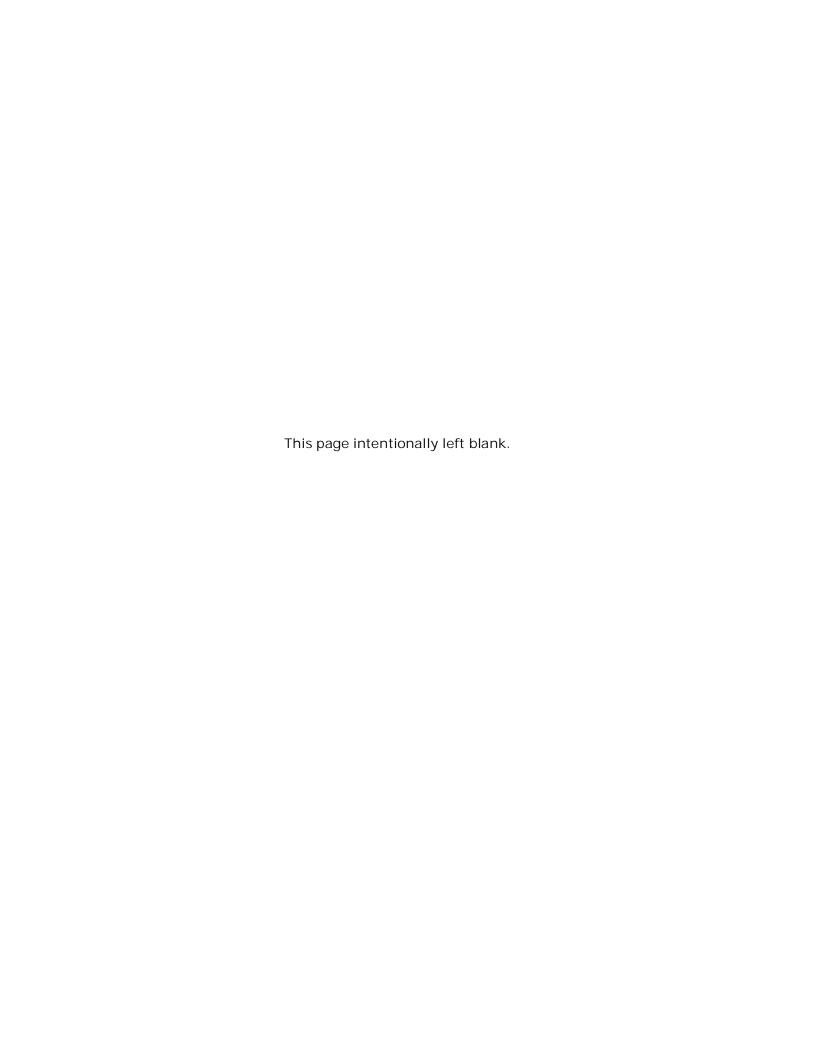
REFERENCES

Centers for Disease Control and Prevention (CDC) 2012. Low Level Lead Exposure Harms Children:
A Renewed Call for Primary Prevention. Report of the Advisory Committee on Childhood Lead Poisoning Prevention, Centers for Disease Control and Prevention. January 4, 2012.

Revision Number: 0

Revision Date: November 2018


- U.S. Environmental Protection Agency (USEPA) 1996. Soil Screening Guidance: Technical Background Document. https://www.epa.gov/superfund/superfund-soil-screening-guidance
- USEPA 2002a. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites,
 December. OSWER 9355.4-24. https://www.epa.gov/superfund/superfund-soil-screening-quidance
- USEPA 2002b. *User's Guide for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK) Windows® Version 32 Bit Version.* EPA 540-K-01-005. OSWER #9285.7-42. May 2002.
- USEPA 2004. Risk Assessment Guidance for Superfund Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment), Final. Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005, OSWER 9285.7-02EP, July 2004.
- USEPA 2007. Guidance for Evaluating the Oral Bioavailability of Metals in Soils for Use in Human Health Risk Assessment. OSWER 9285.8-80. May.
- USEPA 2010. Integrated Exposure Uptake Biokinetic Model for Lead in Children, Windows®version (IEUBKwin v1.1 build 11) 32-bit version Office of Superfund Remediation and Technology Innovation, United States Environmental Protection Agency.
- USEPA 2011. Exposure Factors Handbook: 2011 Edition, National Center for Environmental Assessment, Office of Research and Development. EPA/600/R-09/052F, September 2011.
- USEPA 2016. Recommendations for Assessing Short-Term Exposure Scenarios Involving Lead at Superfund Sites. OLEM Directive 9285.6-54. 2 August 2016.
- USEPA 2017a. Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas, USEPA Technical Review Workgroup for Lead, Version date 6/14/2017.
- USEPA 2017b. *Update of the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameter.* OLEM Directive 9285.6-56. 17 May 2017.
- USEPA. 2017c. *Transmittal of Update for the Default Age Range in the IEUBK Model.* OLEM Directive 9200.2-177. 15 November 2017.


USEPA 2018a. Regional Screening Level (RSL) Table and User's Guide, Dated May 2018. http://www.epa.gov/reg3hwmd/risk/human/rb-concentration_table/index.htm

Revision Number: 0

Revision Date: November 2018

USEPA 2018b. Lead at Superfund Sites: Frequent Questions from Risk Assessors on the Integrated Exposure Uptake Biokinetic (IEUBK) Model. Last Updated 7 September 2018. https://www.epa.gov/superfund/lead-superfund-sites-frequent-questions-risk-assessors-integrated-exposure-uptake

Table A3-1. Site-Specific Particulate Emission Factor Calculations for Non-Excavation Scenarios

1) General Form for Calculating Receptor and Pathway-Specific Dispersion Factors (Q/C) (USEPA, 2002a)

$$Q/C_{wind} = A * exp[(In A_{site} - B)^2 / C]$$

Values	Parameter	Parameter Description
14.0111	А	Constant for Philadelphia (PHL); Climate Zone 8 (unitless)
19.6154	В	Constant for Philadelphia (PHL); Climate Zone 8 (unitless)
225.3397	С	Constant for Philadelphia (PHL); Climate Zone 8 (unitless)
0.5	Asite	Areal extent of the site or contamination (acres) (1)
87.37	Q/C _{wind}	Inverse of mean concentration at center of 0.5-acre-square source (g/m²-s per kg/m³)

2) Derivation of the Particulate Emission Factor (PEF) (USEPA 2002a)

$$PEF = \frac{Q/C_{wind} * 3,600s/h}{0.036 * (1-V) * (U_m/U_t)^3 * F(x)}$$

Values	Parameter	Parameter Description
87.37	Q/C _{wind}	Inverse of mean concentration at center of 0.5-acre-square source (g/m²-s per kg/m³)
0.5	V	Fraction of vegetative cover (unitless)
4.69	Um	Mean annual wind speed (m/s) (USEPA, 2002a)
11.32	Ut	Equivalent threshold value of wind speed at 7m (m/s)
0.194	F(x)	Function dependent on Um/Ut derived from Cowherd et al. 1985 (unitless)
1.27E+09	PEF	Particulate emission factor (m³/kg)

Notes:

(1) Selected to represent most conservative scenario allowed by the model (0.5 acres).

References:

USEPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355.4-24. December 2002a.

Table A3-2. Site-Specific Particulate Emissions Factor Calculations for Excavation Scenarios

1) General Form for Calculating Construction Worker Dispersion Factor (Q/Csr) (USEPA 2002a)

$$Q/C_{sr} = A \times exp[(In A_{site} - B)^2 / C]$$

Values	Parameters	Parameter Description
12.9351	А	Constant (unitless)
5.7383	В	Constant (unitless)
71.7711	С	Constant (unitless)
0.5	Asite	Areal extent of the site or contamination (acres)
23.02	Q/C _{sr}	Inverse of mean concentration at center of 0.5-acre-square source (g/m²-s per kg/m³)

2)	Derivation of the Particulate Emission Factor Construction Scenario	(USEPA 2002a)

PEF _{sc} =	$Q/C_{sr} \times 1/F_D \times$	T x A _R
		FF(, , (M / 2)\(/ , \) [/ 2/F days have \(n \) / 2/F days have \(\) [CLIM (M/T)]

556 x (W / 3)^{0.4} x [(365 days/year - p) / 365 days/year] x [SUM (VKT)]

Values	Parameters	Parameter Description
calc, site specific	PEF _{sc}	Unpaved road particulate emission factor (m³/kg)
site specific	Q/C _{sr}	Inverse of 1-h average air concentration along a straight road segment bisecting a
site specific	Q/Csr	0.5-acre square site (g/m²-s per kg/m³)
0.185	F_D	Dispersion correction factor (unitless)
5184000	T	Total time over which construction occurs (s)
274	A_R	Surface area of contaminated road segment (m²), Equation: LR × WR × 0.092903 m²/ft²
148	L_R	Length of road segment (ft)
20	W_R	Width of road segment (ft)
4.7	W	Mean vehicle weight (tons)
140	p	Number of days with at least 0.01 inches of precipitation (days/year) (Exhibit 5-2; USEPA 2002a)
4.05E+01	SUM (VKT)	Sum of fleet vehicle kilometers traveled during the exposure duration (km)

Site-Specific Assumptions for Construction Site:

Values	Parameters	Parameter Description
T =	5184000	Assume 3-month construction project working (5 days/week x 4 weeks/month x 3 months/year)
A _R =	274	Assume standard road width of 6.09 m
W =	4.7	Assume 10 two-ton cars + 2 ten-ton trucks + 1 ten-ton backhoe + 1 ten-ton bulldozer + 1 ten-ton excavator
SUM (VKT) =	4.05E+01	Assume travel length of road once per day, for length of project, where:
30W (VK1) =	4.03L+01	= No of fleet vehicles x length of road (km/day) x construction period (days)
PEF _{sc}	1.07E+07	Unpaved road particulate emission factor (m³/kg)

References:

USEPA. 2002a. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites, OSWER 9355.4-24. December 2002.

Table A3-3. Dermal Absorption Factors and Gastrointestinal Absorptions Factors

Constituent of Potential Concern	Relative Bioavailability Factor (RBA) (unitless)	Dermal Absorption Factor (DABS) (unitless)	Gastrointestinal Absorption Factor (GIABS) (unitless)
Antimony	1	0.01	0.15
Copper	1	0.01	1
Nitroglycerin	1	0.1	1

Notes:

Source for RBAs: (USEPA 2007)

Source for DABS and GIABS: (USEPA 2004)

Table A3-4. Calculation of Blood Lead Concentrations (PbBs) and Risk for the Outdoor Worker Scenario

Variable	Description of Variable	Parameter Source	Units	Target Berm DU, Surface Soil, Discrete	Target Berm DU, Surface Soil, ISM	Target Berm DU, Total Soil, Discrete	Soil Pile DU, Surface Soil, Discrete	Soil Pile DU, Total Soil, Discrete	Background DU, Surface Soil, ISM
PbS	Soil lead concentration, DU-specific	DU- specific	mg/kg	5.347	6,890	4.957	3,326	10.529	74.4
R _{fetal/maternal}	<u> </u>		ilig/kg	- , -	,	,	,	-,-	
BKSF	Fetal/maternal PbB ratio Biokinetic Slope Factor	(a) (a)	 μg/dL per μg/day	0.9 0.4	0.9 0.4	0.9 0.4	0.9 0.4	0.9	0.9 0.4
GSD _i	Geometric standard deviation PbB	(a)		1.8	1.8	1.8	1.8	1.8	1.8
PbB ₀	Baseline PbB	(a)	μg/dL	0.6	0.6	0.6	0.6	0.6	0.6
IRs	Soil ingestion rate (including soil-derived indoor dust)	(a, b)	g/day	0.050	0.050	0.050	0.050	0.050	0.050
AF _{S, D}	Absorption fraction (same for soil and dust)	(a)		0.12	0.12	0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	(c)	days/yr	180	180	180	180	180	180
AT _{S, D}	Averaging time (same for soil and dust)	(a)	days/yr	365	365	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	calculated	μg/dL	6.9	8.8	6.5	4.5	13.1	0.7
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	calculated	μg/dL	16.4	20.7	15.3	10.7	30.9	1.6
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	(a)	μg/dL	10.0	10.0	10.0	10.0	10.0	10.0
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	calculated	%	21%	34%	18%	6%	61%	0.0001%
PbBt	Target PbB level of concern (e.g., 2-8 ug/dL)	(a)	μg/dL	5.0	5.0	5.0	5.0	5.0	5.0
$P(PbB_{fetal} > PbB_{t})$	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	calculated	%	65%	78%	60%	37%	93%	0.02%

ALM Model Version Date is 06/14/2017

ALM = Adult Lead Methodology; DU = Decision Unit; g = grams; ISM = incremental sampling methodology; μg = micrograms; μg/dL = micrograms per deciliter; PbB = blood lead concentration (a) Model default and recommended OLEM Directive value (USEPA 2017a,b) (b) A contral tendency soil ingestion rate (IRs) of 0.05 grams/day is used for the adult workers (USEPA 2011); it is also the ALM default value (USEPA

(c) PADEP Outdoor Worker default exposure frequency.

Table A3-5. Calculation of Blood Lead Concentrations (PbBs) and Risk for the Construction and Utility Worker Scenarios

Variable	Description of Variable	Parameter Source	Units	Target Berm DU, Surface Soil, Discrete	Target Berm DU, Surface Soil, ISM	Target Berm DU, Total Soil, Discrete	Soil Pile DU, Surface Soil, Discrete	Soil Pile DU, Total Soil, Discrete	Background DU, Surface Soil, ISM
PbS	Soil lead concentration, DU-specific	DU- specific	mg/kg	5,347	6,890	4,957	3,326	10,529	74.4
R _{fetal/maternal}	Fetal/maternal PbB ratio	(a)		0.9	0.9	0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	(a)	μg/dL per μg/day	0.4	0.4	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB	(a)		1.8	1.8	1.8	1.8	1.8	1.8
PbB ₀	Baseline PbB	(a)	μg/dL	0.6	0.6	0.6	0.6	0.6	0.6
IRs	Soil ingestion rate (including soil-derived indoor dust)	(b)	g/day	0.10	0.10	0.10	0.10	0.10	0.10
AF _{S, D}	Absorption fraction (same for soil and dust)	(a)		0.12	0.12	0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	(c, d)	days/yr	1	1	1	1	1	1
AT _{S, D}	Averaging time (same for soil and dust)	(c, d)	days/yr	7	7	7	7	7	7
PbB _{adult}	PbB of adult worker, geometric mean	calculated	μg/dL	4.3	5.3	4.0	2.9	7.8	0.7
PbB _{fetal, 0.95}	95th percentile PbB among fetuses of adult workers	calculated	μg/dL	10.1	12.6	9.5	6.8	18.5	1.5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	(a)	μg/dL	10.0	10.0	10.0	10.0	10.0	10.0
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	calculated	%	5%	11%	4%	1%	28%	0.0001%
PbBt	Target PbB level of concern (e.g., 2-8 ug/dL)	(a)	μg/dL	5.0	5.0	5.0	5.0	5.0	5.0
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB, assuming lognormal distribution	calculated	%	33%	47%	29%	13%	72%	0.01%

Notes

ALM Model Version Date is 06/14/2017

ALM = Adult Lead Methodology; DU = Decision Unit; g = grams; ISM = incremental sampling methodology; μg = micrograms; μg/dL = micrograms per deciliter; PbB = blood lead concentration

- (a) Model default and recommended Office of Land and Emergency Management Directive 9285.6-56 value (USEPA 2017a,b)
- (b) A higher central tendency soil ingestion rate (IRs) of 0.10 grams/day was used to represent exposure during excavation activities (USEPA 2011).
- (c) A minimum exposure frequency for soil and dust exposure (EF_{S,D}) of 13 days per year is used; three months is considered to be the model's minimum exposure to produce a quasi-steady-state PbB concentration using the following equation (USEPA 2016): EF_{S,D} (days/year) = 1 day/week x 4.3 weeks/month x 3 months/year
- (d) USEPA (2003) guidance recommends that the averaging time (AT_{S,D}) not be annualized for intermittent exposure scenarios so that a quasi-steady state PbB concentration (minimum of 3 months) can be achieved using the following equation: AT_{S,D} (days/year) = 7 days/week x 4.3 weeks/month x 3 months/year

In the model's EF/AT relationship, the conversion factors of 4.3 weeks/month and 3 months/year drop out of the calculation resulting in an EF_{S,D} of 1 day/year and an AT_{S,D} of 7 days/year.

Table A3-6. Adult Lead Methodology Model Results for the On-Site Worker Scenario

		On-Site Outdoor W	On-Site Outdoor Worker Scenario, ALM Model Results	Model Results			
	-	PbB _{adult}	PbB _{fetal, 0.95}	Probability %	10 µg/dL	Probability %	5 µg/dL
Decision Unit/Exposure Point	Lead Mean EPC	PbB of adult worker, geometric mean	95th percentile PbB among fetuses of adult workers	Target PbB Threshold.	Constituent of Concern?	Target PbB Threshold. 5	Constituent of Concern?
	mg/kg	hg/dL	hg/dL	10 µg/dL	(Yes/No)	µg/dL	(Yes/No)
Target Bern DU, Surface Soil, Discrete	5,347	6.9	16	21%	Sə	%29	Sə
Target Bern DU, Surface Soil, ISM	6,890	8.8	21	34%	Yes	78%	Yes
Target Bern DU, Total Soil, Discrete	4,957	6.5	15	18%	Yes	%09	Yes
Soil Pile DU, Surface Soil, Discrete	3,326	4.5	1-	%9	Yes	37%	Yes
Soil Pile DU, Total Soil, Discrete	10,529	13	31	61%	Yes	93%	Yes
Background DU, Surface Soil, ISM	74.4	0.7	1.6	0.0001%	No	0.02%	No

Notes:
ALM = Adult Lead Methodology; DU = Decision Unit; EPC = exposure point concentration; ug/dL = micrograms per deciliter; mg/kg milligrams per kilogram; PbB = blood lead concentration

Yes = Probability percent (%) exceeds 5% at the target PbB threshold; No = probability percent (%) equals or is below 5% at the target PbB threshold.

Table A3-7. Adult Lead Methodology Model Results for the On-Site Construction/Utility Worker Scenario

	-iO	On-Site Construction/Utility Worker Scenario, ALM Model Results	ty Worker Scenario, A	LM Model Resul	lts		
	-	PbB _{adult}	PbB _{fetal, 0.95}	Probability %	10 µg/dL	Probability %	2 µg/dL
Decision Unit/Exposure Point	Mean EPC	PbB of adult worker, geometric mean	95th percentile PbB among fetuses of adult workers	Target PbB Threshold,	Constituent of Concern?	Target PbB Threshold, 5	Constituent of Concern?
	тд/кд	hg/aL	hg/ar	TO µg/aL	(Tes/No)	µg/aL	(Tes/No)
Target Bern DU, Surface Soil, Discrete	5,347	4.3	10	2%	oN	33%	Yes
Target Bern DU, Surface Soil, ISM	6,890	5	12.6	11%	SəX	47%	Yes
Target Bern DU, Total Soil, Discrete	4,957	4.0	6.5	4%	No	78%	Yes
Soil Pile DU, Surface Soil, Discrete	3,326	2.9	8.9	1%	oN	13%	Yes
Soil Pile DU, Total Soil, Discrete	10,529	7.8	18.5	28%	Yes	72%	Yes
Background DU, Surface Soil, ISM	74.4	0.7	1.5	0.0001%	No	0.01%	No

Notes:
ALM = Adult Lead Methodology; DU = Decision Unit; EPC = exposure point concentration; ug/dL = micrograms per deciliter; mg/kg milligrams per kilogram;
PbB = blood lead concentration

Yes = Probability percent (%) exceeds 5% at the target PbB threshold; No = probability percent (%) equals or is below 5% at the target PbB threshold.

Table A3-8. Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for Child Resident, Lead in Soil

Lead Site-Specific Soil Concentrations for the Child Resident Scenario	r the Child Resid	ent Scenario		
Area	CPC	10 µg/dL PbB	ada Jp/6rl s	2000
Ridgway Training Range	Mean (mg/kg)	Probability %	Probability %	(Yes/No)
Target Berm DU, Discrete SS	5,347	98.5%	No run	Yes
Target Berm DU, ISM SS	6,890	%66	No run	Yes
Target Berm DU, Discrete TS	4,957	%86	No run	Yes
Soil Pile DU, Discrete SS	3,326	93%	No run	Yes
Soil Pile DU, Discrete TS	10,529	100%	No run	Yes
IEUBK Model Parameters		2N	Value	Units
Indoor air lead concentration (% of outdoor)		30	[a]	%
AIR (by year)	(
Air Concentration				
Age (years) =	2 - 0	0.10	[a]	րց/m³
Time Outdoors				
Age (years) =	0 - 1	_	[a]	hours/day
	1-2	2	[a]	hours/day
	2-3	3	[a]	hours/day
	3 - 7	4	[a]	hours/day
Ventilation Rate				
Age (years) =	0 - 1	2	[a]	m³/day
	1-2	3	[a]	m³/day
	2 - 5	2	[a]	m³/day
	5 - 7	7	[a]	m³/day
Lung Absorption		32	[a]	%

Table A3-8. Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for Child Resident, Lead in Soil Cont.

DIET (by year)				
Dietary Lead Intake				
Age (years) = (0 - 1	2.26	[a]	μg Pb/day
	1-2	1.96	[a]	μg Pb/day
	2 - 3	2.13	[a]	μg Pb/day
	3 - 4 2.	2.04	[a]	μg Pb/day
7	4 - 5	1.95	[a]	μg Pb/day
	5-6	2.05	[a]	μg Pb/day
)	6 - 7	2.22	[a]	μg Pb/day
ALTERNATE DIET SOURCES (by food class)	by food class)			
Concentration:				
1	home-grown fruits	0	[a]	μg Pb/g
	home-grown vegetables	0	[a]	p/dA bh
4	fish from fishing	0	[a]	μg Pb/g
j 5	game animals from hunting	0	[a]	μg Pb/g
Percent of food class:				
1	home-grown fruits	0	[a]	%
	home-grown vegetables	0	[a]	%
-	fish from fishing	0	[a]	%
)	game animals from hunting	0	[a]	%

Table A3-8. Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for Child Resident, Lead in Soil Cont.

DRINKING WATER			
Lead Concentration in drinking water	4	[a]	hg/L
Ingestion rate:			
Age (years) = 0 - 1	0.20	[a]	L/day
1-2	0.50	[a]	L/day
2-3	0.52	[a]	L/day
3-4	0.53	<u>[a]</u>	L/day
4-5	0.55	[घ]	L/day
9-9	0.58	[घ]	L/day
2-9	0.59	[a]	L/day
SOIL/DUST INGESTION			
Concentration:	Soil	lic	
lios	200	[a]	6/6n
dust	200 [a]	[a]	g/gn
Soil/dust ingestion weighting factor (% soil)	45	[a]	%
Soil/dust ingestion:			
Age (years) = 0 - 1	0.085	[a]	g/day
1-4	0.135	[a]	g/day
4 - 5	0.100	[a]	g/day
9-9	0.090	[a]	g/day
2-9	0.085	[a]	g/day
SOIL/DUST MULTIPLE SOURCE ANALYSIS			
Fraction of indoor dust lead attributable to soil	0.70	[a]	unitless
Ratio of dust lead concentration to outdoor air lead concentration	100	[a]	μg Pb/g dust per μg Pb/m³ air

Table A3-8. Integrated Exposure Uptake Biokinetic (IEUBK) Model Results for Child Resident, Lead in Soil Cont.

BIOAVAILABILITY FOR GUT ABSORPTION PATHWAYS		
Total lead absorption (at low intake):	Surface Soil	
diet	50 [a]	%
drinking water	50 [a]	%
lios	30 [a]	%
dust	30 [a]	%
alternate source	[c] 0	%
BIOAVAILABILITY FOR GUT ABSORPTION PATHWAYS (continued)	(pənı	
Fraction of total net absorption at low intake rate that is attributable to non-saturable (passive) processes	0.2 [a]	unitless
ALTERNATE SOURCES OF LEAD		
Total lead intake:	Soil	
Age (years) = 0 - 7	0 [a]	μg/day
MATERNAL-TO-NEWBORN LEAD EXPOSURE		
Mothers blood lead concentration at childbirth	[b] 9:0	hg/dL
PLOTTING AND RISK ESTIMATION		
Geometric standard deviation (GSD) for blood lead	1.6 [a]	unitless
Blood lead level of concern	10 [b]	hg/dL
COMPUTATION OPTIONS		
Iteration time step for numerical integration	4 [a]	hours

Notes:

- [1] Young child = 0 7 years of age (0 84 months)
 - [a] USEPA 2010 IEUBK model default value.
- [b] The same PbB threshold used to derive USEPA's (2018a) Regional Screening Level 400 mg/kg
 - [c] USEPA (2017b) mother's blood lead concentration of 0.6 in childbirth (µg Pb/dL) was used.

 $L day = liters \ per \ day$ $L day = liters \ per \ day$ $DU = Decision \ Unit$

μg/dL = micrograms per deciliter μg/g = micrograms per gram mg/kg = milligrams per kilogram

ISM = Incremental Sampling Methodology SS = Surface Soil

TS = Total Soil

References:

USEPA. 2007. User's Guide for the Integrated Exposure Uptake Biokinetic Model for Lead in Children (IEUBK). Office of Superfund Remediation and Technology Innovation. EPA-540-K-01-005. OSWER #9285.7-42. May. (IEUBKwin v1.1 build 11) 32-bit version Office of Superfund Remediation and Technology Innovation, USEPA 2010. Integrated Exposure Uptake Biokinetic Model for Lead in Children, Windows®version United States Environmental Protection Agency.

USEPA. 2017b. Transmittal of Update to the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters. OLEM Directive 9285.6-56. May 17, 2017 USEPA. 2017c. Transmittal of Update for the Default Age Range in the IEUBK Model. OLEM Directive 9200.2-177. 15 November 2017.

Attachment 4

Cancer Risk and Non-Cancer Hazard Calculations

Table 7-1
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Visitor Receptor Age: Child

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	Soncentration	CSF/Unit Risk	ıit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	S€C	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	9.42E-06	mg/kg-day		٠	1	1.10E-04	mg/kg-day	4.00E-04	mg/kg-day	0.3
				Copper	6.36E+02	mg/kg	1.49E-04	mg/kg-day		1	-	1.74E-03	mg/kg-day	3.25E-02	mg/kg-day	0.05
			Exp. Route Total								-					0.3
			Dermal													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	2.23E-07	mg/kg-day		:	1	2.61E-06	mg/kg-day	6.00E-05	mg/kg-day	90.0
				Copper	6.36E+02	mg/kg	3.54E-06	mg/kg-day		-	-	4.13E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total								-					0.04
		Exp. Point Total									-					0.4
	Exp. Medium Total										-					0.4
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	3.17E-05	ng/m₃	4.65E-08	m/grd			1	5.41E-07	µg/m³	ı		ı
				Copper	5.02E-04	m/grd	7.38E-07	hg/m³	1	ı	-	8.59E-06	mg/m³			1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.4
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.4

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-2
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cano	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern		II	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					vaiue	Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	2.94E-06	mg/kg-day	ı		1	1.03E-05	mg/kg-day	4.00E-04	mg/kg-day	0.03
				Copper	6.36E+02	mg/kg	4.67E-05	mg/kg-day			_	1.63E-04	mg/kg-day	3.25E-02	mg/kg-day	0.005
			Exp. Route Total								-					0.03
			Dermal													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	1.24E-07	mg/kg-day	ı		1	4.33E-07	mg/kg-day	6.00E-05	mg/kg-day	0.007
				Copper	6.36E+02	mg/kg	1.97E-06	mg/kg-day	-		_	6.87E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0002
			Exp. Route Total								-					0.007
		Exp. Point Total									-					0.04
	Exp. Medium Total										-					0.04
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	3.17E-05	ng/m₃	1.55E-07	m/grd	ı	ı	1	5.41E-07	ng/m³			ı
				Copper	5.02E-04	µg/m³	2.46E-06	µg/m₃	-	-	_	8.59E-06	µg/m³	-		1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.04
Notes:								Total of	Total of Receptor Risks Across All Media	ross All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.04

Notes: (1) CR and HOs are rounded to one non-zero dgit, cumulative totals may be slightly higher or tower depending on degree of rounding.

Page 1 of 1

Table 7-3
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe:	Current
Receptor Population:	On-Site Trespasser
Recentor Age:	Teen

					EPC			Cancer	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volus		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SFC SFC	Hazard
					value	OIIIIS	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)						_						
				Antimony	4.01E+01	mg/kg	8.54E-07	mg/kg-day	1	ı	ı	5.97E-06	mg/kg-day	4.00E-04	mg/kg-day	0.01
				Copper	6.36E+02	mg/kg	1.35E-05	mg/kg-day			1	9.48E-05	mg/kg-day	3.25E-02	mg/kg-day	0.003
			Exp. Route Total								-					0.02
			Dermal													
				Metals (Total)						_						
				Antimony	4.01E+01	mg/kg	9.62E-08	mg/kg-day		ı	ı	6.74E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	6.36E+02	mg/kg	1.53E-06	mg/kg-day		-	-	1.07E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total								-					0.01
		Exp. Point Total														0.03
	Exp. Medium Total										-					0.03
	Outdoor Air	Particulates above Site	te Inhalation													
				Metals (Total)						_						
				Antimony	3.17E-05	mg/m³	4.97E-08	m/grl			ı	3.48E-07	mg/m³	ı		1
				Copper	5.02E-04	µg/m³	7.88E-07	µg/m³	-	-	-	5.52E-06	µg/m³	-		-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.03
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.03

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 74
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenaro Timefrane: Gurrent
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

Medium Exposure Medium Soil Surface Soil				EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ous	
	ium Exposure Point	Exposure Route	Chemical of Potential Concern	Volue		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	t Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	£C	Hazard
				value	Ouits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
	l Surface Soil	Ingestion													
			Metals (Total)												
			Antimony	4.01E+01	mg/kg	4.41E-06	mg/kg-day	ı		1	1.24E-05	mg/kg-day	4.00E-04	mg/kg-day	0.03
			Copper	6.36E+02	mg/kg	7.00E-05	mg/kg-day	1		_	1.96E-04	mg/kg-day	3.25E-02	mg/kg-day	0.006
		Exp. Route Total								-					0.04
		Dermal													
			Metals (Total)												
			Antimony	4.01E+01	mg/kg	3.74E-07	mg/kg-day	,		1	1.05E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
			Copper	6.36E+02	mg/kg	5.93E-06	mg/kg-day	-		_	1.66E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0005
		Exp. Route Total								-					0.02
	Exp. Point Total									-					0.05
Exp. Medium Total	otal									_					0.05
Outdoor Air	Particulates above Site	ite Inhalation													
			Metals (Total)												
			Antimony	3.17E-05	ng/m₃	1.86E-06	m/grl			1	5.19E-06	mg/m³			ı
			Copper	5.02E-04	m/grl	2.95E-05	°m/gri	1		_	8.24E-05	± m/g/m³	1		-
		Exp. Route Total								-					-
	Exp. Point Total									-					-
Exp. Medium Total	otal									-					-
Medium Total										-					0.05
Notes:							Total of	Total of Receptor Risks Across All Media	cross All Media	-		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.05

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-5
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timefrane. Current Receptor Population: On-Ste Utility Worker Receptor Age: Adult

					EPC		Cance	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue		Intake/Exposure Concentration	CSF/Unit Risk		Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
						Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion												
				Metals (Total)											
				Antimony	4.01E+01 mg/kg	1.30E-07	mg/kg-day	1	ı	1	90-390.6	mg/kg-day	4.00E-04	mg/kg-day	0.02
				Copper	6.36E+02 mg/kg	2.05E-06	mg/kg-day		,	1	1.44E-04	mg/kg-day	3.25E-02	mg/kg-day	0.004
			Exp. Route Total							-					0.03
			Dermal												
				Metals (Total)											
				Antimony	4.01E+01 mg/kg	2.77E-09	mg/kg-day	1	,	1	1.94E-07	mg/kg-day	6.00E-05	mg/kg-day	0.003
				Copper	6.36E+02 mg/kg	4.39E-08	mg/kg-day	-	-	-	3.07E-06	mg/kg-day	3.25E-02	mg/kg-day	0.00009
			Exp. Route Total							-					0.003
		Exp. Point Total								-					0.03
	Exp. Medium Total									-					0.03
	Outdoor Air	Particulates above Site	e Inhalation												
				Metals (Total)											
				Antimony	3.17E-05 µg/m³	8.26E-09	₅m/brl	1	,	1	5.79E-07	µg/m³	ı		ı
				Copper	5.02E-04 µg/m³	1.31E-07	₅m/brl			-	9.19E-06	rw∫m³	1	:	-
			Exp. Route Total							-					-
		Exp. Point Total								-					-
	Exp. Medium Total									-					-
Medium Total										-					0.03
Notes:							Totalc	Total of Receptor Risks Across All Media	oss All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.03

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-6
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current
Receptor Population: On-Site Construction Worker
Receptor Age: Adult

					EPC	-		Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	suo	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	o și al	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	lisk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	ji Li	Hazard
					A aline	SIIIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	3.89E-07	mg/kg-day	1		ı	2.72E-05	mg/kg-day	4.00E-04	mg/kg-day	0.07
				Copper	6.36E+02	mg/kg	6.16E-06	mg/kg-day			-	4.31E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total								-					80:0
			Dermal													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	1.25E-08	mg/kg-day	ı	ı	ı	8.70E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	6.36E+02	mg/kg	1.98E-07	mg/kg-day	-	-	1	1.38E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0004
			Exp. Route Total								-					0.01
		Exp. Point Total									-					0.1
	Exp. Medium Total										-					0.1
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	3.17E-05	mg/m³	2.48E-08	rm/grd	ı	ı	ı	1.74E-06	±m/6π	ı	ı	1
				Copper	5.02E-04	µg/m₃	3.93E-07	µg/m₃	-	-	1	2.75E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.1
Notes:								Total of	Total of Receptor Risks Across All Media	oss All Media	-		Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.1

Notes:

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-7
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeriame: Current Receptor Population: On-Site Resident Receptor Age: Child

					EPC		Cance	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	fions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	CSF/Unit Risk	sk		Intake/Exposure Concentration	Concentration	RfD/RfC	RfC	Hazard
					value	S Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion												
				Metals (Total)											
				Antimony	4.01E+01 mg/kg	g 4.41E-05	mg/kg-day		,	,	5.13E-04	mg/kg-day	4.00E-04	mg/kg-day	-
				Copper	6.36E+02 mg/kg	g 7.00E-04	mg/kg-day			-	8.14E-03	mg/kg-day	3.25E-02	mg/kg-day	0.3
			Exp. Route Total							-					2
			Dermal												
				Metals (Total)											
				Antimony	4.01E+01 mg/kg	g 1.04E-06	mg/kg-day		,	,	1.22E-05	mg/kg-day	6.00E-05	mg/kg-day	0.2
				Copper	6.36E+02 mg/kg	g 1.65E-05	mg/kg-day	-	-	-	1.93E-04	mg/kg-day	3.25E-02	mg/kg-day	0.006
			Exp. Route Total							-					0.2
		Exp. Point Total								-					2
	Exp. Medium Total									-					2
	Outdoor Air	Particulates above Site	Inhalation												
				Metals (Total)											
				Antimony	3.17E-05 µg/m³	2.17E-07	mg/m³	1	,	1	2.53E-06	m/grl			1
				Copper	5.02E-04 µg/m³	3.44E-06	²m/grl			-	4.01E-05	ng/m₃	ı	1	1
			Exp. Route Total							-					-
		Exp. Point Total								-					-
	Exp. Medium Total									-					-
Medium Total										-					2
Notes:							Total	Total of Receptor Risks Across All Media	ss All Media			Total of Ru	Total of Receptor Hazards Across All Media	Across All Media	2

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-8
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

ant	On-Site Resident	
ame: Current	_	Adult
Scenario Timeframe:	Receptor Population:	Perentor Age.

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	oncentration	CSF/Unit Risk	t Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	3fC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	1.37E-05	mg/kg-day	1	1	1	4.81E-05	mg/kg-day	4.00E-04	mg/kg-day	0.1
				Copper	6.36E+02	mg/kg	2.18E-04	mg/kg-day	1	1	-	7.63E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					0.1
			Dermal													
				Metals (Total)												
				Antimony	4.01E+01	mg/kg	5.81E-07	mg/kg-day	ı	ı	1	2.03E-06	mg/kg-day	6.00E-05	mg/kg-day	0.03
				Copper	6.36E+02	mg/kg	9.22E-06	mg/kg-day	-	-	-	3.22E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total								-					0.03
		Exp. Point Total									-					0.2
	Exp. Medium Total										-					0.2
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	3.17E-05	hg/m³	7.22E-07	m/g/m³	ı	ı	1	2.53E-06	±g/m³	ı	ı	1
				Copper	5.02E-04	µg/m₃	1.14E-05	µg/m³	-	-	-	4.01E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											1					0.2
Notes:								Total of	Total of Receptor Risks Across All Media	cross All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.2

Notes: (1) CR and HOs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-9
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Visitor (Child) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Child

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ons	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	Inite	Intake/Exposure Concentration	oncentration	CSF/Unit Risk	sk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	Sic.	Hazard
						Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01 n	mg/kg	1.25E-05	mg/kg-day	:	,	1	1.46E-04	mg/kg-day	4.00E-04	mg/kg-day	0.4
				Copper	9.11E+02 n	mg/kg	2.14E-04	mg/kg-day		,	-	2.50E-03	mg/kg-day	3.25E-02	mg/kg-day	0.08
			Exp. Route Total								-					0.4
			Dermal													
				Metals (Total)												
				Antimony	5.34E+01 n	mg/kg	2.97E-07	mg/kg-day	:	,	1	3.47E-06	mg/kg-day	6.00E-05	mg/kg-day	90:0
				Copper	9.11E+02 n	mg/kg	5.07E-06	mg/kg-day	-		_	5.92E-05	mg/kg-day	3.25E-02	mg/kg-day	0.002
			Exp. Route Total								-					90:0
		Exp. Point Total									-					0.5
	Exp. Medium Total										-					0.5
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	m/bd/	6.20E-08	ng/m₃	1	,	ı	7.21E-07	µg/m³	ı	ı	1
				Copper	7.19E-04	mg/m³	1.06E-06	µg/m³	-	-	-	1.23E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.5
Notes:								Total of	Total of Receptor Risks Across All Media	ss All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.5

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Table 7-10
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Visitor (Adult) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Value	Inito	Intake/Exposure Concentration	oncentration	CSF/Unit Risk	Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	Sic.	Hazard
						Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	3.92E-06	mg/kg-day	:	:	1	1.37E-05	mg/kg-day	4.00E-04	mg/kg-day	0.03
				Copper	9.11E+02 n	mg/kg	6.69E-05	mg/kg-day			-	2.34E-04	mg/kg-day	3.25E-02	mg/kg-day	0.007
			Exp. Route Total								-					0.04
			Dermal													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	1.66E-07	mg/kg-day	:	:	1	5.77E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	9.11E+02 n	mg/kg	2.82E-06	mg/kg-day	-		-	9.84E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total								-					0.01
		Exp. Point Total									-					0.02
	Exp. Medium Total										-					0.05
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	m/bd/m³	2.06E-07	mg/m³	1	1	1	7.21E-07	µg/m₃	ı	ı	1
				Copper	7.19E-04	µg/m³	3.52E-06	µg/m³	-	-	-	1.23E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.05
Notes:								Total of	Total of Receptor Risks Across All Media	oss All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.05

Notes: (1) CR and HOs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-11
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Trespasser (Teen) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Trespasser Receptor Age: Teen

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC StC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)						_						
				Antimony	5.34E+01	mg/kg	1.14E-06	mg/kg-day	:	,	1	7.96E-06	mg/kg-day	4.00E-04	mg/kg-day	0.02
				Copper	9.11E+02	mg/kg	1.94E-05	mg/kg-day		1	-	1.36E-04	mg/kg-day	3.25E-02	mg/kg-day	0.004
			Exp. Route Total								-					0.02
			Dermal													
				Metals (Total)						_						
				Antimony	5.34E+01	mg/kg	1.28E-07	mg/kg-day			1	8.97E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	9.11E+02	mg/kg	2.19E-06	mg/kg-day			1	1.53E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0005
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.04
	Exp. Medium Total										-					0.04
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	mg/m³	6.62E-08	°m/grl	:		1	4.64E-07	ng/m₃	ı	:	,
				Copper	7.19E-04	mg/m³	1.13E-06	£m/βrl	ı	1	-	7.91E-06	ng/m₃	ı	:	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.04
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.04

Notes:
(1) CR and HOs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-12
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Commerical/ Industrial Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenaro Timefrane: Future Receptor Population: On-Site Commerical/ Industrial Worker Receptor Age: Adult

					EPC	-		Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	- Value		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	St.	Hazard
					value	Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)						_						
				Antimony	5.34E+01	mg/kg	5.87E-06	mg/kg-day	:	,	ı	1.64E-05	mg/kg-day	4.00E-04	mg/kg-day	0.04
				Copper	9.11E+02	mg/kg	1.00E-04	mg/kg-day		1	1	2.81E-04	mg/kg-day	3.25E-02	mg/kg-day	0.009
			Exp. Route Total								-					0.05
			Dermal													
				Metals (Total)						_						
				Antimony	5.34E+01	mg/kg	4.98E-07	mg/kg-day			ı	1.39E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	9.11E+02	mg/kg	8.49E-06	mg/kg-day			1	2.38E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0007
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.07
	Exp. Medium Total										-					0.07
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	ng/m₃	2.47E-06	m/6rd		,	ı	6.91E-06	m/6rl	ı	ı	1
				Copper	7.19E-04	µg/m₃	4.22E-05	µg/m₃	-	-	1	1.18E-04	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.07
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.07

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Table 7-13
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Utility Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Future Receptor Population: On-Site Utity Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	la/v		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC StC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	1.72E-07	mg/kg-day	ı	,	1	1.21E-05	mg/kg-day	4.00E-04	mg/kg-day	0.03
				Copper	9.11E+02	mg/kg	2.94E-06	mg/kg-day	1	1	-	2.06E-04	mg/kg-day	3.25E-02	mg/kg-day	0.006
			Exp. Route Total								-					0.04
			Dermal													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	3.68E-09	mg/kg-day	ı		1	2.58E-07	mg/kg-day	6.00E-05	mg/kg-day	0.004
				Copper	9.11E+02	mg/kg	6.29E-08	mg/kg-day	1	1	-	4.40E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0001
			Exp. Route Total								-					0.004
		Exp. Point Total									-					0.04
	Exp. Medium Total										-					0.04
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	mg/m³	1.10E-08	°m/grl	ı		1	7.72E-07	µg/m³	ı	:	ı
				Copper	7.19E-04	mg/m³	1.88E-07	£m/βrl	1	1	-	1.32E-05	m/g/m³	ı	:	1
			Exp. Route Total							_	-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.04
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of Re	Total of Receptor Hazards Across All Media	Across All Media	0.04

Notes:
(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-14
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Construction Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

					ЭطЭ			Cancer F	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	centration	CSF/Unit Risk	Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SIC SIC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01 mg	mg/kg	5.17E-07 n	mg/kg-day	1	,	1	3.62E-05	mg/kg-day	4.00E-04	mg/kg-day	0.09
				Copper	9.11E+02 mg	mg/kg	8.83E-06 n	mg/kg-day	-	-	_	6.18E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					0.1
			Dermal													
				Metals (Total)												
_				Antimony	5.34E+01 mg	mg/kg	1.66E-08 n	mg/kg-day	,	ı	ı	1.16E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	9.11E+02 mg	mg/kg	2.83E-07 n	mg/kg-day	-		_	1.98E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0006
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.1
	Exp. Medium Total										-					0.1
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.22E-05 µg	m/bd/m³	3.30E-08	mg/m³	ı	ı	1	2.31E-06	mg/m³	,	ı	1
				Copper	7.19Е-04 µg	µg/m³	5.63E-07	µg/m³	1	-	-	3.94E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
-		Exp. Point Total									1					-
ļ	Exp. Medium Total										-					-
Medium Total											-					0.1
Notes:								Total of	Total of Receptor Risks Across All Media	ross All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.1

Notes: (1) OR and HOs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-15
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Resident (Child) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Future Receptor Population: On-Site Resident Receptor Age: Child

					EPC			Cancer Ris	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volus	Inite	Intake/Exposure Concentration	entration	CSF/Unit Risk	şk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC.	Hazard
							Value U	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01 m ₀	mg/kg 5.8	5.87E-05 mg/l	mg/kg-day	1	;	1	6.84E-04	mg/kg-day	4.00E-04	mg/kg-day	2
				Copper	9.11E+02 mg	mg/kg 1.0	1.00E-03 mg/l	mg/kg-day		,	-	1.17E-02	mg/kg-day	3.25E-02	mg/kg-day	0.4
			Exp. Route Total								-					2
			Dermal													
				Metals (Total)												
				Antimony	5.34E+01 mg	mg/kg 1.3	1.39E-06 mg/l	mg/kg-day		,	1	1.62E-05	mg/kg-day	6.00E-05	mg/kg-day	0.3
				Copper	9.11E+02 mg	mg/kg 2.3	2.37E-05 mg/l	mg/kg-day		,	-	2.76E-04	mg/kg-day	3.25E-02	mg/kg-day	0.008
			Exp. Route Total								-					0.3
		Exp. Point Total									-					2
	Exp. Medium Total										-					2
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	4.22E-05 µg	µg/m³ 2.8	2.89E-07 µ	mg/m³	1	,	1	3.37E-06	m/6rl			,
				Copper	7.19Е-04 µg	µg/m³ 4.9	4.93E-06 µ	hg/m³		,	-	5.75E-05	mg/m³	ı	1	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					2
Notes:								Total of Re	Total of Receptor Risks Across All Media	ss All Media	-		Total of R	Total of Receptor Hazards Across All Media	cross All Media	2

Notes:
(1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Future On-Site Resident (Adult) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Resident Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	l-/		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC .	Hazard
					value	Cults	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	1.83E-05	mg/kg-day	ı		ı	6.41E-05	mg/kg-day	4.00E-04	mg/kg-day	0.2
				Copper	9.11E+02	mg/kg	3.12E-04	mg/kg-day	1		1	1.09E-03	mg/kg-day	3.25E-02	mg/kg-day	0.03
			Exp. Route Total								-					0.2
			Dermal													
				Metals (Total)												
				Antimony	5.34E+01	mg/kg	7.74E-07	mg/kg-day	ı		ı	2.70E-06	mg/kg-day	6.00E-05	mg/kg-day	0.05
				Copper	9.11E+02	mg/kg	1.32E-05	mg/kg-day	-		-	4.61E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total							-	-					0.05
		Exp. Point Total									-					0.2
	Exp. Medium Total										-					0.2
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	4.22E-05	mg/m³	9.61E-07	m/grd	,		ı	3.37E-06	µg/m³	1	,	1
				Copper	7.19E-04	µg/m₃	1.64E-05	µg/m₃	-		-	5.75E-05	µg/m³	-	-	-
			Exp. Route Total							-	-					-
		Exp. Point Total									1					-
	Exp. Medium Total										-					-
Medium Total											-					0.2
Notes:								Total of	Total of Receptor Risks Across All Media	cross All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.2

Notes: (1) CR and HOs are rounded to one non-zero dgit, cumulative totals may be slightly higher or tower depending on degree of rounding.

Page 1 of 1

Table 7-17
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe:	Current
Receptor Population:	On-Site Visitor
Recentor Age:	Child

					EPC			Cancer	Cancer Risk Calculations				Non-Canci	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SIC SIC	Hazard
					value	Ouits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	1.37E-05	mg/kg-day	1	,	1	1.60E-04	mg/kg-day	4.00E-04	mg/kg-day	9.0
				Copper	1.74E+03	mg/kg	4.09E-04	mg/kg-day	ı	1		4.77E-03	mg/kg-day	3.25E-02	mg/kg-day	0.1
			Exp. Route Total													0.5
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	3.26E-07	mg/kg-day	ı			3.80E-06	mg/kg-day	6.00E-05	mg/kg-day	90:0
				Copper	1.74E+03	mg/kg	9.69E-06	mg/kg-day	1	1		1.13E-04	mg/kg-day	3.25E-02	mg/kg-day	0.003
			Exp. Route Total													0.07
		Exp. Point Total									-					9.0
	Exp. Medium Total										-					9.0
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	mg/m³	6.79E-08	°m/grl				7.90E-07	±m/grl	1		1
				Copper	1.37E-03	µg/m³	2.02E-06	µg/m₃	-	-	-	2.35E-05	µg/m³	-		-
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total															-
Medium Total											-					9.0
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media	-		Total of R	Total of Receptor Hazards Across All Media	Across All Media	9.0

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Table 7-18
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current Receptor Population: On-Ste Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Value	11-14-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	nit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	StC StC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	4.29E-06	mg/kg-day	ı	1	,	1.50E-05	mg/kg-day	4.00E-04	mg/kg-day	0.04
				Copper	1.74E+03	mg/kg	1.28E-04	mg/kg-day	ı	1		4.47E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
	_		Exp. Route Total								-					0.05
			Dermal													
	_			Metals (Total)												
	_			Antimony	5.85E+01	mg/kg	1.81E-07	mg/kg-day	ı	:	1	6.32E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	1.74E+03	mg/kg	5.39E-06	mg/kg-day	ı		-	1.88E-05	mg/kg-day	3.25E-02	mg/kg-day	900000
			Exp. Route Total								-					0.01
		Exp. Point Total														90.0
	Exp. Medium Total										-					90.0
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
	_			Antimony	4.62E-05	ng/m₃	2.26E-07	m/g/m³				7.90E-07	mg/m³			1
				Copper	1.37E-03	µg/m³	6.72E-06	µg/m₃	-	-	-	2.35E-05	µg/m³	-		1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					90:0
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	-		Total of R	Total of Receptor Hazards Across All Media	Across All Media	90.0

(1) OR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-19
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Trespasser Receptor Age: Teen

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	l laite	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					vaiue	Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	1.25E-06	mg/kg-day	1			8.72E-06	mg/kg-day	4.00E-04	mg/kg-day	0.02
				Copper	1.74E+03	mg/kg	3.71E-05	mg/kg-day		ı	:	2.59E-04	mg/kg-day	3.25E-02	mg/kg-day	0.008
			Exp. Route Total													0.03
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	1.40E-07	mg/kg-day		ı	١	9.83E-07	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	1.74E+03	mg/kg	4.18E-06	mg/kg-day		,	:	2.92E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0009
			Exp. Route Total													0.02
		Exp. Point Total									-					0.05
	Exp. Medium Total										-					0.05
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	ng/m₃	7.25E-08	°m/grl			٠	5.08E-07	mg/m³			1
				Copper	1.37E-03	ng/m₃	2.16E-06	ng/m₃		ı	:	1.51E-05	mg/m³	1		-
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											-					0.05
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media	-		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.05

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-20
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Gurrent
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	onlow		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	t Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	3fC	Hazard
					value	Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	6.44E-06	mg/kg-day			:	1.80E-05	mg/kg-day	4.00E-04	mg/kg-day	0.05
				Copper	1.74E+03	mg/kg	1.91E-04	mg/kg-day	1		:	5.36E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					90:0
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	5.45E-07	mg/kg-day			:	1.53E-06	mg/kg-day	6.00E-05	mg/kg-day	0.03
				Copper	1.74E+03	mg/kg	1.62E-05	mg/kg-day	ı			4.54E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total								-					0.03
		Exp. Point Total									-					60:0
	Exp. Medium Total										-					0.09
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	µg/m³	2.71E-06	m/grd	,		ı	7.58E-06	m/6rl	,		ı
				Copper	1.37E-03	µg/m³	8.06E-05	ng/m₃	-	-	:	2.25E-04	µg/m³	-	-	1
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											-					0.09
Notes:								Total of	Total of Receptor Risks Across All Media	cross All Media			Total of Re	Total of Receptor Hazards Across All Media	Across All Media	0.09

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-21
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Oument Receptor Population: On-Site Utility Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velus		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	Si.	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	1.89E-07	mg/kg-day			,	1.32E-05	mg/kg-day	4.00E-04	mg/kg-day	0.03
				Copper	1.74E+03	mg/kg	5.62E-06	mg/kg-day				3.93E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total								-					0.05
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	4.04E-09	mg/kg-day	1		,	2.83E-07	mg/kg-day	6.00E-05	mg/kg-day	0.005
				Copper	1.74E+03	mg/kg	1.20E-07	mg/kg-day			-	8.40E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total								-					0.005
		Exp. Point Total														0.05
	Exp. Medium Total										-					0.05
	Outdoor Air	Particulates above Site	te Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	µg/m₃	1.21E-08	m/g/m³	1	,	1	8.45E-07	µg/m³	:	1	1
				Copper	1.37E-03	µg/m³	3.59E-07	µg/m³	-	-		2.51E-05	µg/m³	-	-	-
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total															-
Medium Total																0.05
Notes:								Total of	Total of Receptor Risks Across All Media	ross All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.05
9000																

Notes:
(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-22
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Ourrent Receptor Population: On-Site Construction Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Canci	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-16-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	3fC	Hazard
					value	SIIIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	5.67E-07	mg/kg-day				3.97E-05	mg/kg-day	4.00E-04	mg/kg-day	0.1
				Copper	1.74E+03	mg/kg	1.69E-05	mg/kg-day				1.18E-03	mg/kg-day	3.25E-02	mg/kg-day	0.04
			Exp. Route Total													0.1
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	1.82E-08	mg/kg-day				1.27E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	1.74E+03	mg/kg	5.41E-07	mg/kg-day		-		3.78E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.2
	Exp. Medium Total										-					0.2
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	ng/m₃	3.62E-08	m/g/m³				2.53E-06	±m/grl	ı		1
				Copper	1.37E-03	µg/m³	1.08E-06	µg/m³	-	-	-	7.53E-05	µg/m³	-		1
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total															-
Medium Total											-					0.2
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.2

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-23
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

cenario Timeframe:	Current
Receptor Population:	On-Site Resident
teceptor Age:	Child

					EPC			Cancer	Cancer Risk Calculations				Non-Cano	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Value	11-14-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SEC	Hazard
					vaiue	SIIIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion							_						
				Metals (Total)						_						
				Antimony	5.85E+01	mg/kg	6.44E-05	mg/kg-day	:		:	7.49E-04	mg/kg-day	4.00E-04	mg/kg-day	2
				Copper	1.74E+03	mg/kg	1.91E-03	mg/kg-day	1	1		2.23E-02	mg/kg-day	3.25E-02	mg/kg-day	0.7
			Exp. Route Total								-					3
			Dermal													
				Metals (Total)						_						
				Antimony	5.85E+01	mg/kg	1.52E-06	mg/kg-day	:		:	1.77E-05	mg/kg-day	6.00E-05	mg/kg-day	0.3
				Copper	1.74E+03	mg/kg	4.52E-05	mg/kg-day	-		:	5.27E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					0.3
		Exp. Point Total									-					3
	Exp. Medium Total										-					3
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	ng/m₃	3.16E-07	m/g/m³	:		:	3.69E-06	±m/grl			1
				Copper	1.37E-03	µg/m³	9.41E-06	µg/m₃	-	-	:	1.10E-04	µg/m³	-	-	_
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					3
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	3

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-24
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current Receptor Population: On-Site Resident Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	3fC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	2.00E-05	mg/kg-day	1	1	,	7.02E-05	mg/kg-day	4.00E-04	mg/kg-day	0.2
				Соррег	1.74E+03	mg/kg	5.95E-04	mg/kg-day	1	1		2.09E-03	mg/kg-day	3.25E-02	mg/kg-day	90:0
			Exp. Route Total								-					0.2
			Dermal													
				Metals (Total)												
				Antimony	5.85E+01	mg/kg	8.48E-07	mg/kg-day	1	1	,	2.96E-06	mg/kg-day	6.00E-05	mg/kg-day	0.05
				Соррег	1.74E+03	mg/kg	2.52E-05	mg/kg-day		1		8.80E-05	mg/kg-day	3.25E-02	mg/kg-day	0.003
			Exp. Route Total								-					0.05
		Exp. Point Total									-					0.3
	Exp. Medium Total										-					0.3
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	4.62E-05	µg/m³	1.05E-06	±m/6π		1	1	3.69E-06	m/6rl	ı		1
				Соррег	1.37E-03	ra/m₃	3.13E-05	°m/grl	1	1		1.10E-04	ng/m₃	ı	:	-
			Exp. Route Total							_						-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total																0.3
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.3

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-25
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Visitor (Child) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Child

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	1 24:01	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	t Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC.	Hazard
					vaiue	Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	2.19E-04	mg/kg-day	1			2.56E-03	mg/kg-day	4.00E-04	mg/kg-day	9
				Copper	1.05E+03	mg/kg	2.47E-04	mg/kg-day	1	ı		2.89E-03	mg/kg-day	3.25E-02	mg/kg-day	0.09
			Exp. Route Total													9
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	5.20E-06	mg/kg-day	ı			6.07E-05	mg/kg-day	6.00E-05	mg/kg-day	-
				Copper	1.05E+03	mg/kg	5.87E-06	mg/kg-day	-	-	:	6.84E-05	mg/kg-day	3.25E-02	mg/kg-day	0.002
			Exp. Route Total								-					1
		Exp. Point Total														8
	Exp. Medium Total										-					8
-	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	ng/m³	1.08E-06	rm/grd	ı	ı	1	1.26E-05	m/6rl	,	ı	1
				Copper	8.31E-04	µg/m³	1.22E-06	µg/m₃	1	-	1	1.42E-05	µg/m³	-	1	-
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total																8
Notes:								Total of	Total of Receptor Risks Across All Media	cross All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	8

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-26
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Visitor (Adult) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Webu	11-14-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	3fC	Hazard
					value	Ouits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	6.86E-05	mg/kg-day	1			2.40E-04	mg/kg-day	4.00E-04	mg/kg-day	9.0
				Copper	1.05E+03	mg/kg	7.73E-05	mg/kg-day	1			2.71E-04	mg/kg-day	3.25E-02	mg/kg-day	0.008
			Exp. Route Total								-					9.0
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	2.90E-06	mg/kg-day	ı			1.01E-05	mg/kg-day	6.00E-05	mg/kg-day	0.2
				Copper	1.05E+03	mg/kg	3.26E-06	mg/kg-day				1.14E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total								-					0.2
		Exp. Point Total									-					8.0
	Exp. Medium Total										-					8.0
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	rm/6rd	3.61E-06	mg/m³				1.26E-05	mg/m³			1
				Copper	8.31E-04	ng/m₃	4.07E-06	m/gh	1			1.42E-05	°m/grl	ı	ı	-
			Exp. Route Total							-	-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					8.0
Notes:								Total of	Total of Receptor Risks Across All Media	Cross All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	8.0

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-27
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Trespasser (Teen) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future
Receptor Population: On-Site Trespasser
Receptor Age: Teen

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC StC	Hazard
					value	SJIIIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
lioS	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	1.99E-05	mg/kg-day	1	1	,	1.39E-04	mg/kg-day	4.00E-04	mg/kg-day	0.3
				Соррег	1.05E+03	mg/kg	2.24E-05	mg/kg-day	1			1.57E-04	mg/kg-day	3.25E-02	mg/kg-day	0.005
			Exp. Route Total													0.4
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	2.24E-06	mg/kg-day	ı			1.57E-05	mg/kg-day	6.00E-05	mg/kg-day	0.3
				Соррег	1.05E+03	mg/kg	2.53E-06	mg/kg-day	1			1.77E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0005
			Exp. Route Total								-					0.3
		Exp. Point Total									-					9.0
	Exp. Medium Total										-					9.0
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	µg/m₃	1.16E-06	±m/grd	ı			8.11E-06	ng/m₃	ı	:	-
				Соррег	8.31E-04	ng/m₃	1.31E-06	°m/grl	1			9.15E-06	ng/m₃	ı	:	_
			Exp. Route Total							_						-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total																9.0
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	9.0

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-28
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Commerical/ Industrial Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Commerical/ Industrial Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ons	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Value	II aite	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	if.	Hazard
						SIIIS	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	1.03E-04	mg/kg-day	,		1	2.88E-04	mg/kg-day	4.00E-04	mg/kg-day	0.7
				Copper	1.05E+03	mg/kg	1.16E-04	mg/kg-day	ı	1	-	3.24E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total													7.0
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	8.70E-06	mg/kg-day	,			2.44E-05	mg/kg-day	6.00E-05	mg/kg-day	0.4
				Copper	1.05E+03	mg/kg	9.81E-06	mg/kg-day	1		-	2.75E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0008
			Exp. Route Total								-					0.4
		Exp. Point Total														1
	Exp. Medium Total										-					1
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	mg/m³	4.33E-05	m/g/m³	,		1	1.21E-04	µg/m³	,		1
				Copper	8.31E-04	µg/m₃	4.88E-05	hg/m³	ı	1	-	1.36E-04	m/g/m³	1		-
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											-					1
Notes:								Total of	Receptor Risks A	Total of Receptor Risks Across All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	1
0.1.		The second secon	The second of the second of													

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-29
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Utility Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenaro Timeframe: Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

					EPC	-		Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	RfC	Hazard
					Value	SIIIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
lioS	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	3.02E-06	mg/kg-day				2.11E-04	mg/kg-day	4.00E-04	mg/kg-day	0.5
				Copper	1.05E+03	mg/kg	3.40E-06	mg/kg-day	1	1		2.38E-04	mg/kg-day	3.25E-02	mg/kg-day	0.007
			Exp. Route Total													0.5
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	6.44E-08	mg/kg-day	ı	٠		4.51E-06	mg/kg-day	6.00E-05	mg/kg-day	90:0
				Copper	1.05E+03	mg/kg	7.27E-08	mg/kg-day		1	:	5.09E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0002
			Exp. Route Total								-					0.08
		Exp. Point Total									-					9.0
	Exp. Medium Total										-					9.0
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	µg/m³	1.92E-07	m/grd	,	1		1.35E-05	m/6rl	ı		ı
				Copper	8.31E-04	mg/m³	2.17E-07	m/g/m³	1	1		1.52E-05	m/6rl	1	1	1
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											-					9.0
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	9.0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-30
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Construction Worker - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volus		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	isk šisk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SIC.	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	9.05E-06	mg/kg-day		,	,	6.33E-04	mg/kg-day	4.00E-04	mg/kg-day	2
				Соррег	1.05E+03	mg/kg	1.02E-05	mg/kg-day				7.14E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					2
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	2.90E-07	mg/kg-day	1	ı	,	2.03E-05	mg/kg-day	6.00E-05	mg/kg-day	0.3
				Copper	1.05E+03	mg/kg	3.27E-07	mg/kg-day			-	2.29E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0007
			Exp. Route Total								-					0.3
		Exp. Point Total									-					2
	Exp. Medium Total										-					2
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	ng/m₃	5.77E-07	rm/gri	1		,	4.04E-05	m⁄g⊓	1	ı	ı
				Copper	8.31E-04	µg/m³	6.51E-07	µg/m₃	-	-	-	4.56E-05	µg/m³	-	1	-
			Exp. Route Total													-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total																2
Notes:								Total of	Total of Receptor Risks Across All Media	oss All Media			Total of Re	Total of Receptor Hazards Across All Media	cross All Media	2

(1) OR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-31
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Resident (Child) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timefrane: Future Receptor Population: On-Site Resident Receptor Age: Child

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC StC	Hazard
					vaiue	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	1.03E-03	mg/kg-day	1	1	,	1.20E-02	mg/kg-day	4.00E-04	mg/kg-day	30
				Copper	1.05E+03	mg/kg	1.16E-03	mg/kg-day	ı	1		1.35E-02	mg/kg-day	3.25E-02	mg/kg-day	0.4
			Exp. Route Total								-					30
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	2.43E-05	mg/kg-day	ı			2.83E-04	mg/kg-day	6.00E-05	mg/kg-day	2
				Copper	1.05E+03	mg/kg	2.74E-05	mg/kg-day	1			3.19E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total													2
		Exp. Point Total														35
	Exp. Medium Total										-					35
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	µg/m₃	5.05E-06	m/grl	1		1	5.89E-05	µg/m³	1		ı
				Copper	8.31E-04	µg/m³	5.70E-06	µg/m₃	-	-	1	6.64E-05	µg/m³	-	-	1
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total																35
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of Re	Total of Receptor Hazards Across All Media	Across All Media	35

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totlats may be slightly higher or lower depending on degree of rounding.

Table 7-32
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Visitor (Child) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timefrane. Future Receptor Population: On-Site Resident Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	ll of all	Intake/Exposure Concentration	Soncentration	CSF/Unit Risk	ıit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SłC	Hazard
					value	Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Total Soil	Total Soil	Ingestion													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	3.19E-04	mg/kg-day		ı		1.12E-03	mg/kg-day	4.00E-04	mg/kg-day	က
				Copper	1.05E+03	mg/kg	3.60E-04	mg/kg-day		ı	:	1.26E-03	mg/kg-day	3.25E-02	mg/kg-day	0.04
			Exp. Route Total													3
			Dermal													
				Metals (Total)												
				Antimony	9.34E+02	mg/kg	1.35E-05	mg/kg-day	,	ı		4.73E-05	mg/kg-day	6.00E-05	mg/kg-day	8.0
				Copper	1.05E+03	mg/kg	1.53E-05	mg/kg-day		1		5.33E-05	mg/kg-day	3.25E-02	mg/kg-day	0.002
			Exp. Route Total								-					8.0
		Exp. Point Total									-					4
	Exp. Medium Total										-					4
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	7.37E-04	ng/m₃	1.68E-05	m/6rl				5.89E-05	ng/m₃	1		1
				Соррег	8.31E-04	ng/m₃	1.90E-05	m/grl	1	ı		6.64E-05	ng/m₃	1	ı	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					1
Medium Total											-					4
Notes:								Total of	Receptor Risks,	Total of Receptor Risks Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	4

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Table 7-33
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Visitor Receptor Age: Child

					EPC	ç		Cance	Cancer Risk Calculations	SI SI			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volus	o și ai	Intake/Exposure Concentration	3 Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	3 Concentration	RfD/	RfD/RfC	Hazard
					vaine	sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	4.94E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	8E-08	5.75E-05	mg/kg-day	1.00E-04	mg/kg-day	9.0
			Exp. Route Total								8E-08					9.0
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	2406+04	24)	1 175.06	yel officer	1 70 E 00	top solven), t	9U U	1 37E OF	in all and	1000	and whom	5
				Mitiogrycethi	2.105+01	By/Bill	1.17 E-00	IIIg/kg-uay	1.725-02	I/(IIIg/kg-day)	2E-00	1.375-03	IIIghg-day	1.00E-04	IIIghg-uay	0
			Exp. Route Total								2E-08					0.1
		Exp. Point Total									1E-07					0.7
	Exp. Medium Total										1E-07					0.7
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	µg/m₃	2.44E-08	µg/m³	-		-	2.84E-07	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											1E-07					0.7
Notes:								Total c	of Receptor Risks	Total of Receptor Risks Across All Media	1E-07		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.7

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 34
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	ş			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	- Velus	11.14.	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SfC SfC	Hazard
					value	SILIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	1.54E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-08	5.40E-06	mg/kg-day	1.00E-04	mg/kg-day	0.05
			Exp. Route Total								3E-08					0.05
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	6.51E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-08	2.27E-06	mg/kg-day	1.00E-04	mg/kg-day	0.02
			Exp. Route Total								1E-08					0.02
		Exp. Point Total									4E-08					0.08
	Exp. Medium Total										4E-08					0.08
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)						_						
				Nitroglycerin	1.66E-05	hg/m³	8.11E-08	ru/grl		ı	:	2.84E-07	ng/m₃	ı	ı	-
			Exp. Route Total													-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											4E-08					0.08
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media	4E-08		Total of R	Total of Receptor Hazards Across All Media	Across All Media	90:0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 735
Calculation of Chemical Cancer Risks (Fring Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Future Receptor Population: On-Site Visitor Receptor Age: Lifetime

					EPC			Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Malue	115.146	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	SEC.	Hazard
					vaiue	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
		•		Nitroglycerin	2.10E+01	mg/kg	6.47E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-07	-	-	-	-	-
			Exp. Route Total								1E-07					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	1.82E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-08	:	:		:	_
			Exp. Route Total								3E-08					-
		Exp. Point Total									1E-07					-
	Exp. Medium Total										1E-07					-
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
		•		Nitroglycerin	1.66E-05	ng/m₃	1.05E-07	m/6rl					1			ı
			Exp. Route Total													-
		Exp. Point Total									-					-
	Exp. Medium Total															-
Medium Total											1E-07					-
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	1E-07		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 36
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Future Receptor Population: On-Site Trespasser Receptor Age:

					EPC	o		Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Webu	- 11-11-1	Intake/Exposure Concentration	Concentration	CSF/Ui	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC .	Hazard
					value	SILIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	4.47E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	8E-09	3.13E-06	mg/kg-day	1.00E-04	mg/kg-day	0.03
			Exp. Route Total								8E-09					0.03
			Dermal													
				Semi-volatile Organic Compounds (SVOCs) Nitroglycerin	2.10E+01	mg/kg	5.04E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	9E-09	3.53E-06	mg/kg-day	1.00E-04	mg/kg-day	9:0
			Exp. Route Total								9E-09					0.04
		Exp. Point Total									2E-08					0.07
	Exp. Medium Total										2E-08					0.07
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	ng/m³	2.60E-08	ng/m₃		ı	-	1.82E-07	hg/m³	ı		-
			Exp. Route Total								-					-
		Exp. Point Total														1
	Exp. Medium Total										-					-
Medium Total											2E-08					0.07
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	2E-08		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.07

(1) OR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 37
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Gurrant/Future
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

					EPC	ي		Cancer	Cancer Risk Calculations	Si			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	RfC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	2.31E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-08	6.47E-06	mg/kg-day	1.00E-04	mg/kg-day	90:0
			Exp. Route Total								4E-08					90:0
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	1.96E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-08	5.48E-06	mg/kg-day	1.00E-04	mg/kg-day	0.05
			Exp. Route Total								3E-08					0.05
		Exp. Point Total									7E-08					0.1
	Exp. Medium Total										7E-08					0.1
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	mg/m³	9.73E-07	ru/grl	:	ı		2.72E-06	µg/m³	:	ı	-
			Exp. Route Total													-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											2E-08					0.1
Notes:								Total of	f Receptor Risks	Total of Receptor Risks Across All Media	2E-08		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.1

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 38
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

					EPC	S		Cance	Cancer Risk Calculations	SI			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	o și ai l	Intake/Exposure Concentration	Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD	RfD/RfC	Hazard
					Aaine	sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	6.78E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-09	4.75E-06	mg/kg-day	1.00E-04	mg/kg-day	0.05
			Exp. Route Total								1E-09					0.05
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	2 10E+01	ma/ka	1.45E-08	mo/ka-day	1 72E-02	1/(ma/ka-dav)	2E-10	1.01E-06	malka	1 00E-04	malka-dav	0 0
			Exp. Route Total		!	P		(m. 66		((6 6)	2E-10		(m. 66		fan Bub.	0.01
		Exp. Point Total									1E-09					90'0
	Exp. Medium Total										1E-09					90:0
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	rm/grl	4.33E-09	m/grl				3.03E-07	mg/m³	ı	ı	-
			Exp. Route Total													-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											1E-09					90'0
Notes:								Total c	of Receptor Risks	Total of Receptor Risks Across All Media	1E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	90.0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 39
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

					EPC	c		Cance	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Webus	11.14.	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SIC SIC	Hazard
					value	OUILE	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	2.03E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-09	1.42E-05	mg/kg-day	1.00E-04	mg/kg-day	0.1
			Exp. Route Total								4E-09					0.1
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	i c		i c	-			Ę	r L		L	-	č
				Nitroglycerin	Z.10E+01	mg/kg	6.53E-U8	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-09	4.56E-U6	mg/kg-day	1.00E-04	mg/kg-day	0.05
			Exp. Route Total								1E-09					0.05
		Exp. Point Total									5E-09					0.2
	Exp. Medium Total										5E-09					0.2
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	ng/m₃	1.30E-08	m/6rl		,		9.09E-07	µg/m₃	ı	ı	1
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											5E-09					0.2
Notes:								Totalo	f Receptor Risks.	Total of Receptor Risks Across All Media	5E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.2

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 40
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
CurrentFuture On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timetrame: Current/Enture Receptor Population: On-Site Resident Receptor Age: Child

					EPC	c ₂		Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	- 11-11-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SfC SfC	Hazard
					value	SILIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	2.31E-05	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-07	2.69E-04	mg/kg-day	1.00E-04	mg/kg-day	3
			Exp. Route Total								4E-07					3
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	5.46E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	9E-08	6.36E-05	mg/kg-day	1.00E-04	mg/kg-day	9.0
			Exp. Route Total								80- 3 6					9.0
		Exp. Point Total									2E-07					3
	Exp. Medium Total										5E-07					3
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	µg/m³	1.14E-07	µg/m³	-	-	-	1.32E-06	µg/m³	-	-	1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											2E-07					3
Notes:								Total o	Receptor Risks	Total of Receptor Risks Across All Media	2E-07		Total of R	Total of Receptor Hazards Across All Media	Across All Media	3

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 41
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timefrane: Current/Future Receptor Population: On-Site Resident Receptor Age: Adult

					EPC	co		Cance	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Walter	115.00	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	ЗĘ	Hazard
					vaiue	nuts	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyœrin	2.10E+01	mg/kg	7.18E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-07	2.52E-05	mg/kg-day	1.00E-04	mg/kg-day	0.3
			Exp. Route Total								1E-07					0.3
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	i i		i i		L		i L	100		i i		
				Nitroglycerin	2.10E+01	mg/kg	3.05E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-08	1.06E-05	mg/kg-day	1.00E-04	mg/kg-day	0.1
			Exp. Route Total								5E-08					0.1
		Exp. Point Total									2E-07					9.0
	Exp. Medium Total										2E-07					0.4
	Outdoor Air	Particulates above Site	Inhalation						_							
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyoerin	1.66E-05	mg/m³	3.78E-07	mg/m³	ı	ı	-	1.32E-06	ng/m₃			-
			Exp. Route Total								-					-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											2E-07					0.4
Notes:								Totalo	f Receptor Risks	Fotal of Receptor Risks Across All Media	2E-07		Total of R	Total of Receptor Hazards Across All Media	cross All Media	9.0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 42
Calculation of Chemical Cancer Risks (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Fiture Receptor Population: On-Site Resident Receptor Age: Lifetime

					EPC	C		Cancer	Cancer Risk Calculations	St			Non-Cance	Non-Cancer Hazard Calculations	ons	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	-11-11-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	LC .	Hazard
					value	SILIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	3.02E-05	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-07	1	1	,		_
			Exp. Route Total								5E-07					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	2.10E+01	mg/kg	8.51E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-07	1	1	1	1	1
			Exp. Route Total								1E-07					-
		Exp. Point Total									7E-07					
	Exp. Medium Total										7E-07					-
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	1.66E-05	µg/m₃	4.92E-07	hg/m³	:	ı	-	ı	1	ı		-
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											7E-07					-
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	7E-07		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 43

Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)

Reasonable Maximum Exposure

Current/Future On-Site Visitor (Child) - Surface Soil

Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Visitor Receptor Age: Child

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	oulox	-	Intake/Exposure Concentration	Concentration	CSF/Ui	CSF/Unit Risk	Cancer	Intake/Exposure	ntake/Exposure Concentration	RfD,	RfD/RfC	Hazard
					value	Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyoerin	4.60E-01	mg/kg	1.08E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-09	1.26E-06	mg/kg-day	1.00E-04	mg/kg-day	0.01
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	1.60E-07	mg/kg-day	1	ı		1.87E-06	mg/kg-day	4.00E-04	mg/kg-day	0.005
				Copper	1.27E+01	mg/kg	2.98E-06	mg/kg-day		-	-	3.48E-05	mg/kg-day	3.25E-02	mg/kg-day	0.001
			Exp. Route Total								2E-09					0.02
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	2.56E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-10	2.99E-07	mg/kg-day	1.00E-04	mg/kg-day	0.003
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	3.80E-09	mg/kg-day		ı		4.43E-08	mg/kg-day	6.00E-05	mg/kg-day	0.0007
				Copper	1.27E+01	mg/kg	7.07E-08	mg/kg-day	1	ı	-	8.26E-07	mg/kg-day	3.25E-02	mg/kg-day	0.00003
			Exp. Route Total								4E-10					0.004
		Exp. Point Total									2E-09					0.02
	Exp. Medium Total										2E-09					0.02
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)									_			
				Nitroglycerin	3.63E-07	µg/m₃	5.34E-10	m/grl	1	ı	ı	6.21E-09	± m⁄g/m³	ı	ı	ı
				Metals (Total)					_							
				Antimony	5.38E-07	hg/m³	7.92E-10	°m/grl			,	9.21E-09	n∂/m₃	ı	1	ı
				Copper	1.00E-05	µg/m³	1.47E-08	ng/m₃	-	-		1.71E-07	µg/m₃			-
			Exp. Route Total													-
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											2E-09					0.02
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	2E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.02

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 44
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Ste Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Welve	11.14.	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	SIC SIC	Hazard
					vaiue	OUILE	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	3.38E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	6E-10	1.18E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	5.01E-08	mg/kg-day	ı	ı	,	1.75E-07	mg/kg-day	4.00E-04	mg/kg-day	0.0004
				Соррег	1.27E+01	mg/kg	9.32E-07	mg/kg-day		-		3.26E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0001
			Exp. Route Total								6E-10					0.002
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.43E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-10	4.97E-08	mg/kg-day	1.00E-04	mg/kg-day	0.0005
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	2.11E-09	mg/kg-day		ı	,	7.37E-09	mg/kg-day	6.00E-05	mg/kg-day	0.0001
				Copper	1.27E+01	mg/kg	3.94E-08	mg/kg-day	-	1	1	1.37E-07	mg/kg-day	3.25E-02	mg/kg-day	0.000004
			Exp. Route Total								2E-10					90000
		Exp. Point Total									8E-10					0.002
	Exp. Medium Total										8E-10					0.002
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	3.63E-07	µg/m³	1.78E-09	m/grl	1	ı	ı	6.21E-09	±m/6π	ı		1
				Metals (Total)												
				Antimony	5.38E-07	hg/m³	2.63E-09	°m/grl		ı		9.21E-09	µg/m³	ı		1
				Copper	1.00E-05	µg/m³	4.90E-08	µg/m³	-	1	1	1.71E-07	µg/m³	1		1
			Exp. Route Total													1
		Exp. Point Total														1
	Exp. Medium Total										-					-
Medium Total											8E-10					0.002
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	8E-10		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.002

Notes: (1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 745

Calculation of Chemical Cancer Risks (Background)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Ourent/Future Receptor Population: On-Site Visitor Receptor Age: Lifetime

					EPC	F		Cancer	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	TI CAN	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/	RfD/RfC	Hazard
						Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.42E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-09	1	1		1	1
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	2.10E-07	mg/kg-day	ı	1		1	ı	:	ı	1
				Copper	1.27E+01	mg/kg	3.91E-06	mg/kg-day		-			-		-	1
			Exp. Route Total								2E-09					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	3.99E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	7E-10	,	ı	,	ı	1
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	5.91E-09	mg/kg-day			,	1	1	:		1
				Copper	1.27E+01	mg/kg	1.10E-07	mg/kg-day	ı	ı		1	1		1	1
			Exp. Route Total								7E-10					-
		Exp. Point Total									3E-09					-
	Exp. Medium Total										3E-09					-
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	3.63E-07	µg/m³	2.31E-09	mg/m³	1	ı	ı	1	ı	,	ı	1
				Metals (Total)						_						
				Antimony	5.38E-07	hg/m³	3.42E-09	m/grl	1	1	,	1	1	1	1	1
				Copper	1.00E-05	µg/m³	6.38E-08	µg/m₃	-	1	1	-	1	-	-	1
			Exp. Route Total													1
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											3E-09					
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media	3E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 46
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Trespasser Receptor Age: Teen

					EPC	\mid		Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	onlow	n ctial I	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	iit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD	RfD/RfC	Hazard
						Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	9.80E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-10	6.85E-08	mg/kg-day	1.00E-04	mg/kg-day	0.0007
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	1.45E-08	mg/kg-day	:	1		1.02E-07	mg/kg-day	4.00E-04	mg/kg-day	0.0003
				Copper	1.27E+01	mg/kg	2.71E-07	mg/kg-day		-	-	1.89E-06	mg/kg-day	3.25E-02	mg/kg-day	9000000
			Exp. Route Total								2E-10					0.001
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyœrin	4.60E-01	mg/kg	1.10E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-10	7.73E-08	mg/kg-day	1.00E-04	mg/kg-day	0.0008
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	1.64E-09	mg/kg-day	1	1	1	1.15E-08	mg/kg-day	6.00E-05	mg/kg-day	0.0002
				Copper	1.27E+01	mg/kg	3.05E-08	mg/kg-day		1	-	2.13E-07	mg/kg-day	3.25E-02	mg/kg-day	0.000007
			Exp. Route Total								2E-10					0.001
		Exp. Point Total									4E-10					0.002
	Exp. Medium Total										4E-10					0.002
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyærin	3.63E-07	µg/m₃	5.70E-10	mg/m³	,	ı	1	4.00E-09	m/grl	ı	ı	1
				Metals (Total)						_				_		
				Antimony	5.38E-07	ng/m₃	8.45E-10	±m/6rd	1	1	1	5.92E-09	±m/6rl	ı	1	1
				Copper	1.00E-05	µg/m³	1.57E-08	µg/m₃	-	1	-	1.10E-07	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											4E-10					0.002
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	4E-10		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.002

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 47
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Gurrant/Future
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s.			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern		11-16	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	StC.	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	5.06E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	9E-10	1.42E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	7.50E-08	mg/kg-day	ı	1		2.10E-07	mg/kg-day	4.00E-04	mg/kg-day	0.0005
				Copper	1.27E+01	mg/kg	1.40E-06	mg/kg-day		-	:	3.91E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0001
			Exp. Route Total								9E-10					0.002
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	4.29E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	7E-10	1.20E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	6.36E-09	mg/kg-day		1		1.78E-08	mg/kg-day	6.00E-05	mg/kg-day	0.0003
				Copper	1.27E+01	mg/kg	1.18E-07	mg/kg-day	-	1	1	3.31E-07	mg/kg-day	3.25E-02	mg/kg-day	0.00001
			Exp. Route Total								7E-10					0.002
		Exp. Point Total									2E-09					0.004
	Exp. Medium Total										2E-09					0.004
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	3.63E-07	µg/m₃	2.13E-08	mg/m³	;	1	1	5.96E-08	µg/m₃			,
				Metals (Total)												
				Antimony	5.38E-07	m/grl	3.16E-08	m/grl	ı	ı	1	8.83E-08	µg/m³	1	ı	1
		_		Copper	1.00E-05	µg/m³	5.89E-07	ng/m₃		1	,	1.64E-06	µg/m³	-	-	1
			Exp. Route Total													1
		Exp. Point Total														-
	Exp. Medium Total															1
Medium Total											2E-09					0.004
Notes:								Totalo	Receptor Risks.	Total of Receptor Risks Across All Media	2E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.004

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	4 4 4	Intake/Exposure Concentration	Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD	RfD/RfC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.49E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-11	1.04E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	2.20E-09	mg/kg-day		ı	1	1.54E-07	mg/kg-day	4.00E-04	mg/kg-day	0.0004
				Copper	1.27E+01	mg/kg	4.10E-08	mg/kg-day		-		2.87E-06	mg/kg-day	3.25E-02	mg/kg-day	0.00009
			Exp. Route Total								3E-11					0.002
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	3.17E-10	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-12	2.22E-08	mg/kg-day	1.00E-04	mg/kg-day	0.0002
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	4.71E-11	mg/kg-day		1	,	3.29E-09	mg/kg-day	6.00E-05	mg/kg-day	0.00005
				Copper	1.27E+01	mg/kg	8.76E-10	mg/kg-day		-	-	6.13E-08	mg/kg-day	3.25E-02	mg/kg-day	0.000002
			Exp. Route Total								5E-12					0.0003
		Exp. Point Total									3E-11					0.002
	Exp. Medium Total										3E-11					0.002
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	3.63E-07	ng/m₃	9.48E-11	m/grd				6.65E-09	m/grd			ı
				Metals (Total)												
				Antimony	5.38E-07	ng/m₃	1.41E-10	hg/m³		1	,	9.85E-09	µg/m₃	1	1	,
				Copper	1.00E-05	µg/m³	2.62E-09	µg/m³		-		1.84E-07	µg/m³	-	-	1
			Exp. Route Total								-					1
		Exp. Point Total														1
	Exp. Medium Total										-					-
Medium Total											3E-11					0.002
Notes:								Totalo	Receptor Risks	Total of Receptor Risks Across All Media	3E-11		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.002

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Table 7 49
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	Š			Non-Canc	Non-Cancer Hazard Calculations	fions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	- Nebre	1	Intake/Exposure Concentration	Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure	ntake/Exposure Concentration	RfD	RfD/RfC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	4.46E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	8E-11	3.12E-07	mg/kg-day	1.00E-04	mg/kg-day	0.003
				Metals (Total)						_						
				Antimony	6.82E-01	mg/kg	6.61E-09	mg/kg-day	1		;	4.62E-07	mg/kg-day	4.00E-04	mg/kg-day	0.001
				Copper	1.27E+01	mg/kg	1.23E-07	mg/kg-day	-		:	8.61E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total							1	8E-11					0.005
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.43E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-11	9.98E-08	mg/kg-day	1.00E-04	mg/kg-day	0.001
				Metals (Total)						_						
				Antimony	6.82E-01	mg/kg	2.12E-10	mg/kg-day	1	1	1	1.48E-08	mg/kg-day	6.00E-05	mg/kg-day	0.0002
				Copper	1.27E+01	mg/kg	3.95E-09	mg/kg-day	-	-	:	2.76E-07	mg/kg-day	3.25E-02	mg/kg-day	0.000008
			Exp. Route Total								2E-11					0.001
		Exp. Point Total									1E-10					900'0
	Exp. Medium Total										1E-10					0.006
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)						_						
				Nitroglyœrin	3.63E-07	µg/m³	2.84E-10	m/grl	ı	,	ı	1.99E-08	m/grl	ı	ı	1
				Metals (Total)					_							
				Antimony	5.38E-07	mg/m³	4.22E-10	mg/m³	ı	1		2.95E-08	mg/m³	ı	1	1
				Copper	1.00E-05	µg/m³	7.85E-09	µg/m₃	-	-		5.50E-07	µg/m³	1	-	1
			Exp. Route Total							1	:					1
		Exp. Point Total														-
	Exp. Medium Total															-
Medium Total											1E-10					900'0
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	1E-10		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.006

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 50
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Ste Resident Receptor Age: Child

					EPC			Cancel	Cancer Risk Calculations	SI			Non-Cance	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	dial	Intake/Exposure Concentration	Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure	ntake/Exposure Concentration	RfD	RfD/RfC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)											_	
				Nitroglycerin	4.60E-01	mg/kg	5.06E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	9E-09	5.89E-06	mg/kg-day	1.00E-04	mg/kg-day	90:0
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	7.50E-07	mg/kg-day	1			8.73E-06	mg/kg-day	4.00E-04	mg/kg-day	0.02
				Copper	1.27E+01	mg/kg	1.40E-05	mg/kg-day	-		:	1.63E-04	mg/kg-day	3.25E-02	mg/kg-day	0.005
			Exp. Route Total								60-36					60:0
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)											_	
				Nitroglycerin	4.60E-01	mg/kg	1.20E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-09	1.39E-06	mg/kg-day	1.00E-04	mg/kg-day	0.01
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	1.77E-08	mg/kg-day	1	1	1	2.07E-07	mg/kg-day	6.00E-05	mg/kg-day	0.003
				Copper	1.27E+01	mg/kg	3.30E-07	mg/kg-day	-	-	:	3.85E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0001
			Exp. Route Total								2E-09					0.02
		Exp. Point Total									1E-08					0.1
	Exp. Medium Total										1E-08					0.1
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyærin	3.63E-07	µg/m³	2.49E-09	m/grl	ı		ı	2.90E-08	m/grl	ı	ı	ı
				Metals (Total)											-	
				Antimony	5.38E-07	hg/m³	3.69E-09	hg/m₃	1			4.30E-08	hg/m³	ı	1	ı
				Copper	1.00E-05	µg/m³	6.87E-08	µg/m³	-	-	-	8.01E-07	µg/m³	-	-	1
			Exp. Route Total							1	-					1
		Exp. Point Total														1
	Exp. Medium Total										-					1
Medium Total											1E-08					0.1
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	1E-08		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.1

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 51
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Background)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adutt) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Future Receptor Population: On-Site Resident Receptor Age: Adult

					EPC			Cancel	Cancer Risk Calculations	SI			Non-Canc	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Value	115.00	Intake/Exposure Concentration	Concentration	CSF/U	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD	RfD/RfC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.57E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-09	5.52E-07	mg/kg-day	1.00E-04	mg/kg-day	900'0
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	2.33E-07	mg/kg-day	1	1		8.18E-07	mg/kg-day	4.00E-04	mg/kg-day	0.002
				Copper	1.27E+01	mg/kg	4.34E-06	mg/kg-day	-		-	1.52E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0005
			Exp. Route Total								3E-09					0.008
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	6.67E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-09	2.33E-07	mg/kg-day	1.00E-04	mg/kg-day	0.002
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	9.89E-09	mg/kg-day		1	:	3.45E-08	mg/kg-day	6.00E-05	mg/kg-day	9000'0
				Copper	1.27E+01	mg/kg	1.84E-07	mg/kg-day	-	-	-	6.43E-07	mg/kg-day	3.25E-02	mg/kg-day	0.00002
			Exp. Route Total								1E-09					0.003
		Exp. Point Total									4E-09					0.01
	Exp. Medium Total										4E-09					0.01
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyærin	3.63E-07	hg/m³	8.28E-09	m/grl	ı		ı	2.90E-08	m/6rl		ı	ı
				Metals (Total)												
				Antimony	5.38E-07	hg/m³	1.23E-08	hg/m₃				4.30E-08	hg/m³			1
				Copper	1.00E-05	µg/m³	2.29E-07	µg/m³	-	-		8.01E-07	µg/m³		-	1
			Exp. Route Total								-					1
		Exp. Point Total														-
	Exp. Medium Total										-					-
Medium Total											4E-09					0.01
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	4E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.01

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7.52
Calculation of Chemical Cancer Risks (Background)
Reasonable Maximum Exposure
CurrentFuture On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timerrame. Current/Enture Receptor Population: On-Site Resident Receptor Age: Lifetime

					EPC	U		Cancel	Cancer Risk Calculations	Si			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volus	- Sign	Intake/Exposure Concentration	Concentration	CSF/Ui	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	SIC.	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	6.62E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-08	1	,			1
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	9.82E-07	mg/kg-day	1	1		ı	,			ı
				Copper	1.27E+01	mg/kg	1.83E-05	mg/kg-day	-	-	-	-	-	-	-	ı
			Exp. Route Total								1E-08					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	4.60E-01	mg/kg	1.86E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-09		ı			1
				Metals (Total)												
				Antimony	6.82E-01	mg/kg	2.76E-08	mg/kg-day		1		ı	1	1		1
				Copper	1.27E+01	mg/kg	5.14E-07	mg/kg-day	-	-	:	-	-	-		1
			Exp. Route Total								3E-09					-
		Exp. Point Total									1E-08					-
	Exp. Medium Total										1E-08					-
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglyœrin	3.63E-07	± m/6π	1.08E-08	mg/m³	ı	1	1	ı	ı	1	,	1
				Metals (Total)						_						
				Antimony	5.38E-07	hg/m³	1.60E-08	hg/m³	1			ı	1	1		ı
				Copper	1.00E-05	µg/m³	2.98E-07	µg/m₃	1	-	-	1	1	-	-	1
			Exp. Route Total								-					1
		Exp. Point Total									-					1
	Exp. Medium Total															-
Medium Total											1E-08					ı
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	1E-08		Total of R	Total of Receptor Hazards Across All Media	Across All Media	•

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Visitor
Receptor Age: Child Scenario Timeframe: Current

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumula	tive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(μ)	
	_	+		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	;	;	;	TO	0.3	0.04	ı	0.3
			Copper	:		:	-	GI	0.05	0.001	1	0.05
			Chemical Total			:			0.3	0.04	-	0.4
		Exposure Point Total					:					0.4
	Exposure Medium Total	le.					:					0.4
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	;	1	;	1	ı	1	ı	ı
			Copper	:		:	:	-	_	-	1	-
			Chemical Total	-	-				-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total												0.4
Notes:					2	Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	0.4

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-2

Receptor Population: On-Site Visitor
Receptor Age: Adult Scenario Timeframe: Current

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Sumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	t ₍₁₎	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	;	;	T0	0.03	0.007	1	0.03
			Copper	1	:	;	;	Ō	0.005	0.0002	1	0.005
			Chemical Total	-					0.03	0.007	-	0.04
		Exposure Point Total					:					0.04
	Exposure Medium Total	le					-					0.04
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	1	1	;	ŀ	ı	1	1	1	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total		-				-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	le.					:					
Medium Total												0.04
Notes:					, a2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	0.04

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-3

Scenario Timeframe: Current Receptor Population: On-Site Trespasser Teen Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	:	;	;	;	T0	0.01	0.01	ı	0.03
			Copper	:	-	:	:	GI	0.003	0.0003	-	0.003
			Chemical Total	:	:	:	:		0.02	0.01		0.03
		Exposure Point Total					:					0.03
	Exposure Medium Total	al					-					0.03
	Outdoor Air	Particulates above Site										
			Metals (Total)					-				
			Antimony	:	:	;	;		1	ı	ı	1
			Copper	:	:	:	;	-	-	-	-	-
			Chemical Total	-		-			-	-	-	-
		Exposure Point Total					:					-
	Exposure Medium Total	al										
Medium Total							:					0.03
Notes:						Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	0.03

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-4
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Tmeframe: Current
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

				Thresholds.	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	Ð	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)		_							
			Antimony	1		;	1	10	0.03	0.02	ı	0.05
			Copper	1	:	;	1	19	9000	0.0005	ı	0.007
			Chemical Total	-	-	:			0.04	0.02	-	0.05
		Exposure Point Total					:					0.05
	Exposure Medium Total	le le					:					0.05
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	:	;	;	1		ı	ı	ı	1
			Copper		:	:	-	-	-	1	1	-
			Chemical Total	-			-		-	-	-	-
		Exposure Point Total					:					-
	Exposure Medium Total	al					:					-
Medium Total							:					0.05
Notes:						Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	0.05

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-5 Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm) Reasonable Maximum Exposure

Reasonable Maximum Exposure
Current On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timerfame: Current
Receptor Population: On-Site Utility Worker
Receptor Age: Adult

				Thresholds.	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds.	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	<u>-</u>			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	;	;	;	1	10	0.02	0.003	1	0.03
			Copper	;	;	;	1	15	0.004	0.00009	1	0.005
			Chemical Total			:			0.03	0.003	-	0.03
		Exposure Point Total					-					0.03
	Exposure Medium Total	11										0.03
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	ŀ	;	1		ı	ı	ı	1
			Copper	1		;	-	-	I	_	1	1
			Chemical Total	-	-		-		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	11					:					
Medium Total							:					0.03
Notes:					2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	0.03

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-6

Receptor Population: On-Site Construction Worker Scenario Timeframe: Current Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	E	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	;	1	T0	0.07	0.01	ı	0.08
			Copper	1	:	;	1	Ō	0.01	0.0004	ı	0.01
			Chemical Total	-					80:0	0.01	-	0.1
		Exposure Point Total					:					0.1
	Exposure Medium Total	al										0.1
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	;	1	ı	1	ı	ı	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total		-		-		-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	al										
Medium Total												0.1
Notes:					2	Receptor Risk Total				Receptor	Receptor Hazard Index (HI)	0.1

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-7

Receptor Population: On-Site Resident Receptor Age: Child Scenario Timeframe: Current Receptor Age:

				Thresholds:	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumula	ative (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	1	ŀ	;	ТО	-	0.2	1	-
			Copper	-	-	:	:	GI	0.3	0.006	-	0.3
			Chemical Total	:	:	:	:		2	0.2	-	2
		Exposure Point Total										2
	Exposure Medium Total	1										2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	ı	1		ı	ı	1	1
			Copper	-	-	1	1	-	ı	ı	1	1
			Chemical Total	:	:	:	:		1		-	
		Exposure Point Total					:					
	Exposure Medium Total	=					:					
Medium Total												2
Notes:					2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	2
(1) CR and HQs are ro	unded to one non-zero a	ligit; cumulative totals m	(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.	unding.				•				

0.3

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-8

Receptor Population: On-Site Resident
Receptor Age: Adult Scenario Timeframe: Current

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ttive (1E-04)	Thresholds	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(O)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	;	1	TO	0.1	0.03	ı	0.2
			Copper	1	:	;	1	ō	0.02	0.001	ı	0.02
			Chemical Total	-					0.1	0.03	-	0.2
		Exposure Point Total					:					0.2
	Exposure Medium Total	al										0.2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	;	1	ı	1	1	ı	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total		-		-		-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	al										
Medium Total												0.2
Notes:					2	Receptor Risk Total				Receptor	Receptor Hazard Index (HI)	0.7

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Visitor (Child) - Total Soil
Ridgway Training Range, Pennsylvania Table 9-9

Receptor Population: On-Site Visitor Receptor Age: Child Scenario Timeframe: Future Receptor Age:

				Thresholds	: Chemical-specific (Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)		_							
			Antimony	:	:	1	1	ТО	0.4	90:0	ı	0.4
			Copper	:	-	-	-	GI	0.08	0.002	1	0.08
			Chemical Total			-	:		0.4	90'0	-	0.5
		Exposure Point Total					:					0.5
	Exposure Medium Total						:					0.5
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	ŀ	1	1		ı	ı	ı	ı
			Copper	:	:	-	-	-	_	1	1	-
			Chemical Total	-	-	-			-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total						:					
Medium Total							:					0.5
Notes:					~	Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	0.5

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Visitor (Adult) - Total Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Visitor Scenario Timeframe: Future

Adult

Receptor Age:

				Thresholds.	. Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	Sumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω [‡] (0)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	;	1	1	TO	0.03	0.01	1	0.04
			Copper	1	;	1	1	lЭ	0.007	0.0003	1	0.008
			Chemical Total			:			0.04	0.01	-	0.05
		Exposure Point Total										0.05
	Exposure Medium Total											0.05
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	ŀ	1	1	1	ı	ı	ı	ı
			Copper	-	-	1	-	-	ı	1	I	1
			Chemical Total	-	:	:			-	-	-	
		Exposure Point Total										
	Exposure Medium Total						:					
Medium Total												0.05
Notes:						Receptor Risk Total	-			Recepto	Receptor Hazard Index (HI)	0.05

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Trespasser (Teen) - Total Soil
Ridgway Training Range, Pennsylvania Table 9-11

Scenario Timeframe: Future Receptor Population: On-Site Trespasser Teen Receptor Age:

:	:			Thresholds:	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	mical-specific, Target Organ and Cumi	:umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Calcilluge	SHIC KISK			NOII-CAICIIIOGE	anc nazaru Quonem		
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	i	1	1	ı	10	0.02	0.01	ı	0.03
			Copper	i	;	1	ı	15	0.004	0.0005	ı	0.005
			Chemical Total						0.02	0.02	-	0.04
		Exposure Point Total					:					0.04
	Exposure Medium Total											0.04
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	i	1	1	ŀ	ı	ı	1	ı	1
			Copper	:		-	:	-	-	-	-	-
			Chemical Total	-	-	-	-		-	-	-	-
		Exposure Point Total					:					-
	Exposure Medium Total											-
Medium Total							:					0.04
Notes:						Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	0.04

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Commerical/Industrial Worker - Total Soil
Ridgway Training Range, Pennsylvania Table 9-12

Receptor Population: On-Site Commerical/ Industrial Worker Scenario Timeframe: Future Adult Receptor Age:

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	<u>-</u>	<u> </u>		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	;	;	;	10	0.04	0.02	ı	90:0
			Copper	1	;	;	;	15	0.009	0.0007	ı	0.009
			Chemical Total	:	:	:	:		0.05	0.02		0.07
		Exposure Point Total					:					0.07
	Exposure Medium Total	le.					-					0.07
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	;	;	;	ı	1	1	ı	ı
			Copper	-		:	:	-	-	-	ı	-
			Chemical Total	-		-			-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	_					:					
Medium Total							:					0.07
Notes:						Receptor Risk Total	-			Recepto	Receptor Hazard Index (HI)	70'0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-13
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure

Reasonable Maximum Exposure Future On-Site Utility Worker - Total Soil Ridgway Training Range, Pennsylvania

> Scenario Tineframe: Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	Φ.	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	:	1	TO	0.03	0.004	ı	0.03
			Copper	1	:	:	1	В	900.0	0.0001	ı	900:0
			Chemical Total						0.04	0.004	-	0.04
		Exposure Point Total					-					0.04
	Exposure Medium Total	al					-					0.04
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	;	;	ı	1	1	ı	1
			Copper	-	1	:	-	-	-	-	ı	1
			Chemical Total	:	:	:	:		-	-		
		Exposure Point Total					:					
	Exposure Medium Total	al					:-					
Medium Total							:-					0.04
Notes:						Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	0.04

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Construction Worker - Total Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Construction Worker Scenario Timeframe: Future Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds.	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(₍₁₎	
		-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)		_							
			Antimony	;	;	;	1	TO	60:0	0.02	1	0.1
			Copper	;	;	;	1	Ð	0.02	0.0006	1	0.02
			Chemical Total	:	:	:			0.1	0.02		0.1
		Exposure Point Total										0.1
	Exposure Medium Total	le.					-					0.1
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	;	:	1	1	ı	ı	1	ı	ı
			Copper	:		:	-	-	-	-	-	-
			Chemical Total	-	-				-	-	-	
		Exposure Point Total					-					
	Exposure Medium Total	le.										
Medium Total							:					0.1
Notes:					יצ	Receptor Risk Total	-			Recepto	Receptor Hazard Index (HI)	0.1

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Resident (Child) - Total Soil
Ridgway Training Range, Pennsylvania Table 9-15

Receptor Population: On-Site Resident Receptor Age: Child Scenario Timeframe: Future Receptor Age:

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumula	tive (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	;	ı	10	2	0.3	ı	2
			Copper	:		:	-	GI	0.4	0.008	1	0.4
			Chemical Total	-	:	:	:		2	0.3	-	2
		Exposure Point Total										2
	Exposure Medium Total	l.										2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	1	;	ŀ		ı	1	ı	1
			Copper	-	-	1	1	-	1	1	ı	1
			Chemical Total	-	-				-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	ŀ					:					
Medium Total							:					2
Notes:					ď	Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	2

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Future On-Site Resident (Adult) - Total Soil
Ridgway Training Range, Pennsylvania Table 9-16

Scenario Timeframe: Future Receptor Population: On-Site Resident Receptor Age: Adult

0.2	Receptor Hazard Index (HI)	Receptor			:	Receptor Risk Total	L					Notes:
0.2					:							Medium Total
					:						Exposure Medium Total	
					:					Exposure Point Total		
	-	1	-		:	:	:	:	Chemical Total			
1	I	1	1	1	1	1	1	:	Copper			
ı	I	ı	ı	1	1	1	;	;	Antimony			
									Metals (Total)			
										Particulates above Site	Outdoor Air	
0.2											Exposure Medium Total	
0.2					:					Exposure Point Total		
0.2		0.05	0.2		:	:	-		Chemical Total			
0.04	-	0.001	0.03	GI	-	-	:	:	Copper			
0.2	1	0.05	0.2	ТО	1	1	:	;	Antimony			
									Metals (Total)			
										Total Soil	Total Soil	Soil
Exposure Routes Total	Inhalation	Dermal	Ingestion	Primary Target Organs	Exposure Routes Total	Inhalation	Dermal	Ingestion		-		
	(1)	Non-Carcinogenic Hazard Quotient (1)	Non-Carcinoge			Carcinogenic Risk (1)	Carcinoge		Chemical of Potential Concern	Exposure Point	Exposure Medium	Medium
	umulative (HQ > 1)	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Chemical-specific,	Thresholds:	tive (1E-04)	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	: Chemical-specific	Thresholds				

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-17
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure

Current On-Site Visitor (Adult) - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Timeframe: Current Receptor Population: On-Site Visitor Receptor Age: Child

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Co	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	;	;	TO	0.4	90:0	ı	0.5
			Copper	1	:	:	;	15	0.1	0.003	ı	0.2
			Chemical Total	-	-				0.5	0.07	-	9.0
		Exposure Point Total					:					9.0
	Exposure Medium Total	le le					-					9.0
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	;	;	ı	ı	ı	ı	1
			Copper		1	:	:	-	1	-	ı	-
			Chemical Total	-	-	-	-		-	-	-	-
		Exposure Point Total					:					-
	Exposure Medium Total	le.					:					
Medium Total							:					9.0
Notes:						Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	9.0

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-18

Receptor Population: On-Site Visitor
Receptor Age: Adult Scenario Timeframe: Current

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk ⁽¹⁾			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
	_			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)		_							
			Antimony	1	1	;	ı	TO	0.04	0.01	1	0.05
			Copper	i	1	;	;	15	0.01	0.0006	1	0.01
			Chemical Total	:	:	:	:		0.05	0.01		90.0
		Exposure Point Total					:					90.0
	Exposure Medium Total	le.					-					90'0
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	;	;	;	;	ı	1	1	1	ı
			Copper	:		:	:	-	-	_	-	1
			Chemical Total	-					-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	_					:					
Medium Total							:					90.0
Notes:						Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	90'0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-19
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure

Current On-Site Trespasser (Teen) - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Tineframe: Current Receptor Population: On-Site Trespasser Receptor Age: Teen

0.05	Receptor Hazard Index (HI)	Receptor			:	Receptor Risk Total	~					Notes:
0.05					:							Medium Total
					:						Exposure Medium Total	
					:					Exposure Point Total		
	-	-	-		:	:		:	Chemical Total			
-	_	_	-	-					Copper			
1	1	ı	ı	ı	1	1	1	1	Antimony			
									Metals (Total)			
										Particulates above Site	Outdoor Air	
0.05					:						Exposure Medium Total	
0.05					:					Exposure Point Total		
0.05	-	0.02	0.03		:	:		:	Chemical Total			
0.009	-	0.0009	0.008	GI	-			-	Copper			
0.04	1	0.02	0.02	TO	1	:	;	1	Antimony			
									Metals (Total)			
										Surface Soil	Surface Soil	Soil
Exposure Routes Total	Inhalation	Dermal	Ingestion	Primary Target Organs	Exposure Routes Total	Inhalation	Dermal	Ingestion		-	-	
	(1)	Non-Carcinogenic Hazard Quotient (1)	Non-Carcinoger			Carcinogenic Risk (1)	Carcinoge		Chemical of Potential Concern	Exposure Point	Exposure Medium	Medium
	umulative (HQ > 1)	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Chemical-specific, 7	Thresholds:	tive (1E-04)	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	: Chemical-specific	Thresholds				

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-20
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Tmeframe: Current
Receptor Population: On-Site Commerical/Industrial Worker
Receptor Age: Adult

				Thresholds.	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C.	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	<u>-</u>			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	i	;	;	;	TO	0.05	0.03	1	0.07
			Copper	1	;	;	1	Б	0.02	0.001	1	0.02
			Chemical Total						90.0	0.03	-	0.09
		Exposure Point Total										60.0
	Exposure Medium Total	le le					-					0.09
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	ŀ	ŀ	1	ı	ı	ı	ı	1
			Copper	-		;	-	-	ı	ı	ı	1
			Chemical Total	-	-		-		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	al					:					
Medium Total							:					0.09
Notes:					2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	60'0

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-21
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure

Current On-Site Utility Worker - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Timeframe: Current Receptor Population: On-Site Utility Worker Receptor Age: Adult

0.05	Receptor Hazard Index (HI)	Receptor				Receptor Risk Total						Notes:
0.05					:							Medium Total
					:						Exposure Medium Total	
					:					Exposure Point Total		
-	-	-	-		-	-	-	:	Chemical Total			
ı	ı	1	1	1	1	1	1	:	Copper			
ı	ı	ı	ı	1	1	1	;	;	Antimony			
									Metals (Total)			
										Particulates above Site	Outdoor Air	
0.05					:						Exposure Medium Total	
0.05					:					Exposure Point Total		
0.05	-	0.005	0.05		:	-		-	Chemical Total			
0.01	-	0.0003	0.01	GI	-		:	-	Copper			
0.04	1	0.005	0.03	TO	1	:	:	;	Antimony			
									Metals (Total)			
										Surface Soil	Surface Soil	Soil
Exposure Routes Total	Inhalation	Dermal	Ingestion	Primary Target Organs	Exposure Routes Total	Inhalation	Dermal	Ingestion		-	-	
	(1)	Non-Carcinogenic Hazard Quotient (1)	Non-Carcinoge			Carcinogenic Risk ⁽¹⁾	Carcinoge		Chemical of Potential Concern	Exposure Point	Exposure Medium	Medium
	umulative (HQ > 1)	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Chemical-specific,	Thresholds:	tive (1E-04)	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	: Chemical-specific	Thresholds				

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-22
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Construction Worker Scenario Timeframe: Current Adult Receptor Age:

				Thresholds.	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C.	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk ⁽¹⁾			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	;	;	;	1	TO	0.1	0.02	ı	0.1
			Copper	;	;	;	1	Ю	0.04	0.001	ı	0.04
			Chemical Total				-		0.1	0.02	-	0.2
		Exposure Point Total					:					0.2
	Exposure Medium Total	le.					-					0.2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	;	;	1		ı	ı	ı	ı
			Copper	1	1	1	1	_	1	ı	ı	ı
			Chemical Total	-		-	-		-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	-					:					
Medium Total							:					0.2
Notes:						Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	0.2

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-23
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Basenable Maximum Evansura

Reasonable Maximum Exposure Current On-Site Resident (Child) - Surface Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current
Receptor Population: On-Site Resident
Receptor Age: Child

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	;	:	1	TO	2	0.3	ı	2
			Copper	1	;	:	1	Ō	0.7	0.02	ı	7.0
			Chemical Total	:	:	:			3	0.3		3
		Exposure Point Total										3
	Exposure Medium Total	P					-					3
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	:	1	ı	1	1	1	1
			Copper	1		:	-	-	-	1	1	1
			Chemical Total	-	-	-			-	-	-	-
		Exposure Point Total					-					
	Exposure Medium Total	-										
Medium Total							-					3
Notes:						Receptor Risk Total				Recepto	Receptor Hazard Index (HI)	3

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Page 1 of 1

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-24

Receptor Population: On-Site Resident Scenario Timeframe: Current Adult Receptor Age:

				Thresholds.	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk "			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(n)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	;	:	1	;	T0	0.2	0.05	ı	0.2
			Copper	;	:	1	;	Ō	90:0	0.003	ı	0.07
			Chemical Total	:	:	:	:		0.2	0.05		0.3
		Exposure Point Total					:					0.3
	Exposure Medium Total	al					-					0.3
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	1	1	;	ı	I	1	ı	ı
			Copper	:		-	:	-	-	-	1	-
			Chemical Total	-	-	-			-	-	-	-
		Exposure Point Total					:					-
	Exposure Medium Total	a					:					
Medium Total							:					0.3
Notes:					2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	0.3

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-25
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Visitor (Adult) - Total Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Child

				Thresholds:	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	1E-06) and Cumulat	ive (1E-04)	Thresholds:	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinogenic Risk (1)	nic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
	_	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	;	;	:	1	TO	9	_	ı	7
			Copper	:	-		-	GI	0.09	0.002	-	0.09
			Chemical Total						9	1	-	8
		Exposure Point Total					:					8
	Exposure Medium Total	le le					:					8
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	;	1	1	1	ı	ı	ı	1
			Copper	:	:		-	-	-	-	-	1
			Chemical Total		:	-			-	-	-	
		Exposure Point Total										
	Exposure Medium Total	-					:					
Medium Total							:					8
Notes:					R	Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	8
(1) CR and HQs are ro	unded to one non-zero d	ligit; cumulative totals ma	(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.	ınding.		-					_	

0.09

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Trespasser (Teen) - Total Soil
Ridgway Training Range, Pennsylvania Table 9-26

Scenario Timeframe: Future Receptor Population: On-Site Visitor Receptor Age: Adult

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
	<u>-</u>			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	1	;	ı	TO	9.0	0.2	ı	8.0
			Copper	i	;	;	;	15	0.008	0.0003	ı	0.009
			Chemical Total	:	:	:	:		9.0	0.2		8.0
		Exposure Point Total					:					8.0
	Exposure Medium Total	ļi.										0.8
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	;	;	;	ı	1	ı	ı	ı
			Copper	:		:	:	-	-	-	1	1
			Chemical Total	-	-	-			-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	-					:					
Medium Total							:					0.8
Notes:					4	Receptor Risk Total	-			Recepto	Receptor Hazard Index (HI)	0.8

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Trespasser (Teen) - Total Soil
Ridgway Training Range, Pennsylvania **Table 9-27**

Scenario Timeframe: Future Receptor Population: On-Site Trespasser Receptor Age: Teen

				Thresholds:	Chemical-specific ,	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	θ,	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	ı	1	10	0.3	0.3	ı	9.0
			Copper	1	:	ı	1	15	0.005	0.0005	ı	0.005
			Chemical Total		-	:			0.4	0.3	-	9.0
		Exposure Point Total					-					9.0
	Exposure Medium Total	P					-					9.0
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	1	1		1	1	ı	1
			Copper	1		1	-	-	-	-	ı	1
			Chemical Total	-	-		-		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	-										
Medium Total							:					9.0
Notes:					*	Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	9.0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-28
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Commerical/ Industrial Worker - Total Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Commerical/ Industrial Worker Scenario Timeframe: Future Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	€	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	i	1	T0	7.0	0.4	ı	-
			Copper	1	:	;	1	ō	0.01	0.0008	ı	0.01
			Chemical Total	:	:	:	:		2.0	0.4		,
		Exposure Point Total					:					1
	Exposure Medium Total	al										1
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	;	i	1	ı	ı	1	ı	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total	-	-	-	-		-	-	-	
		Exposure Point Total										
	Exposure Medium Total	al										
Medium Total												7
Notes:						Receptor Risk Total				Receptor	Receptor Hazard Index (HI)	1

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-29
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure

Future On-Site Utility Worker - Total Soil Ridgway Training Range, Pennsylvania

> Scenario Timeframe: Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	1	;	ı	TO	0.5	0.08	1	9.0
			Copper	1	1	;	ı	5	0.007	0.0002	1	0.007
			Chemical Total	:	:	:	:		0.5	80'0		9.0
		Exposure Point Total					:					9.0
	Exposure Medium Total	11					-					9.0
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	;	;	;	ı	1	1	1	ı
			Copper	:		:	:	-	-	-	-	1
			Chemical Total	-	-	-			-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	=					:					
Medium Total							:					9.0
Notes:					4	Receptor Risk Total	-			Recepto	Receptor Hazard Index (HI)	9.0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Reasonable Maximum Exposure
Future On-Site Construction Worker - Total Soil
Ridgway Training Range, Pennsylvania Table 9-30

Receptor Population: On-Site Construction Worker Scenario Timeframe: Future Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	trive (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	;	1	TO	2	0.3	ı	2
			Copper	1	:	;	1	ō	0.02	0.0007	ı	0.02
			Chemical Total		-				2	0.3	-	2
		Exposure Point Total					:					2
	Exposure Medium Total	al										2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	;	;	1	ı	1	1	ı	1
			Copper	-		:	:	-	-	-	-	1
			Chemical Total	-	-		-		-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	al										
Medium Total												2
Notes:						Receptor Risk Total				Receptor	Receptor Hazard Index (HI)	2

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

0.02

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

Table 9-31
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
Basenable Maximum Evancine

Reasonable Maximum Exposure Future On-Site Resident (Child) - Total Soil Ridgway Training Range, Pennsylvania

> Soenario Timeframe: Future Receptor Population: On-Site Resident Receptor Age: Child

				Thresholds.	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ $>$ 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	<u>-</u>			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	;	;	;	1	10	30	2	ı	35
			Copper	;	;	;	1	В	0.4	0.01	ı	0.4
			Chemical Total		-				30	2	-	35
		Exposure Point Total					:					35
	Exposure Medium Total	P										35
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	ı	1	ŀ	1		ı	1	ı	ı
			Copper	-		:		_	-	1	ı	ı
			Chemical Total	-	-		-		-	-	-	
		Exposure Point Total										
	Exposure Medium Total	-										
Medium Total												35
Notes:					Ľ	Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	35

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-32
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Soil Pile)
December Maximum Forcers

Reasonable Maximum Exposure Future On-Site Resident (Adult) - Total Soil Ridgway Training Range, Pennsylvania

Scenario Timeframe: Future Receptor Population: On-Site Resident Receptor Age: Adult

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Sumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	t (1)	
	<u>-</u>			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Total Soil	Total Soil										
			Metals (Total)									
			Antimony	1	:	;	;	TO	3	0.8	1	4
			Copper	-		:	-	GI	0.04	0.002	-	0.04
			Chemical Total		-				3	0.8	-	4
		Exposure Point Total					:					4
	Exposure Medium Total	-										4
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	1	1	;	ŀ		ı	ı	ı	1
			Copper	-		:	:	-	_	-	-	-
			Chemical Total	-	-		-		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	-					:					
Medium Total							:					4
Notes:					יצ	Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	4

0.04

Total Gastrointestinal (GI) HI across All Media =

Total Other (OT) HI across All Media =

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 33

Receptor Population: On-Site Visitor Scenario Timeframe: Current/Future Child Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds.	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	8E-08	2E-08	;	1E-07	WH	9:0	0.1	ı	0.7
			Chemical Total	8E-08	2E-08		1E-07		9.0	0.1		0.7
		Exposure Point Total					1E-07					0.7
	Exposure Medium Total	le					1E-07					0.7
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	:		:		-	-	_	1	-
			Chemical Total	-		:	:		-	-		
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							1E-07					0.7
Notes:					ď	Receptor Risk Total	1E-07			Recepto	Receptor Hazard Index (HI)	0.7

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 934

Receptor Population: On-Site Visitor Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds:	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	trive (1E-04)	Thresholds:	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Co	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	3E-08	1E-08	;	4E-08	WH	0.05	0.02	ı	0.08
			Chemical Total	3E-08	1E-08	:	4E-08		0.05	0.02		0.08
		Exposure Point Total					4E-08					80.0
	Exposure Medium Total	Įŧ.					4E-08					0.08
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	-		-	-	-	-	-	1	1
			Chemical Total	-		-	-		-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	le le										
Medium Total							4E-08					0.08
Notes:					4	Receptor Risk Total	4E-08			Receptor	Receptor Hazard Index (HI)	80:0

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 35
Summary of Chemical Cancer Risks for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future	Current/Future
Receptor Population: On-Site Visitor	On-Site Visitor
Recentor Age.	Lifetime

				Thresholds:	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	ımulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1E-07	3E-08	;	1E-07	ı	1	1	ı	1
			Chemical Total	1E-07	3E-08	-	1E-07		-	-	-	-
		Exposure Point Total					1E-07					
	Exposure Medium Total	Įŧ.					1E-07					
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	-		:	-	-	-	1	_	-
			Chemical Total	:		:	:		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							1E-07					-
Notes:					ď	Receptor Risk Total	1E-07			Receptor	Receptor Hazard Index (HI)	

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 36
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure

Current/Future On-Site Trespasser (Teen) - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Timeframe: Current/Future Receptor Population: On-Site Trespasser Receptor Age: Teen

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumul.	ative (1E-04)	Thresholds.	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	ì			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	8E-09	60-36	1	2E-08	WH	0.03	0.04	ı	0.07
			Chemical Total	8E-09	60-36		2E-08		0.03	0.04	-	0.07
		Exposure Point Total					2E-08					0.07
	Exposure Medium Total	al					2E-08					0.07
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglyoerin	:			-	-	1	-	-	-
			Chemical Total	-			:			-		
		Exposure Point Total					-					-
	Exposure Medium Total	al					:					
Medium Total							2E-08					0.07
Notes:					ď	Receptor Risk Total	II 2E-08			Receptor	Receptor Hazard Index (HI)	0.07

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9.37
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumul.	ative (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	mulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	4E-08	3E-08	:	7E-08	WH	90:0	0.05	ı	0.1
			Chemical Total	4E-08	3E-08	:	7E-08		90'0	0.05		0.1
		Exposure Point Total					7E-08					0.1
	Exposure Medium Total	Įŧ.					7E-08					0.1
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-	:	:		-	-	-	-	-
			Chemical Total						-	-	-	
		Exposure Point Total					-					-
	Exposure Medium Total	le le					:					
Medium Total							7E-08					0.1
Notes:					Ľ	Receptor Risk Total	II 7E-08			Receptor	Receptor Hazard Index (HI)	0.1

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 38

Receptor Population: On-Site Utility Worker Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumul	lative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1E-09	2E-10	1	1E-09	WH	0.05	0.01	ı	90:0
			Chemical Total	1E-09	2E-10	:	1E-09		0.05	0.01		90.0
		Exposure Point Total					1E-09					90.0
	Exposure Medium Total	Į.					1E-09					90.0
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)					_				
			Nitroglycerin			:	:	-	-	-	-	-
			Chemical Total		-	-	-		-	-	-	
		Exposure Point Total										
	Exposure Medium Total	le le										
Medium Total							1E-09					90.0
Notes:					عد	Receptor Risk Total	al 1E-09			Recepto	Receptor Hazard Index (HI)	90'0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 39
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Passonable Maximum Evaceure

Reasonable Maximum Exposure Current/Future On-Site Construction Worker - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Tineframe: Current/Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	4E-09	1E-09	:	5E-09	WH	0.1	0.05	ı	0.2
			Chemical Total	4E-09	1E-09	:	5E-09		0.1	0.05		0.2
		Exposure Point Total					5E-09					0.2
	Exposure Medium Total	al					5E-09					0.2
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin			:	;	-	-	-	1	1
			Chemical Total	-	-		-		-	-	-	-
		Exposure Point Total					-					-
	Exposure Medium Total	al					:					
Medium Total							5E-09					0.2
Notes:					ď	Receptor Risk Total	al 5E-09			Receptor	Receptor Hazard Index (HI)	0.2

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 40

Receptor Population: On-Site Resident Receptor Age: Child Scenario Timeframe: Current/Future Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ive (1E-04)	Thresholds.	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	ımulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	4E-07	9E-08	:	5E-07	HM	3	0.6	-	3
			Chemical Total	4E-07	80 - 36		2E-07		3	9.0	-	3
		Exposure Point Total					2E-07					3
	Exposure Medium Total	le.					5E-07					3
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	-	1		1	1	1	1	ı	1
			Chemical Total	:	:	:	:					ı
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							2E-07					3
Notes:					-	Receptor Risk Total	5E-07			Receptor	Receptor Hazard Index (HI)	3
(1) CR and HQs are ro	unded to one non-zero d	figit; cumulative totals ma	(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.	unding.		-		•			•	
									Total Hem	Total Hematological (HM) HI across All Media =	าcross All Media=	3
								_				

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 941

Receptor Population: On-Site Resident Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Co	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1E-07	5E-08	-	2E-07	HM	0.3	0.1	-	0.4
			Chemical Total	1E-07	5E-08	:	2E-07		0.3	0.1	-	0.4
		Exposure Point Total					2E-07					0.4
	Exposure Medium Total	Įŧ.					2E-07					0.4
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	;		:	-	-	-	ı	1	1
			Chemical Total	:		:	:		-		-	
		Exposure Point Total					-					-
	Exposure Medium Total	le.					:					
Medium Total							2E-07					0.4
Notes:					ď	Receptor Risk Total	1 2E-07			Receptor	Receptor Hazard Index (HI)	0.4

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 42
Summary of Chemical Cancer Risks for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Resident Receptor Age: Lifetime

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumula	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C.	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	5E-07	1E-07	;	7E-07	ı	1	ı	1	ı
			Chemical Total	5E-07	1E-07	:	7E-07					
		Exposure Point Total					7E-07					
	Exposure Medium Total	1					7E-07					
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		-		-	-	-	-	-
			Chemical Total		-		-		-	-	-	-
		Exposure Point Total										-
	Exposure Medium Total	1					:					
Medium Total							7E-07					
Notes:					œ	Receptor Risk Total	11 7E-07			Receptor	Receptor Hazard Index (HI)	

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 43

Receptor Population: On-Site Visitor Receptor Age: Child Scenario Timeframe: Current/Future Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(i)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-09	4E-10	;	2E-09	WH	0.01	0.003	ı	0.02
			Metals (Total)									
			Antimony	1	:	;	;	10	0.005	0.0007	ı	0.005
			Copper	1		;	·	ō	0.001	0.00003	ı	0.001
			Chemical Total	2E-09	4E-10	:	2E-09		0.02	0.004		0.02
		Exposure Point Total	-				2E-09					0.02
	Exposure Medium Total	tal					2E-09					0.02
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglyoerin	1	1	1	;	1	1	ı	ı	ı
			Metals (Total)									
			Antimony	1	1	1	ŀ		1	ı	ı	ı
			Copper	-	:	-	:	-	-	_	1	1
			Chemical Total	:	:	:	:					
		Exposure Point Total					:					1
	Exposure Medium Total	tal					:					
Medium Total							2E-09					0.02
Notes:						Receptor Risk Total	2E-09			Recepto	Receptor Hazard Index (HI)	0.02

Notes:

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 44

Receptor Population: On-Site Visitor Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds:	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	1E-06) and Cumulat	ive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	mulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(-	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	6E-10	2E-10		8E-10	WH	0.001	0.0005	1	0.002
			Metals (Total)									
			Antimony	:	1	1	;	ТО	0.0004	0.0001	ı	9000:0
			Copper	-			:	GI	0.0001	0.000004	-	0.0001
			Chemical Total	6E-10	2E-10	:	8E-10		0.002	90000		0.002
		Exposure Point Total					8E-10					0.002
	Exposure Medium Total	Įt.					8E-10					0.002
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1	1	1	1	1	ı	1	1	ı
			Metals (Total)									
			Antimony	1	1	1	1	1	ı	1	ı	ı
			Copper	-			-	-	1	-	1	ı
			Chemical Total			:	:		-	-		ı
		Exposure Point Total										ı
	Exposure Medium Total	II.					:					-
Medium Total							8E-10					0.002
Notes:					~	Receptor Risk Total	8E-10			Receptor	Receptor Hazard Index (HI)	0.002

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 45 Summary of Chemical Cancer Risks for COPCs (Background) Reasonable Maximum Exposure Current/Future On-Site Visitor (Lifetime) - Surface Soil Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Visitor Scenario Timeframe: Current/Future Lifetime Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-09	7E-10	;	3E-09	ı	1	ı	1	ı
			Metals (Total)									
			Antimony	;	;	;	ı		ı	ı	1	ı
			Copper	;	;	;	ı	ı	ı	ı	ı	ı
			Chemical Total	2E-09	7E-10	:	3E-09		-	-		
		Exposure Point Total	_				3E-09					
	Exposure Medium Total	-					3E-09					ı
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	;	:	;	ŀ	ı	ı	ı	1	ı
			Metals (Total)									
			Antimony	;	;	;	ı	ı	ı	ı	1	ı
			Copper	;	;	;	ŀ		ı	ı	1	ı
			Chemical Total	:		:	:			-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	=					:					ı
Medium Total							3E-09					1
Notes:						Recentor Risk Total	3F-09			Recentor	Recentor Hazard Index (HI)	

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 46
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future
Receptor Population: On-Site Trespasser
Receptor Age: Teen

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Co	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-10	2E-10	;	4E-10	МН	0.0007	0.0008	ı	0.001
			Metals (Total)									
			Antimony	:	;	;	:	TO	0.0003	0.0002	1	0.0004
			Copper	-	-	:		GI	0.00006	0.000007	-	0.00006
			Chemical Total	2E-10	2E-10		4E-10		0.001	0.001	-	0.002
		Exposure Point Total					4E-10					0.002
	Exposure Medium Total	le le					4E-10					0.002
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	ı	:	;	;		1	ı	ı	ı
			Metals (Total)									
			Antimony	ı	:	;	1	1	ı	ı	ı	1
			Copper	1	;	;	;		1	ı	ı	1
			Chemical Total		:	:	:		-	-	-	
		Exposure Point Total					-					
	Exposure Medium Total	al					-					
Medium Total							4E-10					0.002
Notes:						Receptor Risk Total	4E-10			Receptor	Receptor Hazard Index (HI)	0.002

Notes:

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 47
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Commerical/ Industrial Worker Receptor Age: Adult

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ $>$ 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	9E-10	7E-10	;	2E-09	MH	0.001	0.001	1	0.003
			Metals (Total)									
			Antimony	;	;	;	;	ТО	0.0005	0.0003	1	0.0008
			Copper		-	-	:	GI	0.0001	0.00001	-	0.0001
			Chemical Total	9E-10	7E-10	-	2E-09		0.002	0.002	-	0.004
		Exposure Point Total					2E-09					0.004
	Exposure Medium Total	le le					2E-09					0.004
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	;	;	;	i	ı	ı	ı	1	ı
			Metals (Total)									
			Antimony	:	;	;	;	1	ı	ı	1	ı
			Copper	;	;	;	;		ı	ı	1	ı
			Chemical Total	-		:	:		-	-	-	
		Exposure Point Total										
	Exposure Medium Total	le.					:					
Medium Total							2E-09					0.004
Notes:						Receptor Risk Total	2E-09			Receptor	Receptor Hazard Index (HI)	0.004

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 48

Scenario Timeframe: Current/Future Receptor Population: On-Site Utility Worker Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinog	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	3E-11	5E-12	:	3E-11	WH	0.001	0.0002	1	0.001
			Metals (Total)									
			Antimony	1	;	1	·	TO	0.0004	0.00005	ı	0.0004
			Copper	1	1	,	ŀ	Б	0.0000	0.000002	ı	600000
			Chemical Total	3E-11	5E-12		3E-11		0.002	0.0003		0.002
		Exposure Point Total					3E-11					0.002
	Exposure Medium Total	- F					3E-11					0.002
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin		:	:	ŀ	1	ı	1	ı	ı
			Metals (Total)									
			Antimony	1	ı	1	ŀ		ı	ı	ı	1
			Copper	;	:	:	;		ı	ı	ı	ı
			Chemical Total		:	:			-			
		Exposure Point Total										
	Exposure Medium Total	le.					:					ı
Medium Total							3E-11					0.002
Notes:						Receptor Risk Total	3E-11			Recepto	Receptor Hazard Index (HI)	0.002

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 49
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

CurrentFuture O

Receptor Population: On-Site Construction Worker

Adult

Receptor Age:

Scenario Timeframe: Current/Future

				Thresholds	3: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinog	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ί(ι)	
		_		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	8E-11	2E-11	;	1E-10	WH	0.003	0.001	ı	0.004
			Metals (Total)									
			Antimony	;	;	:	;	TO	0.001	0.0002	ı	0.001
			Copper		;	;	;	В	0.0003	0.000008	ı	0.0003
			Chemical Total	8E-11	2E-11	:	1E-10		0.005	0.001		9000
		Exposure Point Total					1E-10					9000
	Exposure Medium Total	le.					1E-10					0.006
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	;	;	;	;		ı	1	ı	1
			Metals (Total)									
			Antimony	1	1	;	1		ı	ı	ı	1
			Copper	;	;	;	;		ı	ı	ı	1
			Chemical Total	-	:				-	-	-	
		Exposure Point Total					:					-
	Exposure Medium Total	le.					:					
Medium Total							1E-10					9000
Notes:						Receptor Risk Total	1E-10			Recepto	Receptor Hazard Index (HI)	9000

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background) Table 9 50

Reasonable Maximum Exposure Current/Future On-Site Resident (Child) - Surface Soil Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Resident Scenario Timeframe: Current/Future

Child

Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	_		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	60- <u>3</u> 6	2E-09	;	1E-08	WH	90:0	0.01	ı	0.07
			Metals (Total)									
			Antimony	:	1	;	:	ТО	0.02	0.003	ı	0.03
			Copper		-	-		GI	0.005	0.0001	-	0.005
			Chemical Total	60-36	2E-09		1E-08		60'0	0.02		0.1
		Exposure Point Total					1E-08					0.1
	Exposure Medium Total	le le					1E-08					0.1
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	;	;	;	;	ı	ı	1	ı	ı
			Metals (Total)									
			Antimony	1	1	1	1		ı	ı	ı	ı
			Copper		-	-	-	-	1	-	-	1
			Chemical Total			:	:		1	-	-	1
		Exposure Point Total					:					1
	Exposure Medium Total	al					:					
Medium Total							1E-08					0.1
Notes:						Receptor Risk Total	1E-08			Recepto	Receptor Hazard Index (HI)	0.1

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 951

Receptor Population: On-Site Resident Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	s: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Jumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	t (1)	
		_		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	3E-09	1E-09	;	4E-09	WH	900:0	0.002	1	0.008
			Metals (Total)					-				
			Antimony	;	:	;	ı	T0	0.002	9000.0	1	0.003
			Copper	:	-	-	:	GI	0.0005	0.00002	-	0.0005
			Chemical Total	3E-09	1E-09		4E-09		0.008	0.003	-	0.01
		Exposure Point Total					4E-09					0.01
	Exposure Medium Total	le.					4E-09					0.01
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)					_				
			Nitroglycerin	;	:	;	ŀ	1	1	ı	ı	ı
			Metals (Total)					-				
			Antimony	;	1	1	ı		ı	ı	ı	ı
			Copper	:	:	-	:	-	-	1	-	1
			Chemical Total	:		:	:		-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	le.					:					-
Medium Total							4E-09					0.01
Notes:						Receptor Risk Total	4E-09			Receptor	Receptor Hazard Index (HI)	0.01

Notes:

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 52
Summary of Chemical Cancer Risks for COPCs (Background)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Soanario Timeframe: Current/Euture
Receptor Population: On-Site Resident
Receptor Age: Lifetime

Medium Exposure Medium Expos Soil Surface Soil Surf			I Dresholds.	Cuemical-specific (Thesholds: Chemical-specific (TE-00) and Cumulative (TE-04)	ive (1E-04)	Ihresholds	Chemical-specific,	Inresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	imulative (HQ > 1)	
Surface Soil	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
Surface Soil			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
	Surface Soil										
		Semi-volatile Organic Compounds (SVOCs)									
		Nitroglycerin	1E-08	3E-09	1	1E-08	ı	1	1	1	ı
		Metals (Total)									
		Antimony	1	1	1	1	ı	1	1	1	ı
		Copper	:	:	-	:	-	-	1	-	1
		Chemical Total	1E-08	3E-09		1E-08		-	-	-	-
Exposure	Exposure Point Total					1E-08					-
Exposure Medium Total						1E-08					
Outdoor Air Particu	Particulates above Site										
		Semi-volatile Organic Compounds (SVOCs)									
		Nitroglyoerin	ı	;	1	;	ı	1	1	1	1
		Metals (Total)									
		Antimony	1	;	1	1	ı	ı	ı	ı	ı
	-	Copper	:	-		:	-	_	-	-	1
		Chemical Total	:	:		:		-		-	ı
Exposure	Exposure Point Total					:					
Exposure Medium Total											-
Medium Total						1E-08					1
Notes:				œ	Receptor Risk Total	1E-08			Receptor	Receptor Hazard Index (HI)	٠

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Attachment 5

Uncertainty Assessment Calculations

This Page Intentionally Left Blank

1

Table 7-1
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Visitor Receptor Age: Child

					EPC		Cance	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	orlay.		Intake/Exposure Concentration	CSF/Unit Risk	sk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
						Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion												
				Metals (Total)											
				Antimony	6.57E+01 mg/kg	kg 1.54E-05	5 mg/kg-day	1		,	1.80E-04	mg/kg-day	4.00E-04	mg/kg-day	0.5
				Copper	1.05E+03 mg/kg	kg 2.47E-04	t mg/kg-day			_	2.87E-03	mg/kg-day	3.25E-02	mg/kg-day	0.09
			Exp. Route Total							-					0.5
			Dermal												
				Metals (Total)											
				Antimony	6.57E+01 mg/kg	kg 3.66E-07	7 mg/kg-day	1		,	4.27E-06	mg/kg-day	6.00E-05	mg/kg-day	0.07
				Copper	1.05E+03 mg/kg	kg 5.84E-06	3 mg/kg-day	:	-	-	6.82E-05	mg/kg-day	3.25E-02	mg/kg-day	0.002
			Exp. Route Total							-					0.07
		Exp. Point Total								-					9.0
	Exp. Medium Total									-					9:0
	Outdoor Air	Particulates above Site	Inhalation												
				Metals (Total)											
				Antimony	5.19E-05 µg/m³	m³ 7.63E-08	3 µg/m³	1		-	8.87E-07	mg/m³	,		1
				Copper	8.28E-04 µg/m³	m³ 1.22E-06	s µg/m³		,	-	1.42E-05	m/g/m³	1		-
			Exp. Route Total							-					-
		Exp. Point Total								-					-
	Exp. Medium Total									-					-
Medium Total															9.0
Notes:							Total	Total of Receptor Risks Across All Media	ss All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	9.0

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-2
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	lev		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	SEC	Hazard
					value	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	4.82E-06	mg/kg-day			1	1.69E-05	mg/kg-day	4.00E-04	mg/kg-day	0.04
				Copper	1.05E+03	mg/kg	7.70E-05	mg/kg-day		٠	-	2.70E-04	mg/kg-day	3.25E-02	mg/kg-day	0.008
			Exp. Route Total								-					0.02
			Dermal													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	2.04E-07	mg/kg-day			1	7.10E-07	mg/kg-day	6.00E-05	mg/kg-day	0.01
				Copper	1.05E+03	mg/kg	3.25E-06	mg/kg-day		٠	-	1.13E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0003
			Exp. Route Total								-					0.01
		Exp. Point Total									-					90:0
	Exp. Medium Total										_					90.0
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	5.19E-05	mg/m³	2.54E-07	mg/m³			1	8.87E-07	±m/gri			1
				Copper	8.28E-04	ng/m₃	4.05E-06	_s m/grl			-	1.42E-05	µg/m³	ı		-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					90:0
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media	-		Total of R	Total of Receptor Hazards Across All Media	cross All Media	90'0

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-3
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current Receptor Population: On-Site Trespasser Receptor Age: Teen

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	Concentration	CSF/Unit Risk	ıit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	SEC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	1.40E-06	mg/kg-day		ı	1	9.79E-06	mg/kg-day	4.00E-04	mg/kg-day	0.02
				Copper	1.05E+03	mg/kg	2.23E-05	mg/kg-day	1		-	1.56E-04	mg/kg-day	3.25E-02	mg/kg-day	0.005
			Exp. Route Total								-					0.03
			Dermal													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	1.58E-07	mg/kg-day	ı	ı	1	1.10E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	1.05E+03	mg/kg	2.52E-06	mg/kg-day	-	-	-	1.76E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0005
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.02
	Exp. Medium Total										-					0.05
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	5.19E-05	hg/m³	8.14E-08	m/grl			1	5.71E-07	µg/m³	1		1
				Copper	8.28E-04	hg/m³	1.30E-06	°m/gri	1	1	-	9.11E-06	mg/m³			-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.05
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.02

Notes: (1) OR and HOs are rounded to one non-zero digit: cumulative totals may be slightly higher or tower depending on degree of rounding.

Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Commerical/Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Commerical/ Industrial Worker Receptor Age: Adult

					EPC		Cance	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	CSF/Unit Risk	Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					value	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion												
				Metals (Total)											
				Antimony	6.57E+01 mg/kg	7.23E-06	mg/kg-day	1	,	1	2.02E-05	mg/kg-day	4.00E-04	mg/kg-day	0.05
				Copper	1.05E+03 mg/kg	1.15E-04	mg/kg-day	-	-	-	3.23E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total							-					90:0
			Dermal												
				Metals (Total)											
				Antimony	6.57E+01 mg/kg	6.12E-07	mg/kg-day	ı	,	ı	1.71E-06	mg/kg-day	6.00E-05	mg/kg-day	0.03
				Copper	1.05E+03 mg/kg	9.78E-06	mg/kg-day	-	-	-	2.74E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0008
			Exp. Route Total							-					0.03
		Exp. Point Total								-					60'0
	Exp. Medium Total									-					60'0
	Outdoor Air	Particulates above Site	e Inhalation												
				Metals (Total)											
				Antimony	5.19E-05 µg/m³	3.05E-06	m/grl	1	,	1	8.51E-06	m/6rl			1
				Copper	8.28E-04 µg/m³	3 4.86E-05	°m/grl	1	,	-	1.36E-04	mg/m³	ı	:	-
			Exp. Route Total							-					-
		Exp. Point Total								-					-
	Exp. Medium Total									-					-
Medium Total										-					60:0
Notes:							Total	Total of Receptor Risks Across All Media	ross All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	60'0

Notes: (1) CR and HOs are rounded to one non-zero dgit, cumulative totals may be slightly higher or tower depending on degree of rounding.

Table 7-5
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenaro Timeframe: Current Receptor Population: On-Site Utility Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velus		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC StC	Hazard
					value	Onnes	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
lioS	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	2.12E-07	mg/kg-day	ı		ı	1.48E-05	mg/kg-day	4.00E-04	mg/kg-day	0.04
				Copper	1.05E+03	mg/kg	3.39E-06	mg/kg-day	1	1	-	2.37E-04	mg/kg-day	3.25E-02	mg/kg-day	0.007
			Exp. Route Total								-					0.04
			Dermal													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	4.53E-09	mg/kg-day	1	1	ı	3.17E-07	mg/kg-day	6.00E-05	mg/kg-day	0.005
				Copper	1.05E+03	mg/kg	7.24E-08	mg/kg-day	1	1	-	5.07E-06	mg/kg-day	3.25E-02	mg/kg-day	0.0002
			Exp. Route Total								-					0.005
		Exp. Point Total									-					0.05
	Exp. Medium Total										-					0.05
	Outdoor Air	Particulates above Site	Inhalation													
				Metals (Total)												
				Antimony	5.19E-05	ng/m₃	1.35E-08	±m/6π	,	1	ı	9.49E-07	m/6rl	ı		1
				Copper	8.28E-04	µg/m₃	2.16E-07	µg/m³	1	_	1	1.52E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					0.05
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.05

Notes: (1) CR and HOs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-6
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Construction Worker Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration	oncentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC.	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	6.37E-07	mg/kg-day	1	ı	1	4.45E-05	mg/kg-day	4.00E-04	mg/kg-day	0.1
				Copper	1.05E+03	mg/kg	1.02E-05	mg/kg-day		1	-	7.11E-04	mg/kg-day	3.25E-02	mg/kg-day	0.02
			Exp. Route Total								-					0.1
			Dermal													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	2.04E-08	mg/kg-day			1	1.43E-06	mg/kg-day	6.00E-05	mg/kg-day	0.02
				Copper	1.05E+03	mg/kg	3.26E-07	mg/kg-day		-	-	2.28E-05	mg/kg-day	3.25E-02	mg/kg-day	0.0007
			Exp. Route Total								-					0.02
		Exp. Point Total									-					0.2
	Exp. Medium Total										-					0.2
	Outdoor Air	Particulates above Site	Inhalation												_	
				Metals (Total)												
				Antimony	5.19E-05	m/g/m³	4.06E-08	m/g/m³	1	ı	1	2.84E-06	m/6rl	ı	ı	1
				Copper	8.28E-04	µg/m³	6.49E-07	µg/m₃	-	-	-	4.54E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					1
Medium Total											1					0.2
Notes:								Total of	Fotal of Receptor Risks Across All Media	Cross All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.2

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-7
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe:	Current
Receptor Population:	On-Site Resident
Receptor Age:	Child

					EPC			Cancer	Cancer Risk Calculations				Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue		Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SFC SFC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	7.23E-05	mg/kg-day			ı	8.41E-04	mg/kg-day	4.00E-04	mg/kg-day	2
				Copper	1.05E+03	mg/kg	1.15E-03	mg/kg-day			1	1.34E-02	mg/kg-day	3.25E-02	mg/kg-day	0.4
			Exp. Route Total					1			-					3
			Dermal													
				Metals (Total)												
				Antimony	6.57E+01	mg/kg	1.71E-06	mg/kg-day	,	,	ı	1.99E-05	mg/kg-day	6.00E-05	mg/kg-day	0.3
				Copper	1.05E+03	mg/kg	2.73E-05	mg/kg-day	-		-	3.18E-04	mg/kg-day	3.25E-02	mg/kg-day	0.01
			Exp. Route Total								-					0.3
		Exp. Point Total									-					3
	Exp. Medium Total										-					3
	Outdoor Air	Particulates above Site	e Inhalation													
				Metals (Total)												
				Antimony	5.19E-05	hg/m³	3.55E-07	rm/gri	1	,	ı	4.14E-06	µg/m³	ı	ı	ı
				Copper	8.28E-04	µg/m³	5.67E-06	µg/m₃	-	_	1	6.62E-05	µg/m³	-	-	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											-					3
Notes:								Total of	Total of Receptor Risks Across All Media	Across All Media			Total of R	Total of Receptor Hazards Across All Media	cross All Media	3

Notes: (1) CR and HOs are rounded to one non-zero dgit, cumulative totals may be slightly higher or tower depending on degree of rounding.

Table 7-8
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current Receptor Population: On-Site Resident Receptor Age: Adult

					EPC	-	Ca	Cancer Risk Calculations	Suc			Non-Cano	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern			Intake/Exposure Concentration		CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SIC SIC	Hazard
					value	Va	Value Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion												
				Metals (Total)											
				Antimony	6.57E+01 mg	mg/kg 2.25	2.25E-05 mg/kg-day	1	ı	1	7.88E-05	mg/kg-day	4.00E-04	mg/kg-day	0.2
				Copper	1.05E+03 mg	mg/kg 3.59	3.59E-04 mg/kg-day		1	_	1.26E-03	mg/kg-day	3.25E-02	mg/kg-day	0.04
			Exp. Route Total							-					0.2
			Dermal												
				Metals (Total)											
				Antimony	6.57E+01 mg	mg/kg 9.53	9.53E-07 mg/kg-day	1	ı	1	3.32E-06	mg/kg-day	6.00E-05	mg/kg-day	90:0
				Copper	1.05E+03 mg	mg/kg 1.52	1.52E-05 mg/kg-day		-	_	5.31E-05	mg/kg-day	3.25E-02	mg/kg-day	0.002
			Exp. Route Total							-					90:0
		Exp. Point Total								-					0.3
	Exp. Medium Total									-					0.3
	Outdoor Air	Particulates above Site	Inhalation												
				Metals (Total)											
				Antimony	5.19E-05 µg/	µg/m³ 1.18	1.18E-06 µg/m³	1	ı	ı	4.14E-06	µg/m₃			1
				Copper	8.28E-04 µg/	µg/m³ 1.89	1.89E-05 µg/m³	1	1	_	6.62E-05	µg/m³			-
			Exp. Route Total							-					-
		Exp. Point Total								-					-
	Exp. Medium Total									-					-
Medium Total										-					0.3
Notes:							Tot	al of Receptor Risk	Total of Receptor Risks Across All Media			Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.3

Notes: (1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7-33
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Fulure Receptor Population: On-Site Visitor Receptor Age: Child

					Ode			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Weline	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SfC SfC	Hazard
					value	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	1.98E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-09	2.31E-06	mg/kg-day	1.00E-04	mg/kg-day	0.02
			Exp. Route Total								3E-09					0.02
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)		:					:		,			
				Nitroglycerin	8.44E-01	mg/kg	4.70E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	8E-10	5.49E-07	mg/kg-day	1.00E-04	mg/kg-day	0.005
			Exp. Route Total								8E-10					0.005
		Exp. Point Total									4E-09					0.03
	Exp. Medium Total										4E-09					0.03
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	mg/m³	9.80E-10	hg/m³		ı	-	1.14E-08	ng/m₃	ı	ı	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											4E-09					0.03
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media	4E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.03

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 34
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe. Current/Future Receptor Population: On-Site Visitor Receptor Age: Adult

					EPC			Cancer	Cancer Risk Calculations	s			Non-Canc	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Melus	11:14:	Intake/Exposure Concentration	Soncentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	SEC.	Hazard
					Aane	SILO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	6.19E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-09	2.17E-07	mg/kg-day	1.00E-04	mg/kg-day	0.002
			Exp. Route Total								1E-09					0.002
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)		:										
				Nitroglycerin	8.44E-01	mg/kg	2.62E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-10	9.12E-08	mg/kg-day	1.00E-04	mg/kg-day	0.0009
			Exp. Route Total								5E-10					600000
		Exp. Point Total									2E-09					0.003
	Exp. Medium Total										2E-09					0.003
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	hg/m³	3.26E-09	m/grl		ı	-	1.14E-08	ng/m₃	ı		-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											2E-09					0.003
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media	2E-09		Total of R	Total of Receptor Hazards Across All Media	cross All Media	0.003

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 35
Calculation of Chemical Cancer Risks (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Visitor Receptor Age: Lifetime

					EPC	O		Cancel	Cancer Risk Calculations	ş			Non-Cance	Non-Cancer Hazard Calculations	ons	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	115.140	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	£	Hazard
					vaine	SIUO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	2.60E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-09	ı	ı	1		1
			Exp. Route Total								4E-09					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)		:					į					
				Nitroglycerin	8.44E-01	mg/kg	7.32E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-09		-		-	1
			Exp. Route Total								1E-09					-
		Exp. Point Total									6E-09					-
	Exp. Medium Total										6E-09					-
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	hg/m³	4.24E-09	m/g/m³	1	ı	-	ı	ı	1		-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											6E-09					
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	6E-09		Total of R	Total of Receptor Hazards Across All Media	cross All Media	

(1) GR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 36
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Trespasser Receptor Age: Teen

					EPC			Cancer	Cancer Risk Calculations				Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	oncentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC.	Hazard
					value	Sillo	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	1.80E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-10	1.26E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
			Exp. Route Total								3E-10					0.001
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)			L	-	L		F	Los		L	-	3
				Nitroglycerin	8.44E-01	mg/kg	2.03E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	3E-10	1.42E-07	mg/kg-day	1.00E-04	mg/kg-day	0.001
			Exp. Route Total								3E-10					0.001
		Exp. Point Total									7E-10					0.003
	Exp. Medium Total										7E-10					0.003
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	ng/m₃	1.05E-09	m/6rl	·		_	7.33E-09	rm/grl		,	-
			Exp. Route Total								1					1
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											7E-10					0.003
Notes:								Totalo	Receptor Risks	Total of Receptor Risks Across All Media	7E-10		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.003

(1) GR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 37
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

					EPC	,.		Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	tions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	ıit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD	RfD/RfC	Hazard
					Aaine	SIUO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	9.28E-08	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-09	2.60E-07	mg/kg-day	1.00E-04	mg/kg-day	0.003
			Exp. Route Total								2E-09					0.003
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	8 44E-01	wo(ka	7 875-08	veh-odev	1 79E.09	1//mo/ka-dav)	1E.00	2 20E-07	vehodom	1 00E-04	works.day	000
			Exp. Route Total			P		Care Bridge		(fam Bullett)	1E-09		for Sub-		fan Bub.	0.002
		Exp. Point Total									3E-09					0.005
	Exp. Medium Total										3E-09					0.005
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	hg/m³	3.91E-08	mg/m³	ı		1	1.09E-07	rm/grl		ı	1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											3E-09					0.005
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	3E-09		Total of R	Total of Receptor Hazards Across All Media	Across All Media	0.005

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 38
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Utility Worker Receptor Age: Adult

					CPC	2		Cance	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Melice	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					value	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	2.73E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-11	1.91E-07	mg/kg-day	1.00E-04	mg/kg-day	0.002
			Exp. Route Total								5E-11					0.002
			Dermal													
				Semi-volatile Organic Compounds (SVOCs) Nitroalvoerin	8.44E-01	ma/ka	5.82E-10	ma/ka-dav	1.72E-02	1/(ma/ka-dav)	15-11	4.08E-08	ma/ka-dav	1.00E-04	ma/ka-dav	0.0004
			Exp. Route Total			,					1E-11					0.0004
		Exp. Point Total									6E-11					0.002
	Exp. Medium Total										6E-11					0.002
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	µg/m₃	1.74E-10	µg/m³	-		_	1.22E-08	µg/m³	-	-	-
			Exp. Route Total								-					1
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											6E-11					0.002
Notes:								Totalo	Total of Receptor Risks Across All Media	Across All Media	6E-11		Total of Re	Total of Receptor Hazards Across All Media	Across All Media	0.002

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 39
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future Receptor Population: On-Site Construction Worker Receptor Age: Adult

					Ode		Ī	Cance	Cancer Risk Calculations	s		Ī	Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	on low	of in I	Intake/Exposure Concentration	Concentration	CSF/Unit Risk	it Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					value	Onits	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	8.18E-09	mg/kg-day	1.72E-02	1/(mg/kg-day)	1E-10	5.72E-07	mg/kg-day	1.00E-04	mg/kg-day	0.006
			Exp. Route Total								1E-10					900'0
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)	c L	- II	L		20 101	4 // // //	Ļ	700 L	1	100	1	000
				Nitroglycerin	0.44E-U	mg/kg	Z.0ZE-U9	mg/kg-day	1./2E-02	I/(mg/kg-day)	11 - 36	1.03E-U/	тд/кд-аау	1.00E-04	тд/кд-аау	0.002
			Exp. Route Total								5E-11					0.002
		Exp. Point Total									2E-10					0.008
	Exp. Medium Total										2E-10					0.008
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	ng/m₃	5.22E-10	m/6rl	٠	1	_	3.65E-08	µg/m³	ı	,	1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											2E-10					0.008
Notes:								Totalo	f Receptor Risks	Total of Receptor Risks Across All Media	2E-10		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.008

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 40
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timetrame: Current/Euture Receptor Population: On-Site Resident Receptor Age: Ohild

					EPC	0		Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	V-lus	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC	Hazard
					value	SILO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	9.28E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-08	1.08E-05	mg/kg-day	1.00E-04	mg/kg-day	0.1
			Exp. Route Total								2E-08					0.1
			Dermal													
				Semi-volatile Organic Compounds (SVOCs) Nitroglycerin	8.44E-01	ma/ka	2.19E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	4E-09	2.56E-06	ma/ka-dav	1.00E-04	ma/ka-dav	0.03
			Exp. Route Total								4E-09					0.03
		Exp. Point Total									2E-08					0.1
	Exp. Medium Total										2E-08					0.1
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	m/6rd	4.56E-09	hg/m³	·	ı	-	5.32E-08	ng/m₃		:	1
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											2E-08					0.1
Notes:								Total of	Receptor Risks.	Total of Receptor Risks Across All Media	2E-08		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	0.1

(1) GR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 41
Calculation of Chemical Cancer Risks and Non-Cancer Hazards (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adut) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Ourent/Future Receptor Population: On-Site Resident Receptor Age: Adult

					Ode			Cancer	Cancer Risk Calculations	s			Non-Cance	Non-Cancer Hazard Calculations	ions	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Volue	linite	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure Concentration	Concentration	RfD/RfC	StC.	Hazard
					vaiue vaiue	SILIO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	2.89E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	5E-09	1.01E-06	mg/kg-day	1.00E-04	mg/kg-day	0.01
			Exp. Route Total								5E-09					0.01
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	1.22E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-09	4.27E-07	mg/kg-day	1.00E-04	mg/kg-day	0.004
			Exp. Route Total								2E-09					0.004
		Exp. Point Total									7E-09					0.01
	Exp. Medium Total										7E-09					0.01
	Outdoor Air	Particulates above Site	Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	µg/m₃	1.52E-08	µg/m₃	-	1	-	5.32E-08	µg/m³		-	1
			Exp. Route Total								-					-
		Exp. Point Total									1					-
	Exp. Medium Total										-					-
Medium Total											7E-09					0.01
Notes:								Total of	Receptor Risks	Total of Receptor Risks Across All Media	7E-09		Total of R	Total of Receptor Hazards Across All Media	kcross All Media	0.01

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 7 42
Calculation of Chemical Cancer Risks (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe:	Current/Future
Receptor Population:	On-Site Resident
Recentor Age:	Lifetime

					EPC	ي		Cancer	Cancer Risk Calculations	SI			Non-Cance	Non-Cancer Hazard Calculations	suc	
Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of Potential Concern	Velue	11-14-	Intake/Exposure Concentration	Concentration	CSF/Ur	CSF/Unit Risk	Cancer	Intake/Exposure	Intake/Exposure Concentration	RfD/RfC	C	Hazard
					value	SILLO	Value	Units	Value	Units	Risk (1)	Value	Units	Value	Units	Quotient (1)
Soil	Surface Soil	Surface Soil	Ingestion													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	1.22E-06	mg/kg-day	1.72E-02	1/(mg/kg-day)	2E-08			1	,	-
			Exp. Route Total								2E-08					-
			Dermal													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	8.44E-01	mg/kg	3.42E-07	mg/kg-day	1.72E-02	1/(mg/kg-day)	6E-09	ı	ı	1	1	-
			Exp. Route Total								60-39					-
		Exp. Point Total									3E-08					-
	Exp. Medium Total										3E-08					-
	Outdoor Air	Particulates above Site	e Inhalation													
				Semi-volatile Organic Compounds (SVOCs)												
				Nitroglycerin	6.66E-07	mg/m³	1.98E-08	mg/m³		1	-	ı	ı	ı	ı	-
			Exp. Route Total								-					-
		Exp. Point Total									-					-
	Exp. Medium Total										-					-
Medium Total											3E-08					
Notes:								Totalo	f Receptor Risks.	Total of Receptor Risks Across All Media	3E-08		Total of Re	Total of Receptor Hazards Across All Media	cross All Media	

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania

Receptor Population: On-Site Visitor Receptor Age: Child Scenario Timeframe: Current

Receptor Age:

Medium Exposure Medium Exposure Medium Control Medium Control Medium Exposure Medium Total Control Medium Exposure Medium Total Mental Concorning Description Inhibition Description Inhibition Description Mental Medium Total Description Inhibition Description Mental Medium Total Description Mental Medium Total Description Mental Medium Total					Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Sol Surface Sol Surface Sol Meats (Total) Fugestion Dermal Inhibitation Exposure Medium Total Copper	Medium	Exposure Medium		Chemical of Potential Concern		Carcinoge	inic Risk (1)			Non-Carcinoge	anic Hazard Quotient	Φ.	
Soil Surface Soil Metals (Total) 0T 0.5 0.0 Cypper Copper Copper 0T 0.0 0.					Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Exposure Medium Total Metals (Total) <th< td=""><td>Soil</td><td>Surface Soil</td><td>Surface Soil</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	Soil	Surface Soil	Surface Soil										
Exposure Medium Total Arithmony 0.0<				Metals (Total)									
Exposure Medium Total Copper 0.0 <td></td> <td></td> <td></td> <td>Antimony</td> <td>1</td> <td>1</td> <td>;</td> <td>;</td> <td>TO</td> <td>0.5</td> <td>0.07</td> <td>1</td> <td>0.5</td>				Antimony	1	1	;	;	TO	0.5	0.07	1	0.5
Exposure Medium Total Chemical Total				Copper	:	-	:	:	GI	0.09	0.002	-	0.09
Exposure Medium Total Exposure Point Total ————————————————————————————————————				Chemical Total	:	:	:	:		0.5	0.07	-	9.0
Exposure Medium Total Particulates above Metals (Total) </td <td></td> <td></td> <td>Exposure Point Total</td> <td></td> <td></td> <td></td> <td></td> <td>:</td> <td></td> <td></td> <td></td> <td></td> <td>9.0</td>			Exposure Point Total					:					9.0
Outdoor Air Particulates above Site Metals (Total)		Exposure Medium Tota	al					:					9.0
Metals (Total)		Outdoor Air	Particulates above Site										
Antimony				Metals (Total)									
Copper C				Antimony	!	1	1	ŀ	ı	1	1	ı	ı
Exposure Point Total Chemical Total				Copper	1	:	1	1	_	-	1	1	ı
Exposure Point Total				Chemical Total		:	:	:		-	-	-	-
Exposure Medium Total Total -			Exposure Point Total					:					
Total Receptor Risk Total		Exposure Medium Tota	al					:					
Receptor Risk Total	Medium Total							:					9.0
	Notes:					12	Receptor Risk Tota				Receptor	r Hazard Index (HI)	9.0

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-2

Receptor Population: On-Site Visitor
Receptor Age: Adult Scenario Timeframe: Current

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	(HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(c)	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	i	;	T0	0.04	0.01	ı	0.05
			Copper	1	1	;	i	ō	0.008	0.0003	ı	0.009
			Chemical Total	:	:	:	:		0.05	0.01		90.0
		Exposure Point Total					:					90.0
	Exposure Medium Total	le					-					90.0
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	i	1	i	ŀ	ı	1	1	ı	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total	-	-	-			-	-	-	
		Exposure Point Total										
	Exposure Medium Total	le.					:					٠
Medium Total												90.0
Notes:					, a2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	90'0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Trespasser (Teen) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-3

Scenario Timeframe: Current Receptor Population: On-Site Trespasser Teen Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony		;	;	ı	OT	0.02	0.02	1	0.04
			Copper	:	;	;	;	lЭ	0.005	0.0005	ı	0.005
			Chemical Total						0.03	0.02	-	0.05
		Exposure Point Total					:					0.05
	Exposure Medium Total	le					-					0.05
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	:	;	;	;		ı	ı	ı	ı
			Copper	:	:	:	;	-	-	-	-	-
			Chemical Total	-					-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	le										
Medium Total							:					0.05
Notes:						Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	0.05

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-4

Receptor Population: On-Site Commerical/ Industrial Worker Scenario Timeframe: Current Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(0)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	;	;	TO	0.05	0.03	ı	90:0
			Copper	1	:	;	;	Ō	0.01	0.0008	ı	0.01
			Chemical Total	-					90.0	0.03	-	0.09
		Exposure Point Total					:					0.09
	Exposure Medium Total	al					-					0.09
	Outdoor Air	Particulates above Site										
			Metals (Total)		_							
			Antimony	1	1	;	ŀ	ı	ı	1	ı	ı
			Copper	-		:	:	-	-	-	-	-
			Chemical Total		-				-	-	-	
		Exposure Point Total										
	Exposure Medium Total	al					:					٠
Medium Total												0.09
Notes:					, a2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	60.0

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9-5 Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm) Reasonable Maximum Exposure

reasonable maximuni Exposure Current On-Site Utility Worker - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Tineframe: Current Receptor Population: On-Sile Utility Worker Receptor Age: Adult

				Thresholds.	: Chemical-specific ₍	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	3	
	-	-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	;	ı	1	;	T0	0.04	0.005	ı	0.04
			Copper	;	ı	1	;	Ō	0.007	0.0002	ı	0.007
			Chemical Total						0.04	0.005		0.05
		Exposure Point Total					:					0.05
	Exposure Medium Total	le.					-					0.05
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	ı	1	;	ı	ı	ı	ı	ı
			Copper	:	:	-	:	-	-	-	-	-
			Chemical Total	-	-	-			-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							:					0.05
Notes:					8	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	0.05

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-6

Scenario Timeframe: Current Receptor Population: On-Site Construction Worker Receptor Age: Adult

				Thresholds:	Chemical-specific (Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and O	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	:	1	ı	;	T0	0.1	0.02	ı	0.1
			Copper	:	1	ı	;	Ō	0.02	0.0007	ı	0.02
			Chemical Total			:			0.1	0.02	-	0.2
		Exposure Point Total					:					0.2
	Exposure Medium Total	Į.					-					0.2
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	;	1	1	;	ı	ı	1	1	1
			Copper	-		:	:	-	1	-	-	1
			Chemical Total		-				-	-	-	
		Exposure Point Total										
	Exposure Medium Total	l										
Medium Total												0.2
Notes:					2	Receptor Risk Total	-			Receptor	Receptor Hazard Index (HI)	0.2

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-7

Receptor Population: On-Site Resident Receptor Age: Child Scenario Timeframe: Current Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds	3: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Sumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	t (1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	1	:	1	1	TO	2	0.3	1	2
			Copper	1	:	1	1	ß	0.4	0.01	1	0.4
			Chemical Total	:	:	:			3	0.3		3
		Exposure Point Total										3
	Exposure Medium Total	le le					-					3
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	ŀ	1	1	1	1	1	ı	1	1
			Copper	:	:	:	-	-	-	-	-	-
			Chemical Total	-	-				-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	al										-
Medium Total												3
Notes:						Receptor Risk Total	:			Recepto	Receptor Hazard Index (HI)	3

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative tolals may be slightly higher or lower depending on degree of rounding.

Total Gastrointestinal (GI) HI across All Media = Total Other (OT) HI across All Media =

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Target Berm)
Reasonable Maximum Exposure
Current On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9-8

Scenario mineriamo.
Receptor Population: On-Site Resident
Receptor Age: Adult Scenario Timeframe: Current

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C.	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	Θ.	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Metals (Total)									
			Antimony	:	i	;	;	TO	0.2	90:0	ı	0.3
			Copper	:	;	;	;	l9	0.04	0.002	ı	0.04
			Chemical Total		-	:			0.2	90'0	-	0.3
		Exposure Point Total					:					0.3
	Exposure Medium Total	le.					-					0.3
	Outdoor Air	Particulates above Site										
			Metals (Total)									
			Antimony	:	i	;	;		ı	I	ı	ı
			Copper	-		;	;		1	ı	ı	ı
			Chemical Total	-	-	:	:		-	-		
	1	Exposure Point Total					:					
	Exposure Medium Total	le.					:					-
Medium Total							:					0.3
Notes:					14	Receptor Risk Total	:			Receptor	Receptor Hazard Index (HI)	0.3

⁽¹⁾ CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 33

Receptor Population: On-Site Visitor Receptor Age: Child Scenario Timeframe: Current/Future Receptor Age:

				Thresholds.	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds:	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Ca	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-	<u>+</u>		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	3E-09	8E-10	;	4E-09	WH	0.02	0.005	ı	0.03
			Chemical Total	3E-09	8E-10	:	4E-09		0.02	0.005		0.03
		Exposure Point Total					4E-09					0.03
	Exposure Medium Total	le					4E-09					0.03
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		:	:	-	1	ı	ı	1
			Chemical Total				-		-	-	-	-
		Exposure Point Total					-					-
	Exposure Medium Total	le le										
Medium Total							4E-09					0.03
Notes:						Receptor Risk Total	4E-09			Receptor	Receptor Hazard Index (HI)	0.03

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 34

Receptor Population: On-Site Visitor Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds:	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	(HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω,	
	-	<u>-</u>		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1E-09	5E-10	;	2E-09	WH	0.002	0.0009	ı	0.003
			Chemical Total	1E-09	5E-10	:	2E-09		0.002	0.000		0.003
		Exposure Point Total					2E-09					0.003
	Exposure Medium Total	le.					2E-09					0.003
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	:		:	-	-	-	_	1	-
			Chemical Total	-		:	:		-	-		
		Exposure Point Total										
	Exposure Medium Total	le.					:					
Medium Total							2E-09					0.003
Notes:					ď	Receptor Risk Total	2E-09			Recepto	Receptor Hazard Index (HI)	0.003

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 35
Summary of Chemical Cancer Risks for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Visitor (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

cenario Timeframe:	Current/Future
Receptor Population:	On-Site Visitor
Receptor Age:	Lifetime

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Cu	ımulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoger	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	4E-09	1E-09	:	6E-09	ı	ı	1	ı	1
			Chemical Total	4E-09	1E-09	:	6E-09					
		Exposure Point Total					6E-09					-
	Exposure Medium Total	le.					6E-09					-
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)		_							
			Nitroglycerin	-		:	:	-	-	-	-	1
			Chemical Total	-			-		-	-	-	-
		Exposure Point Total										
	Exposure Medium Total	le.					:					
Medium Total							6E-09					-
Notes:					Ľ	Receptor Risk Total	11 6E-09			Receptor	Receptor Hazard Index (HI)	ı

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 36
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Possonable Maximum Experies

Reasonable Maximum Exposure Current/Future On-Site Trespasser (Teen) - Surface Soil Ridgway Training Range, Pennsylvania

> Scenario Timeframe: Current/Future Receptor Population: On-Sile Trespasser Receptor Age: Teen

				Thresholds.	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds:	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	(HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(p)	
	-	<u>-</u>		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	3E-10	3E-10	;	7E-10	WH	0.001	0.001	1	0.003
			Chemical Total	3E-10	3E-10	:	7E-10		0.001	0.001		0.003
		Exposure Point Total					7E-10					0.003
	Exposure Medium Total	le					7E-10					0.003
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		-	-	-	-	-	-	-
			Chemical Total				-		-	-	-	
		Exposure Point Total					:					
	Exposure Medium Total	le le										
Medium Total							7E-10					0.003
Notes:					Ľ	Receptor Risk Total	7E-10			Receptor	Receptor Hazard Index (HI)	0.003

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9.37
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure

Reasonable Maximum Exposure
Current/Future On-Site Commerical/ Industrial Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future
Receptor Population: On-Site Commerical/ Industrial Worker
Receptor Age: Adult

				Thresholds	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds:	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	<u>-</u>	<u> </u>		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-09	1E-09	:	3E-09	WH	0.003	0.002	ı	0.005
			Chemical Total	2E-09	1E-09		3E-09		0.003	0.002		0.005
		Exposure Point Total					3E-09					0.005
	Exposure Medium Total	al					3E-09					0.005
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		:	-	-	-	1	1	1
			Chemical Total	:		:	:					
		Exposure Point Total					:					
	Exposure Medium Total	a					:					
Medium Total							3E-09					0.005
Notes:					ď	Receptor Risk Total	3E-09			Receptor	Receptor Hazard Index (HI)	0.005

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Utility Worker - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 38

Receptor Population: On-Site Utility Worker Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	(1E-06) and Cumul	ative (1E-04)	Thresholds	: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
				Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	5E-11	1E-11	1	6E-11	WH	0.002	0.0004	ı	0.002
			Chemical Total	5E-11	1E-11	:	6E-11		0.002	0.0004		0.002
		Exposure Point Total					6E-11					0.002
	Exposure Medium Total	al					6E-11					0.002
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-	-	-	-	_	_	-	-	-
			Chemical Total	-	:		:		-	-	-	
		Exposure Point Total										
	Exposure Medium Total	al					:					
Medium Total							6E-11					0.002
Notes:						Receptor Risk Total	6E-11			Receptor	Receptor Hazard Index (HI)	0.002

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9.39
Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Construction Worker - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future
Receptor Population: On-Site Construction Worker
Receptor Age: Adult

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	Sumulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	f ₍₃₎	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	1E-10	5E-11	;	2E-10	WH	900.0	0.002	1	0.008
			Chemical Total	1E-10	5E-11		2E-10		900'0	0.002		0.008
		Exposure Point Total					2E-10					0.008
	Exposure Medium Total	1					2E-10					0.008
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	:		:		-	-	1	-	ı
			Chemical Total	:	-	:	:		-	-	-	
		Exposure Point Total					-					-
	Exposure Medium Total	11					:					
Medium Total							2E-10					0.008
Notes:					4	Receptor Risk Total	1 2E-10			Recepto	Receptor Hazard Index (HI)	0.008

⁽¹⁾ CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Child) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 40

Receptor Population: On-Site Resident Scenario Timeframe: Current/Future Child Receptor Age:

				Thresholds	: Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	tive (1E-04)	Thresholds.	:: Chemical-specific,	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	ω;	
		-		Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-08	4E-09	;	2E-08	WH	0.1	0.03	ı	0.1
			Chemical Total	2E-08	4E-09		2E-08		0.1	0.03	-	0.1
		Exposure Point Total					2E-08					0.1
	Exposure Medium Total	le					2E-08					0.1
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	:		:	:	-	-	-	-	-
			Chemical Total	-		:	:		-	-		
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							2E-08					0.1
Notes:					ď	Receptor Risk Total	2E-08			Recepto	Receptor Hazard Index (HI)	0.1

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Summary of Chemical Cancer Risks and Non-Cancer Hazards for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Adult) - Surface Soil
Ridgway Training Range, Pennsylvania Table 9 41

Receptor Population: On-Site Resident Scenario Timeframe: Current/Future Adult Receptor Age:

				Thresholds:	Chemical-specific	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	itive (1E-04)	Thresholds:	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and Ca	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	5E-09	2E-09	;	7E-09	WH	0.01	0.004	ı	0.01
			Chemical Total	5E-09	2E-09	:	7E-09		0.01	0.004		0.01
		Exposure Point Total					7E-09					0.01
	Exposure Medium Total	le					7E-09					0.01
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		:	:	-	-	-	-	1
			Chemical Total	-					-	-	-	-
		Exposure Point Total					:					
	Exposure Medium Total	le.					:					
Medium Total							7E-09					0.01
Notes:					Ľ	Receptor Risk Total	7E-09			Receptor	Receptor Hazard Index (HI)	0.01

(1) CR and HQs are rounded to one non-zero digit; cumulative totals may be slightly higher or lower depending on degree of rounding.

Table 9 42
Summary of Chemical Cancer Risks for COPCs (Firing Point)
Reasonable Maximum Exposure
Current/Future On-Site Resident (Lifetime) - Surface Soil
Ridgway Training Range, Pennsylvania

Scenario Timeframe: Current/Future	Current/Future
Receptor Population: On-Site Resident	On-Site Resident
Receptor Age:	Lifetime

				Thresholds:	Chemical-specific,	Thresholds: Chemical-specific (1E-06) and Cumulative (1E-04)	ative (1E-04)	Thresholds	Thresholds: Chemical-specific, Target Organ and Cumulative (HQ > 1)	Target Organ and C	umulative (HQ > 1)	
Medium	Exposure Medium	Exposure Point	Chemical of Potential Concern		Carcinoge	Carcinogenic Risk (1)			Non-Carcinoge	Non-Carcinogenic Hazard Quotient (1)	(1)	
	-			Ingestion	Dermal	Inhalation	Exposure Routes Total	Primary Target Organs	Ingestion	Dermal	Inhalation	Exposure Routes Total
Soil	Surface Soil	Surface Soil										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	2E-08	6E-09	ŀ	3E-08	ı	ı	ı	1	ı
			Chemical Total	2E-08	6E-09	:	3E-08		-	-	-	
		Exposure Point Total					3E-08					
	Exposure Medium Total	le.					3E-08					-
	Outdoor Air	Particulates above Site										
			Semi-volatile Organic Compounds (SVOCs)									
			Nitroglycerin	-		-		-	-	-	_	-
			Chemical Total		-	-			-	-	-	-
		Exposure Point Total										-
	Exposure Medium Total	le.					:					
Medium Total							3E-08					
Notes:					ď	Receptor Risk Total	11 3E-08			Receptor	Receptor Hazard Index (HI)	

(1) CR and HQs are rounded to one non-zero digit, cumulative totals may be slightly higher or lower depending on degree of rounding.

Appendix F:

Screening Level Ecological Risk Assessment

Appendix F Screening Level Ecological Risk Assessment (SLERA)

Ridgway Training Range, Pennsylvania

Munitions Response Site PAE40-001-R-01 Pennsylvania Army National Guard

Army National Guard

Contract No. W9133L-14-D-0001 Delivery Order No. 0006

June 2019

Prepared for: Army National Guard NGB-AQ-W9133L 111 South George Mason Drive Building 2, 4th Floor Arlington, VA 22204-1373

Prepared by: AECOM 12420 Milestone Center Drive Suite 150 Germantown MD, 20876 USA

T: +1 (301) 820 3000 F: +1 (301) 820 3009 aecom.com

Table of Contents

Tal	ble of	Contents	i
Ac	ronyn	ns and Abbreviations	iv
Ex	ecutiv	e Summary	ES-1
1	Intr	oduction	1-1
2	Step	1: Screening Level Problem Formulation and Ecological Effects Eval	uation 2-1
	2.1	Ecological Setting and Potential Habitats 2.1.1 Soils 2.1.2 Terrestrial Habitats 2.1.3 Wetland Habitats 2.1.4 Aquatic Habitats	2-1 2-1 2-3
	2.2	Potential Ecological Receptors 2.2.1 Commonly Occurring Wildlife 2.2.2 Rare, Threatened, and Endangered Species	2-3 2-7
	2.3	Potential Source Areas and Constituents of Interest	2-10
	2.4	Identification and Evaluation of Migration Pathways	2-10
	2.5	Fate and Transport Characteristics 2.5.1 Soils 2.5.2 Sediment 2.5.3 Biota	2-11 2-11
	2.6	Ecotoxicological Profiles	2-14
	2.7	Exposure Routes and Receptors Not Evaluated. 2.7.1 Groundwater	2-14 2-15 2-15
	2.8	Receptors of Concern and Exposure Routes Selected for Evaluation 2.8.1 Soil Macroinvertebrates	

		2.8.2 Benthic Macroinvertebrates	2-17
		2.8.3 Birds and Mammals	2-17
	2.9	Assessment and Measurement Endpoints	2-19
	2.10	Ecological Screening Benchmarks	2-20
3	Step	2: Screening Level Exposure Estimate	3-1
	3.1	Exposure Units	3-1
	3.2	Data Used to Characterize Ecological Exposure	3-2
	3.3	Exposure Estimate Methodology and Risk Characterization	3-4
		3.3.1 Exposure Estimate Methodology	3-4
		3.3.2 Risk Characterization Methodology	3-5
		3.3.3 Risk Characterization Summary	3-5
	3.4	Scientific Management Decision Point	3-10
		3.4.1 On-Site Soil	3-10
		3.4.2 Off-Site Sediment	3-11
4	Step	3: Constituents of Potential Ecological Concern Refinement	4-1
	4.1	Refined Direct Contact Evaluation for Benthic Macroinvertebrates	4-1
	4.2	Refined Dose Rate Model Evaluation	4-1
	4.3	Refined Risk Characterization and Scientific Management Decision Point.	4-2
5	Unce	ertainty Analysis	5-1
	5.1	Exposure and Effects Assessment	5-1
	5.2	Risk Characterization	5-2
	5.3	Summary of Uncertainty	5-2
6	Conc	clusions and Recommendations	6-1
7	Refe	erences	7-1
Tab	les		
Tab	le 2-1	. Potential Ecological Receptors	2-4
		2. Ecological Screening Values	
		. Direct Contact Evaluation and Preliminary Wildlife Screening (Soil)	

Table 3-2. Direct Contact Evaluation and Preliminary Wildlife Screening (Sediment)	3-7
Table 3-3. Wildlife Dose Rate Model Summary	3-8
Table 4-1. Refined Direct Contact Evaluation (Sediment)	4-3
Figures	
Figure 1-1. Site Layout.	1-2
Figure 2-1. Site Habitat Map	2-2
Figure 2-2. Site Ecological Conceptual Site Model	2-12
Figure 3-1. Sample Locations	3-3
Attachments	
Attachment A Photographic Log	
Attachment B PA Department of Conservation and Natural Resources Conservation Pl Report	anning
Attachment C Sample Data Evaluated	
Attachment D Dose Rate Models, Toxicity Reference Values, and Step 3 Refinements	
Attachment E ProUCL Output	

Acronyms and Abbreviations

% Percent

Army National Guard ARNG **AUF** Area Use Factor

BAZ Biologically Active Zone

BERA Baseline Ecological Risk Assessment

Below Ground Surface bgs

C1 Chloride CO_3^{2-} Carbonate

DU

COI Constituent of Interest

COPEC Constituent of Potential Ecological Concern

DoD Department of Defense Dose Rate Model DRM **Decision Unit**

ECSM Ecological Conceptual Site Model

Estimated Daily Dose EDD

EPC Exposure Point Concentration

ERAGS Ecological Risk Assessment Guidance for Superfund

Ecological Screening Value ESV

Exposure Unit EU ft Foot or feet ft^2 Square feet НО Hazard Quotient

 K_{ow} n-octanol/water partitioning coefficient Lowest Observed Adverse Effects Level LOAEL LOEC Lowest Observed Effects Concentration

Base 10 logarithm log

Milligrams per kilogram per day mg/kg-day

Milligrams per liter mg/L **MRS** Munitions Response Site

Non-Department of Defense, Non-Operational Defense Site **NDNODS**

Nitrate NO_3^-

No Observed Adverse Effects Level NOAEL No Observed Effects Concentration **NOEC** Natural Resources Conservation Service NRCS

NWI National Wetland Inventory

OH. Hydroxide PA Pennsylvania

PADEP Pennsylvania Department of Environmental Protection

Pennsylvania Game Commission **PGC**

 PO_4^{3-} Phosphate

Remedial Investigation RI **RPD** Relative Percent Difference RSV Refined Screening Value

SLERA Screening Level Ecological Risk Assessment SMDP Scientific Management Decision Point

SO₄²- Sulfate

SWI Sediment-surface water interface TGM Technical Guidance Manual TRV Toxicity Reference Value UCL Upper Confidence Limit

USACHPPM United States Army Center for Health Promotion and Preventive

Medicine

USEPA United States Environmental Protection Agency

USFWS United States Fish and Wildlife Service

Executive Summary

The Screening Level Ecological Risk Assessment (SLERA) was conducted for the Army National Guard (ARNG) located at the Non-Department of Defense, Non-Operational Defense Site (NDNODS) Ridgway Training Range Munitions Response Site (MRS) (Army Environmental Database Restoration Number PAE40-001-R-01), located in Ridgway Township, Pennsylvania (the "Site").

The purpose of the SLERA was to identify the potential risks to ecological receptors exposed to Site-related constituents of interest (COIs) in environmental media at the Site and determine which constituents of potential ecological concern (COPECs), if any, were exerting adverse effects to potential ecological receptor populations. The list of COPECs was refined consistent with the initial stage of a Baseline Ecological Risk Assessment (BERA) Step 3 to reduce uncertainty in the SLERA Step 1 and 2 conclusions.

Guided by an ecological conceptual site model (ECSM), a conservative screening evaluation was conducted to assess potential risks related to on-Site soil and off-Site sediment for soil invertebrates, benthic macroinvertebrates, terrestrial wildlife, and aquatic and semi-aquatic wildlife. If COIs were detected above wildlife-specific benchmarks, dose rate models (DRMs) were prepared to assess potential adverse effects to selected ecological receptors.

Although the Site is small and receptors can freely move between areas, exposure units (EU) were selected based on 1) type of data available (incremental versus discrete); 2) COI source (nitroglycerin vs metals); and 3) decision unit (DU) designation provided in the remedial investigation (RI) (AECOM, 2018). Receptors with larger ranges and limited substrate intake (e.g. red fox and red-tailed hawk) were evaluated conservatively at a Site-wide level. During BERA Step 3, refinements were made to EU selection and datasets were pooled to assess only Site-wide effects.

After Step 2 of the SLERA, the results of the risk characterization determined the following scientific management decision points (SMDPs):

- 1. Exposure to COPECs in on-Site soil resulted in substantial impact (de manifestis) to both soil invertebrate and terrestrial wildlife populations; action should be taken that can eliminate or reduce exposure to an acceptable level.
 - a. Maximum concentrations of nitroglycerin (Firing Point DU) and copper, lead, and zinc (Target Berm and Soil Pile DUs) exceeded ecological screening values (ESVs) protective of soil invertebrates.
 - Wildlife DRMs indicated that no observed adverse effects level (NOAEL) toxicity reference values (TRVs) (protective of either mammalian or avian wildlife) were exceeded by maximum concentrations of antimony, copper, lead, and zinc in soil at the Target Berm and Soil Pile DUs and by antimony, copper, and lead for all on-Site soil.

AECOM Prepared for: Army National Guard FS-1

- c. Refinements made in BERA Step 3 would reduce uncertainty in both the direct contact evaluation and DRMs, but, ultimately, COPECs would still exceed benchmarks protective of either soil invertebrates or wildlife.
- 2. Exposure to COPECs in off-Site sediment indicated that the SLERA should be continued to BERA Step 3 to reduce uncertainty in the evaluation of risk and impact.
 - a. Maximum concentrations of copper and lead exceeded ESVs protective of benthic macroinvertebrates in both the French Drain DU and Drainage Ditch.
 - b. Wildlife DRMs indicated that maximum concentrations of copper exceeded NOAEL TRVs protective of mammalian wildlife in all off-Site sediment.
 - c. For both the direct contact evaluation and DRMs, exposure estimates will be refined using more representative exposure point concentrations (EPCs) and more realistic benchmarks.

Following BERA Step 3 and evaluating uncertainties within the SLERA process, the following SMDPs were made regarding off-Site sediment:

- 1. The potential for adverse effects to the benthic macroinvertebrate community is de minimus due to the following:
 - a. Although the refined direct contact evaluation indicated a lead HQ = 1, the median concentration for lead (109 milligrams per kilogram [mg/kg]) was below the refined ESV.
 - b. Small-scale, spatial variability was very high for sediment samples.
 - c. Although individuals may experience some adverse effects locally, population level effects are unlikely.
- 2. The potential for adverse effects to the aquatic and semi-aquatic wildlife community is *de minimus* due to the following:
- a. Refined DRMs indicated no exceedances of TRVs for the little brown bat.

Introduction

A Screening Level Ecological Risk Assessment (SLERA) was conducted for the Army National Guard (ARNG) located at the Non-Department of Defense, Non-Operational Defense Site (NDNODS) Ridgway Training Range Munitions Response Site (MRS; Army Environmental Database Restoration Number PAE40-001-R-01), located in Ridgway Township, Pennsylvania (PA) (the "Site"; Figure 1-1).

The purpose of the SLERA is to identify the potential risks to ecological receptors exposed to Site-related constituents of interest (COIs) in environmental media at the Site. The SLERA was conducted in accordance with the following state and federal guidance:

- Pennsylvania Department of Environmental Protection (PADEP). 2002¹. Steps 1 and 2 (§IV.H) of the PADEP Land Recycling Program Technical Guidance Manual (TGM); and
- United States Environmental Protection Agency (USEPA). 1997². Ecological Risk Assessment Guidance for Superfund (ERAGS).

Potential ecological exposure is evaluated under current conditions using recent analytical data collected in relevant exposure media. The scope of the SLERA includes Steps 1 and 2 of the PADEP and ERAGS guidance. Steps 1 and 2 were used to identify constituents of potential ecological concern (COPECs) in potentially affected environmental media to support a scientific management decision point (SMDP) regarding the need for further risk characterization and/or remediation. The list of COPECs was refined consistent with the initial stage of a Baseline Ecological Risk Assessment (BERA) Step 3 to reduce uncertainty in the SLERA Step 1 and 2 conclusions and to refine the recommendations presented in the report by applying more realistic exposure assumptions. The results of the SLERA and BERA Step 3 COPEC refinement were used to reach one of the following conclusions consistent with PADEP (2002) guidance:

- The ecological risk assessment should be continued to develop a site-specific clean-up goal, or to reduce uncertainty in the evaluation of risk and impact;
- The preliminary screening is adequate to determine that no substantial ecological risk exists, i.e., risks are de minimis; or
- There is substantial impact (*de manifestis*). Proceed to remediation that can eliminate or reduce exposure to an acceptable level (Suter, et al., 1995; in PADEP, 2002).

Prepared for: Army National Guard AECOM

¹ A draft version of the Technical Guidance Manual (TGM) was issued on December 16, 2017. Comments on the draft TGM were presented on August 1, 2018. Because the guidance in the revised TGM has not been formally promulgated, the 2002 TGM was used.

² PADEP (2002) recommends the use of USEPA's interim final guidance ERAGS (USEPA, 1997), with some modification, as the process for designing and conducting site-specific ecological risk assessments.

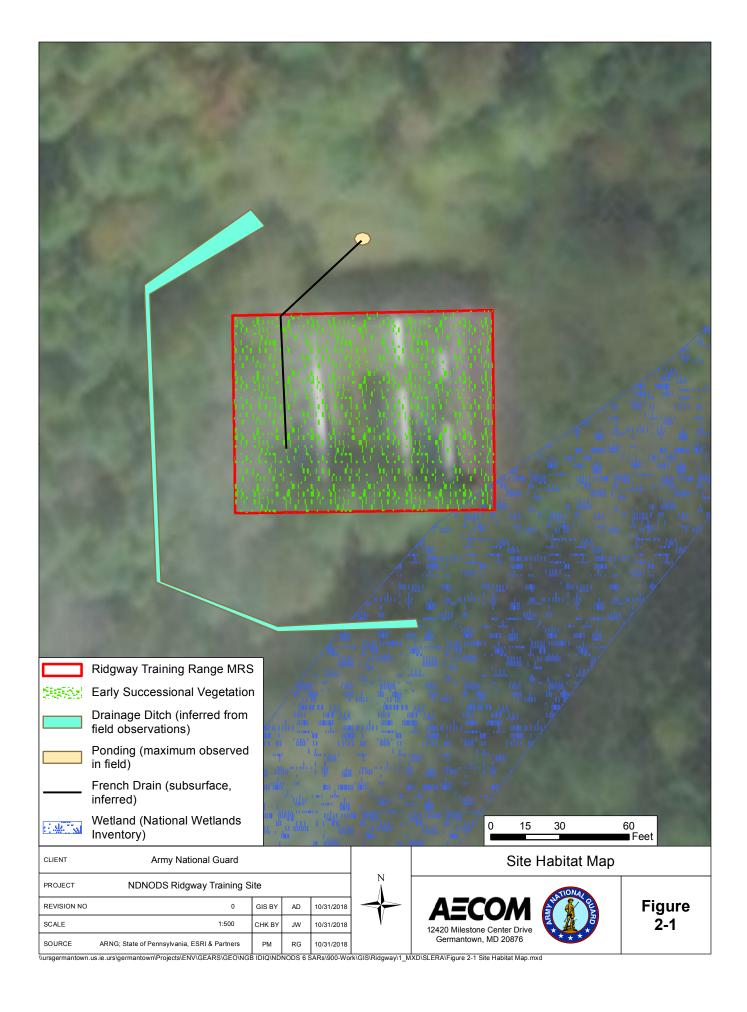
2 Step 1: Screening Level Problem Formulation and Ecological Effects Evaluation

The following fundamental components were evaluated as part of Step 1 of the SLERA preliminary ecological screening assessment:

- Identify ecological setting and potential habitats;
- Identify potential ecological receptors;
- Identify constituents known or suspected to exist at the Site;
- Evaluate potential migration pathways that exist at the Site;
- Characterize fate and transport mechanisms;
- Describe constituent ecotoxicological properties;
- Confirm potentially complete migration pathways and ecological receptors that might exist at the Site;
- Identify assessment and measurement endpoints; and
- Identify conservative ecological screening benchmarks.

2.1 Ecological Setting and Potential Habitats

The ecological setting of the Site was characterized using information from the results of the remedial investigation (RI). This information was supplemented with resources from the United States Fish and Wildlife Service's (USFWS's) National Wetlands Inventory (NWI), Natural Resources Conservation Service (NRCS), and aerial imagery. *Terrestrial and Palustrine Communities of Pennsylvania* (Fike, 1999) was used as a reference to provide a more detailed description of flora within the different habitat types. Soils, terrestrial habitats, wetland habitats, and aquatic habitats present at the Site are summarized below. Site habitat types in relation to decision units (DUs) within the MRS are presented in **Figure 2-1.** Photographs taken during the RI are presented **Attachment A**. Based on a Conservation Planning Report generated for the Site by PA Department of Conservation and Natural Resources, no sensitive areas or habitats of concern have been identified (**Attachment B**).


2.1.1 Soils

Based upon online NRCS soil mapping, the only soil type present at the Site is Cavode silt loam, 0 to 3 percent (%) slopes. NRCS (2018) describes Cavode silt loam as poorly drained, non-hydric soils with very high runoff potential. Cavode silt loams are classified as farmland of statewide importance.

2.1.2 Terrestrial Habitats

The Site is located within the Western Allegheny Plateau ecoregion (USEPA, 2013) and borders the Allegheny National Forest to the west. Within the Site boundary, vegetation is limited primarily to early successional species such as grasses and shrubs. East of the Site boundary is a clear cut area of disturbed soils with minimal vegetation coverage.

Prepared for: Army National Guard AECOM

The primary habitat type of the Allegheny National Forest is northern hardwood forests. Canopy composition consists primarily of red maple (Acer rubrum), black cherry (Prunus serotina), American beech (Fagus grandifolia), multiple species of birch (Betula spp.), northern red oak (Quercus rubra), and white ash (Fraxinus americana) (Fike, 1999). Coniferous trees can make up to 25% of hardwood forests; portions of hardwood forests with 25-75% conifers are grouped under the sub-class hemlock (white pine)-northern hardwood (Fike, 1999).

Field observations made during the RI indicated the presence of coniferous trees (mostly pine) and birch along the boundary between the Site and the Allegheny National Forest. Although vegetation within the Site boundary is limited to mostly early-successional vegetation, the presence of surrounding forests and rather small size of the Site (about 0.22 acres) suggest that species living in the surrounding habitats could pass through the Site and be exposed to COIs in soil.

2.1.3 Wetland Habitats

Approximately, 4.9 acres of palustrine forested wetlands are present east and southeast of the Site (USFWS, 1983). According to NWI mapping, a very small portion of the wetlands intersect the Site. However, based on field observations made during the RI, the wetlands do not begin until further southeast of the Site boundary. Additionally, the wetlands present were mapped in 1983 using color infrared aerial imagery at a 1:58,000 scale (USFWS, 1983).

2.1.4 Aquatic Habitats

There are no natural aquatic habitats present within the Site boundary, however a drainage ditch extends behind the target berm DU and heads south and then east towards the wetlands (Figure 2-1). Observations made during the RI indicate that the ditch is generally dry but will retain less than a foot (ft) of water after rain events. Additionally, there is a culvert located outside the eastern boundary of the Site which feeds into the wetland. The culvert has less than 6 inches of water in the northern portion, but deepens as it approaches the wetland to the south.

Shallow ponding from the French drain DU will extend laterally to cover approximately 28 square feet (ft²) after a period of rain. Field personnel noted that the next day it had decreased to about 5 ft² and eventually fully drained and/or evaporated. During the RI, the pond did not extend into either the drainage ditch or culvert. Elevation is fairly level and varies only a 0-5 ft across the Site. It is not suspected that ponded water from the French drain DU enters the drainage ditch or culvert.

Potential Ecological Receptors 2.2

Potential ecological receptors that may occur at the Site were identified using Site habitat types, observations reported in AECOM (2018), and relevant literature to the greater region (DeGraaf and Rudis, 1986). Species information is summarized in Table 2-1. For each ecological receptor identified, the following information is provided:

- Feeding guild;
- Forage method; and
- Breeding substrate.

Prepared for: Army National Guard **AECOM**

Table 2-1. Potential Ecological Receptors

Group	Common Name	Genus And Species	Feeding Guild ⁽¹⁾	Forage Method	Breeding Substrate
	Eastern American toad	Bufo a. americanus	I	Ground ambusher	Water
	Gray treefrog	Hyla versicolor	I	Bark ambusher	Water
Amphibians	Pickerel frog	Rana palustris	I	Riparian ambusher	Water
	Red spotted newt	Notophthalamus viridescens	I	Water gleaner	Water
	Redback salamander	Plethodon c. cinereus	I	Ground gleaner	Terrestrial subsurface
Dontilos	Eastern garter snake	Thamnophia s. sirtalis	С	Ground ambusher	Terrestrial subsurface
Reptiles	Northern black racer	Coluber c. constrictor	С	Ground ambusher	Terrestrial subsurface
	American crow	Corvus brachyrhynchos	О	Ground gleaner	Tree-branch
	American goldfinch	Carduelis tristis	О	Ground gleaner	Shrub
	American redstart	Setophaga ruticilla	I	Lower canopy gleaner	Tree-twig
	American robin	Turdus migratorius	О	Ground gleaner	Tree-branch
	American woodcock	Scopolax minor	I Ground prober		Ground-herb
	Black-billed cuckoo	Coccyzus erythropthalmus	I	Lower canopy gleaner	Tree-branch
	Black-capped chickadee	Parus atricapillus	I Lower canopy gleaner		Tree cavity- crevice
Birds	Blue jay	Cyanocitta cristata	О	Ground gleaner	Tree-branch
	Brown creeper	Certhia americana	I	Bark gleaner	Tree cavity- crevice
	Brown-headed cowbird	Molothrus ater	О	Ground gleaner	Nest parasite
	Cedar waxwing	Bombycilla cedrorum	F	Upper canopy gleaner	Tree-twig
	Chestnut-sided warbler	Dendroica pennsylvania	I	Lower canopy gleaner	Shrub
	Common grackle	Quiscalus quiscula	О	Ground gleaner	Tree-branch
	Dark-eyed junco	Junco hyemalis	G	Ground gleaner	Ground-herb
	Downy woodpecker	Picoides pubescens	I	Bark gleaner	Tree cavity- crevice

Table 2-1. Potential Ecological Receptors (continued)

Group	I CAMMAN NAMA		Feeding	Forage	Breeding
Отопр	Common runic	Species	Guild ⁽¹⁾	Method	Substrate
	Field sparrow	Spizella pusilla	О	Ground gleaner	Ground-herb
	Grey catbird	Dumetella carolinensis	О	Ground gleaner	Shrub
	Hairy woodpecker	Picoides villosus	I	Bark gleaner	Tree cavity- crevice
	Indigo bunting	Passerina cyanea	I	Lower canopy gleaner	Ground-herb
	Least flycatcher	Empidonax minimus	I	Air sallier	Tree branch
	Northern cardinal	Cardinalis cardinalis	О	Ground gleaner	Shrub
	Northern flicker	Colaptes auratus	I	Ground gleaner	Tree cavity- crevice
Birds	Ovenbird	Seiurus aurocapilla	I	Ground gleaner	Ground-herb
Dirus	Red-bellied woodpecker	Melanerpes carolinus	I	Bark gleaner	Tree cavity- crevice
	Red-eyed vireo	Vireo olivaceus	I	Lower canopy gleaner	Tree-branch
	Red-tailed hawk	Red-tailed hawk Buteo jamaicensis C		Ground pouncer	Tree branch
	Ruffed grouse	Bonasa umbellus	О	Lower canopy gleaner	Ground-herb
	Scarlet tanager	Piranga olivacea	I	Lower canopy gleaner	Tree-branch
	Song sparrow	Melospiza melodia	О	Ground gleaner	Ground-herb
	Veery	Catharus fuscescens	I	Ground gleaner	Ground-herb
	White-breasted nuthatch	Sitta carolinesis	I	Bark gleaner	Tree cavity- crevice
	Deer mouse	Peromyscus maniculatus	0	Ground forager	Terrestrial subsurface
	Eastern chipmunk	Tamias striatus	G	Ground forager	Terrestrial subsurface
Mammals	Eastern cottontail	Sylvilagus floridanus	Н	Ground grazer	Ground-herb
wammais	Grey squirrel	Sciurus carolinensis	G	Upper canopy forager	Tree cavity- crevice
	Little brown bat	Myotis lucifugus	I	Air hawker	Buildings
	Meadow jumping mouse	Zapus hudsonius	О	Ground forager	Ground-herb

Table 2-1. Potential Ecological Receptors (continued)

Group	Common Name	Genus And Species	Feeding Guild ⁽¹⁾	Forage Method	Breeding Substrate
	Meadow Vole	Microtus pennsylvanicus	Н	Ground grazer	Terrestrial subsurface
	Northern short- tailed shrew	Blarina brevicauda	I	Ground gleaner	Terrestrial Subsurface
	Raccoon	Procyon lotor	О	Ground forager	Tree Cavity- Crevice
	Red fox	Vulpes vulpes	О	Ground forager	Terrestrial subsurface
Mammals	Striped skunk	striped skunk Mephitis mephitis O Grou		Ground forager	Terrestrial subsurface
Maiimais	Virginia opossum	Didelphis virginiana	О	Ground forager	Tree cavity- crevice
	White-footed mouse	Peromyscus leucopus	О	Ground forager	Terrestrial subsurface
	White-tailed deer Odocoileus virginianus		Н	Ground grazer	Ground-herb
	Woodchuck	Marmota monax	Н	Ground grazer	Terrestrial Subsurface
	Woodland jumping mouse	Napaeozapus insignis	О	Ground forager	Ground-herb

(1) C = Carnivore; F = Frugivore; H = Herbivore; I = Insectivore; and O = Omnivore

2.2.1 Commonly Occurring Wildlife

Groups of commonly occurring wildlife include soil and benthic macroinvertebrates, amphibians and reptiles, birds, and mammals. Wildlife likely to be encountered at the Site are briefly discussed below.

2.2.1.1 Terrestrial Receptors

Terrestrial wildlife which may frequent the Site include:

- Soil macroinvertebrates;
 - Common terrestrial soil macroinvertebrates include macrofauna such as earthworms, woodlice, millipedes, and beetles; mesofauna including springtails, mites, and potworms; and microfauna such as nematodes. Soil macroinvertebrates can occupy any portion of the Site with a defined soil layer.
- Amphibians and reptiles;
 - The close proximity to Allegheny National Forest provides habitat for reptiles (such as a garter snake or black racer) which may come onto the Site to feed. The drainage ditch around along the perimeter of the Site provides potential breeding areas for amphibians due to shallow, low-flowing/stagnant water. Toads, salamanders, newts, and tree frogs could make use of these areas temporarily; however, they will predominantly occur in terrestrial areas (damp leaf litter, underneath rocks and logs, or moist crevices within trees).
- Birds; and
 - O Birds most likely to be found at the Site would make use of early-successional vegetation and open areas to feed or nesting in the shrubs on the edge of the neighboring forests (robins, finches, and woodcock). Additionally, predatory birds, such as the red-tailed hawk, would use tall canopy trees to hunt small birds and mammals feeding within the Site. Birds which live primarily within forests (ovenbird, various woodpeckers, and grouse) will probably not frequent the Site to feed.
- Mammals.
 - Ocommon forest species such as grey squirrels, chipmunks, and white-tailed deer would likely enter the Site and feed on ground vegetation/shrubs. The fragmented nature of the Site compared to surrounding forests would attract a predator like the red fox which prefers habitat mosaics. Due to the proximity of wetlands and forested areas, the northern short-tailed shrew may potentially use areas within the Site to feed on invertebrates.

2.2.1.2 Aquatic and Semi-Aquatic Receptors

Aquatic and semi-aquatic wildlife which may frequent the Site include:

- Benthic macroinvertebrates:
 - The drainage ditch and potentially impacted areas with temporary ponding (French Drain DU), are most likely to contain only the larvae and juvenile

Prepared for: Army National Guard AECOM

members of breeding insects. Surface water within these areas is stagnant or very low-flowing.

Amphibians and reptiles;

o As mentioned previously, the areas with surface water on the Site are stagnant or low-flowing. Amphibians around the Site would predominantly occupy terrestrial habitats (such as toads and salamanders), and may only use these areas for breeding.

Birds; and

 Near the southeast corner of the Site there may exist some habitat for birds that prefer wetlands or swamps. The brown creeper, gray catbird, and veery show some preference towards moist forests and wooded swamps, but generally feed off the ground and bark. Impact to the aquatic and semi-aquatic bird community is expected to be minimal.

Mammals.

Raccoons are ubiquitous omnivores found in almost all areas and could likely be found foraging or feeding along the drainage ditch areas. Raccoons are opportunistic and will eat almost anything and may come into contact with potentially impacted sediments while feeding. Although little brown bats primarily roost in caves, they will seek out temporary roosts close to water bodies. Little brown bats will hawk over water areas and consume flying insects (DeGraaf and Rudis, 1986).

2.2.2 Rare, Threatened, and Endangered Species

Within the Site, there are no federally designated critical habitats (USFWS, 2018), and, as previously reported, no sensitive areas or critical habitats were identified using state resources (Attachment B).

However, USFWS (2018) does indicate that rabbits foot (Quadrula cylindrical cylindrical), a type of clam, and the Northern long-eared bat (Myotis septentrionalis) are threatened species wherever they occur. Rabbitsfoot require flowing water in medium-sized streams and would not be found in the stagnant/low-flow drainage ditches around the Site. The Northern longeared bat prefers forested areas catching prey in-flight and may glean stationary insects from the surface of water bodies (USFWS, 2018). Given the characteristics of the Site, the Northern long-eared bat may be found in the adjacent Allegheny National Forest, but likely would not occupy the Site. The Site would be more preferred by other bats such as the little brown bat which hawks flying insects over small streams.

For the threatened and endangered State species (Pennsylvania Game Commission [PGC], 2018), a review of Site conditions was conducted for species that occupy habitats some-what similar to those found near and around the Site.

Marshes and forested wetlands;

The American bittern (Botarus lentiginosus), sedge wren (Cistothorus platensis), and yellow-bellied flycatcher (Empidonax flaviventris) are state-endangered

Prepared for: Army National Guard AECOM

species which require swamps or marshes for nesting. The former two species require wet areas with accompanying sedges and grasses, which are not present at the Site. The yellow-bellied flycatcher prefers forested wetlands at higher elevations, which may be similar to the wetlands located south of the Site. However, the yellow-bellied flycatcher generally requires old-growth, boreal forests which are not located near the Site and historical populations are associated with former spruce forests in the North and Pocono Mountains of eastern Pennsylvania (PGC, 2018).

Grassland and shrub;

- The least shrew (*Cyptotis parva*) and logger-head shrike (*Lanius ludovicianus*) are state-endangered species which prefer grassland/shrub habitats. These habitats are present at the Site in the form of early-successional vegetation. However, this vegetation is from previous clear-cutting and not a regional trend. These species have primarily been found in southern Pennsylvania (PGC, 2018) where this habitat occurs on a regional level.
- The northern harrier (Circus cyaneus) is a state-threatened species which has breeding populations located in Elk County. However, the northern harrier prefers open wetland, grassland, and farmland (PGC, 2018) and is not likely to occur at the Site.

Boreal forests;

Both the northern flying squirrel (Glaucomys sabrinus macrotis) and blackpoll warbler (Setophaga striata) are state-endangered species which occur in boreal forests. While boreal forests were once wide-spread throughout the state, clearcutting in the early 20th century has eliminated most of these habitats. Currently the Pocono Mountains in eastern Pennsylvania (PGC, 2018) are the only areas which would sustain populations of these species.

Cliffs:

The peregrine falcon (Falco peregrinus) is a state-endangered species that prefers dwelling on cliffs, generally near water, to stalk prey. Peregrine falcons have also used bridges and large buildings as substitutes for natural features. There are no areas within or near the Site which would provide suitable habitat.

Caves.

The Indiana bat (*Myotis sodalis*) is currently limited to only 18 hibernation sites within the state, primarily limestone caves (PGC, 2018). At least one of these sites is located within Elk County. The Indiana bat is, also, a federally protected species. When conducting a review of federally protected areas, none were identified in the vicinity of the Site. During a 2006 inventory of natural heritage areas, no protected areas were identified for the Indiana bat within or near Ridgway Township (Elk County Planning Commission, 2006).

Potential Source Areas and Constituents of Interest

Potential COIs at the Site include metals (antimony, copper, lead, and zinc) and nitroglycerin. The potential sources are related to both direct releases to soil and indirect releases to off-Site sediment. The source areas at the Site are related to the DUs established in the RI (AECOM, 2018) and presented in Figure 1-1. A list of the source areas and related COIs are summarized below:

- Firing Point DU (on-Site soil);
 - o Nitroglycerin
- Target Berm DU (on-Site soil);
 - o Metals
- Soil Pile DU (on-Site soil);
 - o Metals
- French Drain DU (off-Site sediment); and
 - Metals
- Off-Site Drainage Ditch (off-Site sediment).
 - o Metals

Identification and Evaluation of Migration Pathways 2.4

For the screening-level problem formulation, an ecological conceptual site model (ECSM) was developed to identify the migration and exposure pathways of Site constituents in environmental media to ecological receptors. Conceptual models for ecological risk assessments are developed from information about stressors, potential exposure, and predicted effects on an ecological entity (the assessment endpoint). Conceptual models consist of two components:

- A set of risk hypotheses that describe predicted relationships among source/stressor, exposure, and assessment endpoint response, along with the rationale for their selection;
- A diagram that illustrates the relationships presented in the risk hypotheses.

As illustrated in Figure 2-2, the ECSM includes the following components:

- Potential source areas;
- Migration pathways (including potential pathways);
- Exposure media; and
- Exposure pathways (complete and incomplete) for each potential ecological receptor, which may include:
 - Direct contact/absorption;
 - o Direct or incidental ingestion of substrate and surface water; and
 - o Ingestion of prey items.

The evaluation and identification of potential complete migration pathways is one of the primary goals of the SLERA (USEPA, 1997). Identifying complete migration pathways before the effects evaluation is conducted allows the SLERA to focus on only those Site related compounds to which ecological receptors are potentially exposed.

As defined, a "migration pathway" is the pathway by which a constituent travels from a source to receptors. A pathway can involve multiple media such as erosion of soil to drainage ditch sediments, or volatilization to the atmosphere. The term "complete migration pathway" indicates that a constituent is actually reaching ecological receptors, or may potentially do so in the near future.

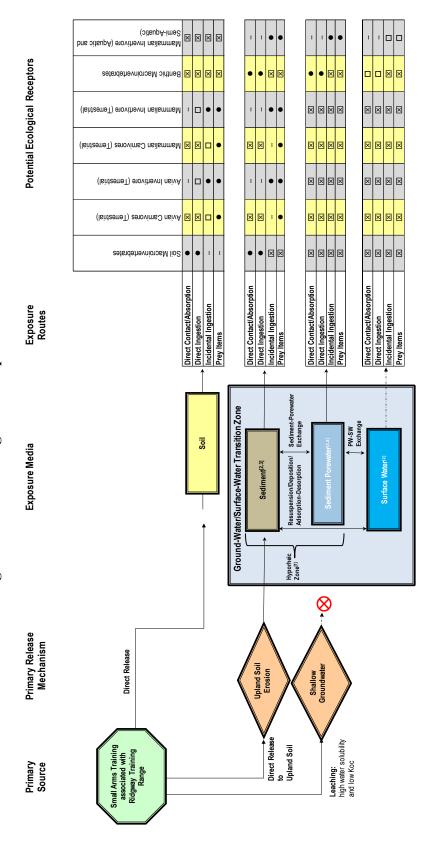
Historical direct releases to soil and subsequent erosion and transport to off-Site drainage areas represent the primary release mechanisms at the Site. Complete migration pathways include:

- Erosion of Site soils.
 - o Although the vertical gradient across the Site is only a few feet, drainage does occur towards the southwest (AECOM, 2018). Mechanisms that may have transported impacted soils from the Site include erosion via overland flow. Heavy metals at or near the soil surface potentially enter overland flow through dissolution and desorption. The transport of metals in soil via overland flow likely occurs during periods of heavy precipitation and spring snowmelt runoff.

Fate and Transport Characteristics

This sub-section discusses constituent fate and transport processes in potentially affected media.

2.5.1 Soils


Site-related COIs detected in soils include metals (antimony, copper, lead, and zinc) and nitroglycerin. Water solubility strongly affects organic constituents leaching potential and environmental fate. Generally, constituents with a water solubility of greater than 30 milligrams/liter (mg/L) exhibit an increasing tendency to leach into groundwater (USEPA, 1997) and soil porewater.

The fate and transport of a metal in soil depends significantly on the chemical form and speciation of the metal (USEPA, 1992). In general, the tendency for nitroglycerin to partition into soils is strongly dependent on the amount of organic matter in soils (Allen et al., 2015). Due to shallow location of soil COIs within the substrate and deep groundwater at the Site, transport via groundwater is not expected. As a result, the transport of COIs will occur with the erosion of surface soils via overland flow. Based on surface topography, erosion should be fairly limited in most portions of the Site.

2.5.2 Sediment

Currently exposure to COIs is limited to 1) sediments around the French drain DU which have been influenced from sediment/surface water draining from beneath the target berm and then

Figure 2-2. Site Ecological Conceptual Site Model

- (1) USEPA (2008). The hypothetic zone is defined as a "latticework of underground habitats through the sediments associated with the interstitial waters in the substrate beneath and adjacent to moving surface-waters." (2) The drainage areas currently receives no groundwater discharge and only retain limited surface water. Flow is stegmant/low and do not drain into any larger surface water body.

 [3] Due to availability of Site-specific data, impact to aquatic and semi-aquatic wildlife will be assessed through sediment data.

1	——► CONTAMINANT MIGRATION PATHWAY
*	
•	POTENTIAL COMPLETE PRIMARY EXPOSURE PATHWAY
	EXPOSURE PATHWAY IS COMPLETE AND INSIGNIFICANT
٠	SIGNIFICANCE OF EXPOSURE PATHWAY IS UNCERTAIN
×	INCOMPLETE EXPOSURE PATHWAY

ponding around the drain and 2) soil which has been potentially transported from the Site into the off-Site drainage ditch south of the MRS.

Metals are the only COIs detected in on- and off-Site sediments. The release of metals from solid phases to liquid phases, i.e., overlying water or sediment porewater, governs the bioavailability and toxicity of metals. As a result, the bioavailability and toxicity of metals in sediments is associated with the exchangeable fraction of metals in sediment porewater rather than the bulk sediment total metal concentration (USEPA, 2007a; USEPA, 2005; and Ankley et al., 1996).

The majority of metals in porewater are complexed by colloids, and do not exist as freely dissolved metal-ion complexes (Burgess et al., 1996). Therefore, metals concentrations measured in filtered porewater samples more accurately represent the dissolved fraction of metals, which is bioavailable and can be incorporated into the tissues of benthic invertebrates (USEPA, 2005).

In sediment, metals are subjected to biogeochemical processes and conditions that influence their partitioning, including the redox state of sediment and pH of the interstitial water. The microbial degradation of organic matter influences redox conditions across the sedimentsurface water interface (SWI) (Baker, 1994; Stumm and Morgan, 1981; in Charriau et al., 2011). Generally, metal mobility increases at low pH and decreases as pH increases, at which point greater sorption occurs (USEPA, 2007a).

2.5.3 Biota

Bioaccumulation represents the potential for a constituent to accumulate in the tissues of an organism. In those instances where bioaccumulation exceeds the ability of an organism to metabolize those constituents, toxic effects can potentially be observed. Wildlife ingesting prey with body burdens of lipophilic compounds may also experience adverse effects when accumulation reaches a threshold level. The purpose of evaluating bioaccumulation potential is to describe the potential of constituents to bioaccumulate in tissues and potentially exert a toxic effect and/or expose upper trophic wildlife receptors through ingestion pathways.

The partitioning of organics into organisms depends on the hydrophobicity of the compound which is expressed by the base 10 logarithm (log) n-octanol/water partitioning coefficient (log K_{ow}). This represents the partitioning of the organic compound between an octanol and water phase. COPEC bioaccumulation can be estimated based on log K_{ow}. Generally, bioaccumulation is likely to occur with persistent and very hydrophobic chemicals including those chemicals with log K_{ow} values that range from 5 to 8 (Hoffman et al., 1995). Nitroglycerin has a log K_{ow} of 1.62 (Hansch et al., 1995) and is not expected to bioaccumulate.

Heavy metals identified at the Site are known to bioaccumulate, but not biomagnify (USEPA, 2000). In contrast, mercury (including methylmercury) both bioaccumulates and biomagnifies. The implications of biomagnification are that even a low concentration of a metal in environmental media or diet items can result in a high enough dosage that adverse effects for birds and mammals may potentially be observed. Metals, such as lead, can bioaccumulate to a point where the concentrations may become a significant source of dietary metal to their predators.

Prepared for: Army National Guard AECOM 2-13

Ecotoxicological Profiles 2.6

This section summarizes the general ecotoxicological effects associated with Site-related constituents including nitroglycerin and metals (antimony, copper, lead, and zinc).

2.6.1 Nitroglycerin

Wildlife toxicity assessments for nitroglycerin are limited primarily to mammalian effects with limited evidence of adverse effects in avian populations (United States Army Center for Health Promotion and Preventive Medicine [USACHPPM], 2007). Toxicity of nitroglycerin has been observed primarily through oral ingestion. Adverse chronic effects observed for mammals have included hematological, hepatic, and body weight changes (USACHPPM, 2007). Generational studies have shown offspring to be impacted from poor nutrition and feeding rates of nursing female rats (USACHPPM, 2007).

2.6.2 Metals

The toxicity of metals depends on the solubility and bioavailability of the particular metal. It is assumed that the water soluble fraction in soil exhibits the greatest potential for adverse ecological risk because it is directly available for uptake by organisms.

The bioavailability and toxicity of Site-related metals in soil are influenced by soil physiochemical characteristics, including the quantity and type of organic carbon. For these reasons, the concentration of a metal in bulk soil does not represent its bioavailability or potential for toxicity (Allen and Janssen, 2006; Thakali et al., 2006a and 2006b). Rather, the bioavailable and toxic form of metals is found in the soil solution (Thakali et al., 2006a and 2006b). Metals exist in the soil solution as either free (uncomplexed) metal ions in soluble complexes with inorganic or organic ligands, or associated with mobile inorganic and organic colloidal material. Common inorganic ligands are sulfate (SO₄²⁻), chloride (Cl⁻), hydroxide (OH⁻), phosphate (PO₄³⁻), nitrate (NO₃⁻), and carbonate (CO₃²⁻). Common organic ligands include low molecular weight aliphatic, aromatic, and amino acids and soluble constituents of fulvic acids.

Exposure Routes and Receptors Not Evaluated

This section provides the rationale for exposure routes and receptors not selected for further evaluation.

2.7.1 Groundwater

Based on previous site investigations, there is no evidence that groundwater is interacting with subsurface soil impacted by previous Site activities. The static water level in a former on-site well (now permanently sealed) was approximately 30 ft below ground surface (bgs) as indicated on the driller's log (reported in AECOM, 2018).

2.7.2 Surface Water

- Within the MRS, there are no surface water features. Surface water flow across the Site is fairly limited due to minimal topographic variation. Beneath the target berm, there is a drainage pipe, which transports water north of the Site. This water ponds during rain events around the French drain DU, but disappears within days.
- Off-Site, there is a drainage ditch which borders to the west and south and a culvert along the eastern boundary. Water within these features are shallow and have limited flow.
- Impacts to the benthic macroinvertebrate community will be evaluated using sediment data. These drainage areas and ponding around the French drain DU could provide viable habitat for breeding invertebrate communities and organisms which feed on them.

2.7.3 Terrestrial and Wetland Plants

- In selecting ecological screening values (ESVs) used in the SLERA, plant-based benchmarks were less conservative than other benchmarks used in the SLERA. Plants were indirectly evaluated in the SLERA for all COIs.
- Metals are considered driver constituents at the Site. Vegetation was omitted in the SLERA because the published plant ESVs for metals are derived from exposure to soils dosed with highly-soluble metal salts which do not represent the kind of metals bioavailability experienced in the field. Hence, those ESVs are of limited value in riskbased decision making.
- Of the potential ecological receptors that are present at the Site, plants are not the most sensitive to the potential effects of Site-related COIs (Suter et al., 2000). For example, unlike herbicides, the toxic and bioaccumulative effects of Site-related metals and organics (nitroglycerin) on plants may be mitigated by biotransformation, volatilization, and/or sequestration in root tissues.

2.7.4 Amphibians

- A standardized ecotoxicological methodology has not been established, and currently, there are very few established methods to evaluate the toxicity of chemical stressors for amphibians. Also, existing ecotoxicological methods are unlikely to predict adverse ecotoxicological effects in support of the SLERA (Johnson et al., 2017).
- Ecotoxicological data for amphibians are limited. The majority of the available ecotoxicological data on amphibians are from acute exposures in aquatic test systems (Johnson et al., 2017). Because of the conservatism in the SLERA, acute ecotoxicological data will not support SLERA assessment and measurement endpoints.
- Surrogate species cannot be used. Definitive comparisons with surrogate species, e.g., fish and amphibians are difficult to achieve because of variability in study design (Birge et al., 2000; Johnson et al., 2017).

Amphibians will be evaluated indirectly. The proposed conservative screening approach for sediments is intended to be protective of sensitive aquatic organisms.

Receptors of Concern and Exposure Routes Selected for Evaluation 2.8

Based on the evaluation of the chemical and fate and transport characteristics of Site constituents, direct contact exposures to soil are the primary routes of exposure to ecological receptors at the Site. Additionally, wildlife ingestion exposure pathways are also significant due to the potential for Site-related constituents to bioaccumulate from environmental media (i.e., soils into the tissues of prey items).

Selection of potential receptors was driven by the availability of data in potentially affected habitats on the Site. Given that direct contact and dietary exposure to Site-related metals and organics are the primary exposure pathways/routes to ecological receptors, receptors of concern identified for evaluation in the SLERA include the following:

- Terrestrial Receptors and
 - Soil macroinvertebrate community
 - o Mammalian invertivore: Short-tailed shrew (Blarina brevicauda)
 - Mammalian carnivore: Red fox (Vulpes vulpes)
 - Avian invertivore: American robin (*Turdus migratorious*)
 - o Avian carnivore: Red-tailed hawk (*Buteo jamaicensis*)
- Aquatic and Semi-Aquatic Receptors.
 - o Benthic macroinvertebrate community
 - Mammalian invertivore: Little brown bat (*Myotis lucifugis*)

Summaries of exposure pathways and rationale for selected sensitive receptor groups are presented in the following sub-sections.

2.8.1 Soil Macroinvertebrates

Soil invertebrates are the most susceptible to the effects of Site-related constituents because of their sedentary nature and direct exposure to terrestrial soil. As a result of this exposure, soil invertebrates are sensitive to both acute and chronic changes in soil quality. Exposure routes for soil invertebrates include:

- Direct contact/absorption within the biologically active zone (BAZ); and
- Direct/incidental ingestion.

Soil invertebrates such as earthworms can incorporate Site-related constituents into their tissues through feeding in soil and leaf litter, in addition to burrowing in affected soils. Because earthworms and other soil invertebrates are relatively immobile, these species can potentially be exposed to a maximum constituent concentration in soil during the course of their lifetime (Suter et al., 1995).

Prepared for: Army National Guard **AECOM** For soil invertebrates, most exposure occurs within the BAZ, which operationally extends to a depth of approximately 1 (USEPA, 2015ab) to 2 ft bgs (USEPA, 2018; Efroymson et al., 1996). Soil invertebrates, however, penetrate and exploit the surface soil layer to varying depths, which results in varying degrees of exposure. For example, epigeic species such as arthropods can be found at the surface layer in leaf litter. Whereas epi-endogeic species such as the European earthworm (Lumbricus rubellus), primarily reside near or at the surface, create horizontal burrows to feed and reproduce, and are found at soil depths of approximately 8 inches (Sackett et al. 2012). Anecic earthworm species such as the common earthworm L. terrestris create permanent vertical burrows in soil, which contain leaf litter and soil mixed from different depths of the profile, and can extend to depths of 6.5 ft (Scharenbroch and Johnston, 2011). L. terrestris will feed on leaves on the soil surface that they drag into the burrows.

For these reasons, exposure pathways to soil invertebrates are considered to be complete within the 0-2 ft interval.

2.8.2 Benthic Macroinvertebrates

The erosion of Site soils to downgradient drainage ditch and French Drain DU sediment has been determined to be complete. Exposure routes for benthic macroinvertebrates include:

- Direct contact/absorption within the BAZ; and
- Direct/incidental ingestion.

Benthic macroinvertebrates were selected as the representative ecological receptors for aquatic habitats. Benthic macroinvertebrates are generally sedentary and susceptible to adverse changes in sediment and sediment porewater quality. Additionally, USEPA (2008) indicates that benthic and epibenthic communities, e.g., invertebrate larvae, worms, fish and bivalves spend part or all of their life cycle in contact with the sediments and groundwater that comprise the groundwater-surface water transitional zone.

For benthic macroinvertebrates, exposure occurs within the BAZ, which operationally extends from the SWI to a depth of approximately 0.5 ft (6 inches) for freshwater sediment (USEPA, 2001). Hence, for the purposes of the conservative screening-level evaluation, the BAZ is considered to extend to 0.5 ft below the SWI, i.e., within the groundwater-surface water transitional zone.

Based on availability of habitat near the Site, the benthic macroinvertebrate community is most likely represented by egg and larval stages of flying invertebrates which nest in shallow sediments.

2.8.3 Birds and Mammals

Exposure routes for birds and mammals include:

- Ingestion of prey items; and
- Incidental ingestion of soil/sediment.

Exposure for these species occurs primarily within the 0-2 ft soil interval. Although a significant proportion of the biological activity occurs within the top 0-12 inches, fossorial mammals can be encountered at depths reaching 2 ft (USEPA, 2018). Terrestrial ecological receptors selected for the exposure evaluation are discussed in the following subsections.

2.8.3.1 Short-tailed Shrew

The short-tailed shrew occupies a range of habitat types including wetlands and uplands and is reported to occur in both forested and open habitats (Sample and Suter, 1994). Short-tailed shrews are active on the surface, in leaf litter, and below the ground surface. A well-developed leaf litter layer protects shrews from moisture and temperature extremes. Earthworms are reported to be the most important food item. Millipedes, slugs, snails, and insect larvae are also important prey items.

Shrew will also prey on vertebrates when other food is not available and have shown sensitivity to bioaccumulative chemicals (USEPA, 1993). Additionally, the shrew is a common prey item for owls, raptors, fox, and other carnivores (USEPA, 1993). The short-tailed shrew is expected to occupy all areas of the Site with a complete exposure pathway to surface soil.

2.8.3.2 Red Fox

Foxes prefer a habitat mosaic over homogeneous forested stands or open areas. The red fox is characterized as an old field or edge-species since it is commonly found in areas of forests interspersed with fields, cropland and/or grasslands. The fox has a wide dietary range but is predominantly carnivorous feeding mainly on rabbits and mice (USEPA, 1993). Lesser amounts of mammals, birds, snakes, invertebrates, and plant material are consumed.

Due to the break in habitat type the Site provides relative to the surrounding forests, the Site would be an ideal location for the red fox to feed on small mammals. Due to its large range (407 hectares; average of male and female from Sample and Suter [1994]), the red fox will be assessed conservatively at a Site-wide level.

2.8.3.3 American Robin

American robins can be found in closed canopy forests, woodlands, fields, and residential areas. During the summer, they are most commonly observed foraging in cleared areas with short-stature herbs. The diet of the American robin includes fruits and insects. The diet varies seasonally such that invertebrates dominate the diet in the spring, whereas fruits dominate in the fall/winter (USEPA, 1993).

The American robin could potentially occupy all areas at the Site and is susceptible to localized impacts in soil. The American robin will be initially evaluated using an entirely invertebrate diet to conservatively estimate the impact of COIs in soil.

2.8.3.4 Red-tailed Hawk

Red-tailed hawks occupy a wide variety of open to semi-open habitats including coniferous, deciduous and mixed woodlands, woodland edges, grasslands, parklands, and agricultural fields

with scattered trees (USEPA, 1993). Red-tailed hawks primarily consume small mammals such as meadow voles and short-tailed shrews, but also consume birds, reptiles, and some insects.

The red-tailed hawk could potentially feed in any part of the Site. The forests surrounding the Site provide ample locations for nesting or perching and access to a variety of habitat areas. Due to its large range (233 hectares [Sample and Suter, 1994]), the red-tailed hawk will be assessed conservatively at a Site-wide level.

2.8.3.5 Little Brown Bat

The little brown bat roost in caves, buildings, and hollow trees which can maintain constant temperature and higher relative humidity (DeGraaf and Rudis, 1986) and is abundant throughout forests of the United States (Bat Conservation International; 2018). The feeding range for bat colonies are extensive and not-well defined (DeGraaf and Rudis, 1986 and Sample and Suter, 1994); however, bats have been observed to use temporary roosts and feed up to six miles from their home roost (Washington Department of Fish and Wildlife, 2018).

Although little brown bats live and reproduce in terrestrial habitats, they often feed on aquatic flying insects and will skim small streams for food and may consume up to its own body weight during breeding (Chesapeake Bay Program, 2018). The little brown bat will be used as a model receptor for all potential bat species due to prevalence within the region of study and availability of literature and resources.

The little brown bat could potentially feed over any part of the Site, but will be most attracted to the off-Site drainage ditch and French Drain DU where breeding flying insects will lay their eggs in sediment and subsequently hatch and become an abundant food source. Due to its large feeding range, the little brown bat will be assessed conservatively at a Site-wide level.

2.9 Assessment and Measurement Endpoints

An assessment endpoint is an explicit expression of the environmental value that is to be protected. Because of the nature of potential contaminants and the receptors of concern (invertebrates, birds, and mammals), a general assessment endpoint of maintenance of upland, terrestrial community composition is selected.

Measurement endpoints are the measurable ecological characteristics that are related to the assessment endpoints. Measurement endpoints were selected based on their direct relationship to the maintenance of the respective receptor populations. Hence, potential adverse effects on survival, reproduction, and growth are selected as the measurement endpoints. The assessment endpoint(s) and their associated measurement endpoint for the representative receptors are shown below:

Assessment Endpoint(s)	Measurement Endpoint				
Invertebrate Community					
Survival, growth, and reproduction of the	Comparison of COI concentrations in soil to				
soil invertebrate community.	ecotoxicity benchmarks for soil invertebrates.				

Assessment Endpoint(s)	Measurement Endpoint
Survival, growth, and reproduction of the benthic macroinvertebrate community.	Comparison of COI concentrations in sediment to ecotoxicity benchmarks for benthic macroinvertebrates.
Avian Community	
Survival, growth, and reproduction of the avian invertivore community.	Comparison of modeled daily doses to a toxicity reference value (TRV).
Survival, growth, and reproduction of the avian carnivore community.	Comparison of modeled daily dose to a TRV.
Mammalian Community	
Survival, growth, and reproduction of the mammalian invertivore community.	Comparison of modeled daily doses to a TRV.
Survival, growth, and reproduction of the mammalian omnivore community.	Comparison of modeled daily doses to a TRV.
Survival, growth, and reproduction of the mammalian carnivore community.	Comparison of modeled daily doses to a TRV.

2.10 Ecological Screening Benchmarks

The maximum concentrations of Site-related constituents were compared to their respective chronic ESVs to identify COPECs. The screening-level effects evaluation establishes constituent exposure concentrations that represent thresholds for adverse effects. The following sections discuss the conservative screening criteria established for the selection of COPECs and additional receptor-specific ecotoxicological data that may be used in exposure estimation and risk characterization. Benchmarks representing no observed effects concentrations (NOECs) were used preferentially. ESVs are presented in **Table 2-2**.

Table 2-2. Ecological Screening Values

COL	Soil 1	Sediment ESVs				
COI	Direct Contact		Wildlife		(mg/kg) ⁽¹⁾	
Antimony	78	a	0.27	a	2	b
Copper	80	a	28	a	31.6	b
Lead	1,700	a	11	a	35.8	b
Zinc	120	a	46	a	121	b
Nitroglycerin	13	a	70	a	Not Evaluated	

COI = Constituent of Interest; ESV = Ecological Screening Value; mg/kg = milligram per kilogram

- (1) ESVs presented for sediment are the same for both benthic invertebrates and wildlife.
- (a) USEPA. 2018. Region 4 Ecological Risk Assessment Supplemental Guidance Interim Draft. Scientific Support Section Superfund Division EPA Region 4.
- (b) USEPA. 2006. Freshwater Sediment Benchmarks. EPA Region 3 BTAG. URL: http://www.epa.gov/reg3hscd/risk/eco/btag/sbv/fw/screenbench.htm

3 Step 2: Screening Level Exposure Estimate

This section describes the methodology used to conduct screening-level exposure estimates and risk calculations for selected receptor categories, consistent with SLERA Step 2 of ERAGS (USEPA, 1997). This phase of the SLERA uses the results of the screening-level problem formulation and Ecological Effects Evaluation in Step 1 to estimate exposure and characterize risk. This section:

- Identifies exposure units (EUs);
- Describes the data used to characterize ecological exposure;
- Presents the exposure estimate methodology;
- Describes the risk characterization process;
- Specifies the criteria for COPEC selection; and
- Presents the SMDP.

3.1 Exposure Units

The EU is a location within which an exposed ecological receptor can reasonably be assumed to move at random and where contact with an environmental medium is equally likely at all points within the EU.

Although the Site is small and receptors can freely move between areas, EUs were selected based on 1) type of data available (incremental versus discrete); 2) COI source (nitroglycerin vs metals); and 3) DU designation provided in the RI (AECOM, 2018). Receptors with larger ranges and limited substrate intake (e.g. red fox and red-tailed hawk) were evaluated conservatively at a Site-wide level, since they are unlikely to be restricted by these designations.

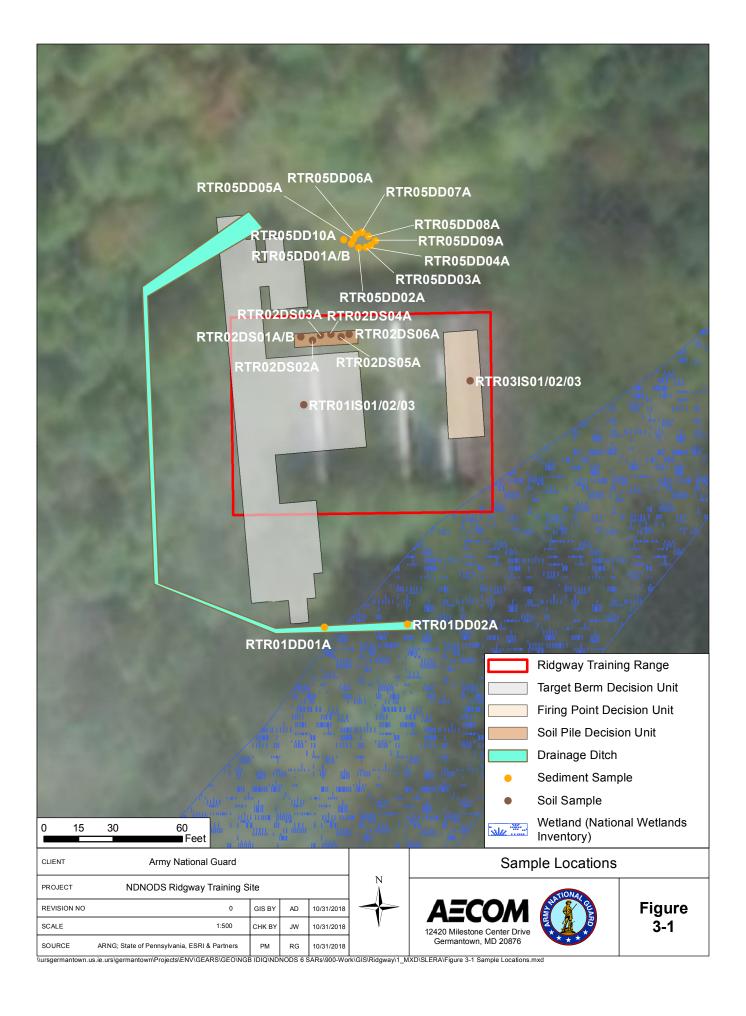
The EUs chosen and applicable ecological receptors are listed below:

- Target Berm DU (on-Site);
 - Soil macroinvertebrates
 - Short-tailed shrew
 - o American robin
- Firing Point DU (on-Site);
 - o Soil macroinvertebrates
 - Short-tailed shrew
 - o American robin
- Soil Pile DU (on-Site);
 - Soil macroinvertebrates
 - Short-tailed shrew
 - American robin
- On-Site Soil;

- o Red fox
- Red-tailed hawk
- French Drain DU (off-Site)
 - o Benthic macroinvertebrates
- Drainage Ditch (off-Site); and
 - Benthic macroinvertebrates
- Off-Site Sediment.
 - Little brown bat

3.2 Data Used to Characterize Ecological Exposure

The soil and sediment data used in the SLERA are representative of the nature and extent of on-Site COIs and potential off-Site impact. **Attachment C** presents the data used to evaluate potential ecological receptors. **Figure 3-1** shows the locations of samples used in this SLERA. Quality assurance/quality control procedures outlined in AECOM (2018) were used to assess the precision and accuracy of analytical data.


For the Target Berm and Firing Point DUs, incremental samples were collected and analyzed in triplicate to provide representative exposure point concentrations (EPCs) for these areas. Biased, discrete samples were also collected for the purposes of source delineation. Discrete samples will only be used at EUs without incremental samples (Soil Pile DU, French Drain DU, and off-Site drainage ditch). Discrete samples used in support of source delineation will be discussed in **Section 5.0 Uncertainty Analysis**.

A discrete, field duplicate sample was collected in the Soil Pile DU and the French Drain DU. Discrete, field duplicate samples, if considered equally representative, are not independent samples. New Jersey Department of Environmental Protection (2014) considers a relative percent difference (RPD) less than 50% to be indicative of representative samples for solid matrices. The RPD between primary and duplicate results for the soil and sediment sample locations are presented below. The RPD was calculated by:

RPD (%) = abs
$$\left(\frac{\text{primary - duplicate}}{\text{mean (primary, duplicate})}\right) \times 100$$

Results which were not considered representative were retained as independent samples. The mean of the primary and duplicate was used for samples determined to be representative.

COI	Result	(mg/kg)	RPD	Donwasantativa?	Mean				
COI	Primary	Duplicate	(%)	Representative?					
Soil Pile DU (RTR02DS01A/B)									
Antimony	51.2	4.93	165	No	Retain Both				
Copper	828	145	140	No	Retain Both				
Lead	6,940	999	150	No	Retain Both				
Zinc	266	106	86	No	Retain Both				
French Drain DU (RTR05DD01A/B)									
Antimony	0.253	0.362	35	Yes	0.308				

COI	Result	(mg/kg)	RPD	Danmagantativa?	Maan	
COI	Primary	Duplicate	(%)	Representative?	Mean	
Copper	17.4	25.2	37	Yes	21.3	
Lead	106	179	51	No	Retain Both	
Zinc	48.4	56.6	16	Yes	52.5	

3.3 Exposure Estimate Methodology and Risk Characterization

The preliminary exposure estimate presents the most conservative exposure scenario based on the most conservative exposure assumptions. Maximum concentrations were used to evaluate exposure. This approach addresses wildlife with small home ranges and sedentary organisms, e.g., earthworms.

3.3.1 Exposure Estimate Methodology

Preliminary exposure assumptions are presented below for each receptor category:

- Direct Contact Evaluation (Soil Invertebrates);
 - A direct contact evaluation compares maximum COI concentrations measured in soil to conservative direct contact ESVs known to be protective of soil macroinvertebrates.
- Direct Contact Evaluation (Benthic Macroinvertebrates);
 - A direct contact evaluation compares maximum COI concentrations measured in sediment to conservative direct contact ESVs known to be protective of aquatic organisms exposed to sediment in the off-Site drainage ditch and French Drain DU.
- Preliminary Wildlife Screening (Birds and Mammals); and
 - For both terrestrial and aquatic/semi-aquatic receptors, maximum COI concentrations in both soil and sediment will be compared to ESVs protective of wildlife. Exceedances of ESVs protective of wildlife will require additional modeling to estimate the potential risk for each receptor.
- Dose Rate Modeling (Birds and Mammals).
 - A dose rate model (DRM) was used to generate a total estimated daily dose (EDD_{total}) experienced by each selected receptor. EDD_{total} was compared with a TRV to assess the potential for ecological risk. EDD_{total} consists of the sum of doses obtained from diet (EDD_{diet}), along with the incidental ingestion of the substrate, i.e., soil (EDD_{substrate}). The total estimated daily dose (EDD_{total}) experienced by each selected receptor was calculated as the sum of the doses obtained from these routes of exposure. The contribution of surface water for this SLERA was considered negligible with prey items consisting of each receptors primary source of dietary water.

- o Dietary composition for wildlife receptors was assumed to consist of 100% of the most contaminated prey item. Wildlife DRMs based on maximum detected COI concentrations assumed an area use factor (AUF) of 100%; this represents the worst-case exposure scenario for wildlife, and assumes that receptors continuously forage at the maximum COI concentration in each EU.
- EDD_{total} for each constituent was compared to conservative TRVs for that constituent. TRVs constitute threshold effects concentrations derived from published toxicity test data. Two TRVs were used including the No Observable Adverse Effect (NOAEL) and the Lowest Observable Adverse Effect Level (LOAEL). The NOAEL and LOAEL are daily dose levels normalized to the body weight of the test animals, e.g., milligrams of chemical per kilogram body weight per day (mg/kg-day). The NOAEL represents the highest value within the same endpoint as the LOAEL, e.g., reproduction.
- o Additional details of DRMs and wildlife TRVs used in the SLERA are presented in Attachment D.

3.3.2 Risk Characterization Methodology

Potential risks associated with the ecological exposure estimates are expressed as a hazard quotient (HQ), which represents the ratio of the EPC to the ESV for direct contact pathways or the calculated EDD to the TRV for wildlife ingestion pathways:

Based on the magnitude of the HQs, potential risks may be interpreted as follows:

- A HO less than 1 based on a NOEC or NOAEL indicates that potential risk is not expected because the estimated exposure has not been demonstrated to cause adverse ecological effects (USEPA, 1997);
- A HQ greater than 1 based on a NOAEL, but an HQ less than 1 based on a LOAEL, indicates some potential for risk and further refinements should be made to reduce uncertainty; and
- A HQ equal to or greater than 1 based on a low observable effects concentration (LOEC) or LOAEL generally indicates a potential for risk because estimated exposure exceeds a known threshold of effects.

This decision criterion reflects the abundance of caution adopted for the SLERA and Step 3 evaluations.

3.3.3 Risk Characterization Summary

The preliminary exposure estimate results for all receptors are summarized in the sections below. Table 3-1 and Table 3-2 present the direct contact evaluation and preliminary wildlife screening of soil and sediment COIs, respectively, at all EUs. Table 3-3 summarizes the dose rate model results for soil and sediment COPECs for all relevant receptors at all applicable EUs. Full DRM results, explanation of model parameters, and wildlife TRVs can be found in Attachment D.

Table 3-1. Direct Contact Evaluation and Preliminary Wildlife Screening (Soil)

	Samp	Dete			ESV ⁽¹⁾ (mg/kg)		Direct Contact		Proce ed to	
COI	le Coun t	ct Freq. (%)	ct (mg/ kg)	ct (mg/ kg)	(mg/ depth in.	DC	Wi ld	HQ	COP EC	Wildli fe DRM ?
Firing Poir	nt DU									
Nitroglyc erin	3	100	3.70	21	RTR03IS03 (0-6)	13	70	2	Yes	No
Target Ber	m DU									
Antimony	3	100	24.8	40.1	RTR01IS03 (0-6)	78	0.2	<1	No	Yes
Copper	3	100	481	636	RTR01IS01 (0-6)	80	28	8	Yes	Yes
Lead	3	100	5,720	8,770	RTR01IS03 (0-6)	1,7 00	11	5	Yes	Yes
Zinc	3	100	149	165	RTR01IS03 (0-6)	12 0	46	1	Yes	Yes
Soil Pile D	U									
Antimony	7	100	2.24	58.5	RTR02DS02A (0-12)	78	0.2 7	<1	No	Yes
Copper	7	100	76.6	1,740	RTR02DS02A (0-12)	80	28	22	Yes	Yes
Lead	7	100	672	8,980	RTR02DS02A (0-12)	1,7 00	11	5	Yes	Yes
Zinc	7	100	106	314	RTR02DS02A (0-12)	12 0	46	3	Yes	Yes

% = Percent; COI = Constituent of Interest; DC = Direct Contact; DRM = Dose Rate Model; DU = Decision Unit; Freq. = Frequency; HQ = Hazard Quotient; in. bgs. = inches below ground surface; Max. = Maximum; mg/kg = milligram per kilogram; Min. = Minimum; Wild = Wildlife

(1) Sources for ESVs are presented in **Table 2-1**.

Table 3-2. Direct Contact Evaluation and Preliminary Wildlife Screening (Sediment)

	Samp	Dete	Min. Dete	Max. Dete	Max. Dete Location of (ESV ⁽¹⁾ (mg/kg)			
COI	le Coun t	ct Freq. (%)	ct (mg/ kg)	ct Max	DC	Wi ld	HQ	COP EC	Wildli fe DRM ?	
French Dra	ain DU	•							•	
Antimony	10	100	0.092	0.638	RTR05DD05A (0-6)	2	2	<1	No	No
Copper	10	100	6.63	38.7	RTR05DD02A (0-6)	31. 6	31. 6	1	Yes	Yes
Lead	11	100	17.6	358	RTR05DD02A (0-6)	35. 8	35. 8	10	Yes	Yes
Zinc	10	100	34.7	71.1	RTR05DD10A (0-6)	12 1	12 1	<1	No	No
Drainage I	Ditch				, , , ,			•		
Antimony	2	100	0.18	0.966	RTR01DD01A (0-6)	2	2	<1	No	No
Copper	2	100	15.3	79.7	RTR01DD01A (0-6)	31. 6	31. 6	3	Yes	Yes
Lead	2	100	15.8	242	RTR01DD01A (0-6)	35. 8	35. 8	7	Yes	Yes
Zinc	2	100	62.4	74.9	RTR01DD01A (0-6)	12 1	12 1	<1	No	No

% = Percent; COI = Constituent of Interest; DC = Direct Contact; DRM = Dose Rate Model; DU = Decision Unit; Freq. = Frequency; HQ = Hazard Quotient; in. bgs. = inches below ground surface; Max. = Maximum; mg/kg = milligram per kilogram; Min. = Minimum; Wild = Wildlife

(1) Sources for ESVs are presented in **Table 2-1**.

Table 3-3. Wildlife Dose Rate Model Summary

COI	Short-tailed Shrew HQ		Red Fox HQ		American Robin HQ		Red-tailed Hawk HQ		Little Brown Bat HQ	
	NOA	LOA	NOA	LOA	NOA	LOA	NOA	LOA	NOA	LOA
	EL	EL	EL	EL	EL	EL	EL	EL	EL	EL
Target Berm DU										
Antimony	94	<1			(a)	-		-		
Copper	1	<1			4	<1		1		-
Lead	44	1			200	7		1		-
Zinc	<1				1	1		1		-
Soil Pile DU										
Antimony	137	<1			(a)	1		1		-
Copper	2	<1			8	2		1		-
Lead	44	1			205	7		1		-
Zinc	1				1	1		1		-
Site-Wide (Soil)										
Antimony			1	<1			(a)			
Copper			<1	<1			2	<1		
Lead			3	<1			28	1		
Zinc			<1				<1			
Site-Wide										
(Sediment)										
Copper						-		-	4	<1
Lead									<1	<1

Bold indicates an exceedance of wildlife TRV; -- = Not Evaluated; COI = Constituent of Interest; DU = Decision Unit; HQ = Hazard Quotient; LOAEL = Lowest Observed Adverse Effects Level; NOAEL = No Observed Adverse Effects Level

(a) As indicated in USEPA (2007b), insufficient data to derive a TRV for avian receptors.

3.3.3.1 Soil Macroinvertebrates

Based on the comparison of maximum COI concentrations the following soil, direct contact COPECs were identified:

- Firing Point DU;
 - o Nitroglycerin
- Target Berm DU; and
 - Copper
 - o Lead
 - o Zinc
- Soil Pile DU.
 - o Copper
 - o Lead
 - o Zinc

3.3.3.2 Benthic Macroinvertebrates

Based on the comparison of maximum COI concentrations the following sediment, direct contact COPECs were identified:

- French Drain DU; and
 - Copper
 - o Lead
- Drainage Ditch.
 - o Copper
 - o Lead

3.3.3.3 Birds and Mammals

Based on the comparison of maximum COI concentrations the following wildlife COPECs were identified:

- Target Berm DU;
 - Antimony (Short-tailed shrew)
 - o Copper (Short-tailed shrew and American robin)
 - o Lead (Short-tailed shrew and American robin)
 - Zinc (American robin)
- Soil Pile DU;
 - Antimony (Short-tailed shrew)
 - o Copper (Short-tailed shrew and American robin)
 - o Lead (Short-tailed shrew and American robin)
 - o Zinc (Short-tailed shrew and American robin)

- On-Site Soil; and
 - Antimony (Red fox)
 - o Copper (Red-tailed hawk)
 - Lead (Red fox and red-tailed hawk)
- Off-Site Sediment.
 - o Copper (Little brown bat)

3.4 Scientific Management Decision Point

The SMDP is a determination made at the culmination of the SLERA process that states whether there is sufficient information to make a decision regarding risk management strategies (USEPA, 1997). The SMDP rendered at the end of the preliminary risk calculation will not set a clean-up goal. As previously discussed, one of the following conclusions will be reached:

- The ecological risk assessment should be continued to develop a site-specific clean-up goal, or to reduce uncertainty in the evaluation of risk and impact;
- The preliminary screening is adequate to determine that ecological risks are negligible, i.e., de minimis; or
- There is substantial impact (*de manifestis*). Proceed to remediation that can eliminate or reduce exposure to an acceptable level (Suter et al., 1995; in PADEP, 2002).

The following sections summarize the SMDPs for each medium and receptor(s) if applicable.

3.4.1 On-Site Soil

The risk characterization supports the following SMDP for exposure to Site-related constituents in soil:

There is substantial impact (de manifestis). Proceed to remediation that can eliminate or reduce exposure to an acceptable level (Suter et al., 1995; in PADEP, 2002).

Individual SMDPs and rationale for the risk characterization of on-Site soil are presented below:

- Soil invertebrates and
 - Maximum concentrations of nitroglycerin (Firing Point DU) and copper, lead, and zinc (Target Berm and Soil Pile DUs) exceeded ESVs protective of soil invertebrates.
 - Further refinements made to the direct contact evaluation (e.g., refined EPC) will reduce uncertainty, but will still exceed benchmarks protective of soil invertebrates.
- Terrestrial wildlife.
 - Wildlife DRMs indicated that NOAEL TRVs (protective of either mammalian or avian wildlife) were exceeded by maximum concentrations of antimony, copper,

- lead, and zinc in soil at Target Berm and Soil Pile DUs and by antimony, copper, and lead for all on-Site soil.
- o Additionally, exposure estimates for the shrew and robin exceeded LOAEL TRVs. Further refinements to DRMs may reduce uncertainty further, however, are unlikely to eliminate unacceptable risk.

3.4.2 Off-Site Sediment

The risk characterization supports the following SMDP for exposure to Site-related constituents in sediment:

The preliminary screening has determined that the SLERA should be continued to BERA Step 3 to reduce uncertainty in the evaluation of risk and impact.

Further evaluation of the direct contact exposure pathways to benthic macroinvertebrates, in addition to food-web mediated exposure for aquatic/semi-aquatic wildlife, is conducted in BERA Step 3. Individual SMDPs are presented below:

- Benthic macroinvertebrates and
 - o Maximum concentrations of copper and lead exceeded ESVs protective of benthic macroinvertebrates in both the French Drain DU and Drainage Ditch. Exposure estimates will be refined using more representative EPCs and more realistic ESVs.
- Aquatic/semi-aquatic wildlife.
 - o Wildlife DRMs indicated that maximum concentrations of copper exceeded NOAEL TRVs protective of mammalian wildlife in all off-Site sediment. Exposure estimates will be refined using more representative EPCs and more realistic TRVs.

4 Step 3: Constituents of Potential Ecological Concern Refinement

SLERA Steps 1 and 2 were used to select COPECs and evaluate ecological risk under a conservative, "worst-case" scenario. Steps 1 and 2 were also used to identify which constituents can be eliminated from further consideration and those that should be evaluated further.

Because of the conservative assumptions used during Steps 1 and 2, some of the COPECs retained for BERA Step 3 COPEC refinement might pose negligible risk. By conducting a refined exposure evaluation, Step 3 can reduce the list of COPECs and determine if there are COPECs that truly warrant further evaluation with a BERA and/or remediation. Furthermore, Step 3 can focus on the potential risk drivers and portions of the Site where the likelihood of adverse ecological effects is greatest.

The BERA Step 3 refinements included:

- Refined direct contact evaluation for benthic macroinvertebrates and
- Refined DRM for little brown bat.

4.1 Refined Direct Contact Evaluation for Benthic Macroinvertebrates

Step 3 direct contact evaluation refinements for the benthic macroinvertebrate are discussed below.

- Refined EPC and
 - The French Drain DU and Drainage Ditch datasets were combined to provide a representative EPC for the Site. Both areas receive surface water runoff with eroded soil from the same source (Target Berm and Soil Pile DUs).
 - Combining the datasets will help reduce the high variability observed in both datasets on a small spatial scale. The range of values observed from both datasets is comparable.
 - The upper confidence limit (UCL) of the mean was used as a refined EPC. The 95% UCLs were calculated with ProUCL 5.1 (USEPA, 2016). The ProUCL output is included with Attachment E.
- Refined ESV
 - o Refined sediment ESVs were selected for copper and lead from USEPA Region 4 guidance. Refined ESVs were chosen based on LOAEL-based effects (USEPA, 2018).

Refined Dose Rate Model Evaluation

Step 3 DRM refinements for the little brown bat are discussed below.

Refined EPC and

- The French Drain DU and Drainage Ditch datasets were combined to provide a representative EPC for the Site. Both areas receive surface water runoff with eroded soil from the same source (Target Berm and Soil Pile DUs).
 - Combining the datasets will help reduce the high variability observed in both datasets on a small spatial scale. The range of values observed from both datasets is comparable.
- The UCL of the mean was used as a refined EPC. The 95% UCLs were calculated with ProUCL 5.1 (USEPA, 2016). The ProUCL output is included with Attachment E.

Refined TRV

 NOAEL TRVs used to assess impact to mammalian wildlife were refined using less conservative selection criteria. Discussion of TRV refinements is included in **Attachment D**.

4.3 Refined Risk Characterization and Scientific Management Decision Point

The refined exposure estimates represent a more realistic exposure scenario based on the comparisons of 95% UCL COPEC concentrations to refined direct contact ESVs, DRM assumptions, and TRVs. A refined characterization of potential risks is presented below based on these exposure assumptions to focus the list of COPECs and exposure pathways that may warrant further evaluation.

The preliminary characterization of potential risks and refined SMDPs are summarized below by receptor category:

- Benthic macroinvertebrate community and
 - \circ The refined direct contact evaluation (**Table 4-1**) indicated a lead HQ = 1
 - o Median concentration for lead (109 mg/kg) was below the refined ESV
 - o Small-scale, spatial variability was very high for sediment samples
 - Although individuals may experience some adverse effects locally, population level effects are unlikely
 - The potential for adverse effects of Site-related COPECs in sediment towards benthic macroinvertebrate populations is *de minimis*.
- Aquatic and semi-aquatic wildlife.
 - Refined DRMs indicated a refined copper NOAEL HQ < 1 for the little brown bat
 - The potential for adverse effects of Site-related COPECs in sediment towards aquatic and semi-aquatic wildlife populations is *de minimis*.

Table 4-1. Refined Direct Contact Evaluation (Sediment)

СОРЕС	Sample Count	Detect Freq. (%)	95% UCL (mg/kg)	RSV ⁽¹⁾	Refined HQ
Off-Site Sediment					
Copper	12	100	36.56	149	<1
Lead	13	100	171.4	128	1

Notes:

% = Percent; COPEC = Constituent of Potential Ecological Concern; Freq. = Frequency; HQ = Hazard Quotient; mg/kg = milligram per kilogram; UCL = Upper Confidence Limit

(1) USEPA. 2018. Region 4 Ecological Risk Assessment Supplemental Guidance Interim Draft. Scientific Support Section Superfund Division EPA Region 4.

Uncertainty Analysis

An uncertainty analysis was performed to identify assumptions and procedures that may result in uncertainty in the estimation of exposure or the characterization of risk. Uncertainty in the SLERA is assessed with respect to the following:

- Effects and exposure assessment and
- Risk characterization.

Assumptions and other factors that tend to overestimate, underestimate, or have an unknown effect on the findings of the primary phases of the SLERA are presented and discussed in the following sections.

5.1 **Exposure and Effects Assessment**

Sources of uncertainty associated with the effects and exposure assessment made in the SLERA are listed below:

- Exposure unit selection;
 - Magnitude low to moderate (overestimate)
 - o Rationale during selection of exposure units, the Site was broken into very small units (<<0.1 acres) to group similar data types (discrete versus incremental) and source areas (metals vs explosives). Even the most localized wildlife receptors (shrew and robin) have larger ranges than the total Site area and would likely move freely across the Site while feeding. This had minimal impact on the final conclusions, and was re-evaluated in Step 3 for the refined direct contact evaluation for benthic macroinvertebrates.
- Evaluating different data types; and
 - Magnitude minimal (underestimate)
 - o Rationale the RI collected both incremental and discrete samples for the Firing Point and Target Berm DUs. Incremental samples were preferred for the SLERA since they are a composite of randomly collected sub-samples within an area and provide a representative concentration. The incremental results were more consistent but lower than the maximum discrete samples. The discrete samples were biased and intended to define the extent of source areas. Ultimately, this had no impact on the risk characterization since impacts requiring action were identified for soil.
- Handling of duplicate data.
 - Magnitude minimal (under/overestimate)
 - o Rationale primary and duplicate samples were compared for representativeness prior to use in the SLERA. This resulted in some primary/duplicate pairs being averaged or kept independent. None of the maximum concentrations were from a sample location with duplicate data. The only impact to the SLERA was averaging/retaining results for copper and lead, respectively, during UCL calculations.

5.2 Risk Characterization

Sources of uncertainty associated with the risk characterization made in the ERA are listed below:

- Synergistic and Antagonistic Effects;
 - Magnitude minimal (under/overestimate)
 - Rationale exposures to ecological receptors at the Site involve more than one type of contaminant. This raises the possibility that synergistic or antagonistic interactions might occur. However, data are generally not adequate to permit any quantitative adjustment in toxicity values or risk calculations based on interactions between different compounds. If it is the case that any of the COPECs act by a similar mode of action, total risks could have been higher than estimated. Conversely, if the COPECs act antagonistically, total risks could have been lower than estimated.
- Application of Hazard Quotients; and
 - Magnitude minimal (overestimate)
 - o Rationale the application of hazard quotients to quantify potential ecological risk has certain limitations although the USEPA recommends this approach for the screening-level risk calculation. One of the advantages is that the procedure intentionally overestimates risks to "ensure that potential ecological threats are not overlooked" (USEPA, 1997). However, the HQ method does limit the information obtained because it provides only a single point of comparison for the exposure-response relationship.
- Incomplete Characterization.
 - Magnitude low (under/overestimate)
 - O Given the use of conservative assumptions regarding exposure and potential toxicological effects, there is minimal uncertainty that the potential ecological risks towards ecological receptors from Site-related constituents went undetected in the SLERA process. Conversely, there is the probability for a false positive (that is, overestimating risk when risk is not present).

5.3 Summary of Uncertainty

In general, conservative estimates or assumptions were made for most parameters associated with ecological exposures and effects in SLERA Steps 1 and 2. Realistic refinements were made during BERA Step 3 COPEC refinement to reduce uncertainty in the final conclusions. Therefore, confidence is high that the conclusions regarding the potential for adverse ecological harm are adequately conservative to quantify potential risks to soil macroinvertebrates, benthic macroinvertebrates, birds, and mammals.

6 Conclusions and Recommendations

The overall objective of the SLERA was to determine whether potentially adverse ecological effects are occurring, or may occur, due to Site-related constituents in soil and sediment. Potential for risks were evaluated by screening in a SLERA framework that identified a limited number of COPECs. The evaluations for these COPECs were further refined in the context of BERA Step 3 of the ERAGS.

The results of the SLERA, BERA Step 3 COPEC refinement, and the consideration of the uncertainties present in the evaluation support the following conclusions for the Site:

Acceptable Risk

- The potential for adverse effects to the benthic macroinvertebrate community is de minimus due to the following:
 - O Although the refined direct contact evaluation indicated a lead HQ = 1, the median concentration for lead (109 mg/kg) was below the refined ESV.
 - o Small-scale, spatial variability was very high for sediment samples.
 - o Although individuals may experience some adverse effects locally, population level effects are unlikely.
- The potential for adverse effects to the aquatic and semi-aquatic wildlife community is de *minimus* due to the following:
 - Refined DRMs indicated refined COPEC NOAEL HQs < 1 for the little brown bat.

Unacceptable Risk

- The potential for adverse effects to the soil invertebrate community is de manifestis due to the following:
 - o Maximum concentrations of nitroglycerin (Firing Point DU) and copper, lead, and zinc (Target Berm and Soil Pile DUs) exceeded ESVs protective of soil invertebrates.
 - Further refinements made to the direct contact evaluation (e.g., refined EPC) will reduce uncertainty, but will still exceed benchmarks protective of soil invertebrates.
- The potential for adverse effects to the terrestrial wildlife community is de manifestis due to the following:
 - o Wildlife DRMs indicated that maximum concentrations of antimony, copper, lead, and zinc exceeded NOAEL TRVs protective of mammalian wildlife in soil at both the Target Berm and Soil Pile DUs. Antimony, copper, and lead exceeded NOAEL TRVs for all on-Site soil.
 - Additionally, exposure estimates for the shrew and robin exceeded LOAEL TRVs. Further refinements to DRMs may reduce uncertainty further, however, are unlikely to eliminate unacceptable risk.

7 References

- AECOM, 2018. Draft Final Remedial Investigation Report. Ridgway Training Range, Pennsylvania. Munitions Response Site PAE40-001-R-01. Pennsylvania Army National Guard. October 2018.
- Allen, H., Di Toro, D., Ta Fu Kuo, D., Gonzalez Forero, R., Michelson, K., Miglino, A., Checkai, R., Kuperman, R., Simini, M., and Hawari, J. Improving Understanding of the Fate and Transport of Munitions Constituents to Enhance Sustainability of Operational Ranges. SERDP Project ER-1688. May 2015.
- Allen, H.E. and Janssen, C.R. 2006. Incorporating Bioavailability into Criteria for Metals. Soil and Water Pollution Monitoring, Protection and Remediation, 3–23; pp 93-105.
- Ankley, G.T., Di Toro, D.M., Hansen, D.J., and Berry, W.J. 1996. Technical Basis and Proposal for Deriving Sediment Quality Criteria for Metals. Environ Toxicol Chem 15:2056-2066
- Baker, L.A, 1994. Environmental Chemistry of Lakes and Reservoirs, Adv. Chem. Ser. 237, pp 627.
- Bat Conservation International. 2018. Species Profiles: Myotic lucifugus. URL: http://www.batcon.org/index.php/resources/media-education/speciesprofiles/detail/2040
- Birge, W.J., A.G. Westerman, and J.A. Spromberg 2000. Comparative Toxicology and Risk Assessment of Amphibians. In: Sparling, D.W., G. Linder and C.A. Bishop, editors. 2000. Ecotoxicology of Amphibians and Reptiles. Pensacola, FL: Society of Environmental Toxicology and Chemistry (SETAC).
- Burgess RM, Ho KT, Morrison GE, Chapman G, Denton DL (1996) Marine toxicity identification evaluation (TIE): Phase I guidance document (EPA 600/R-96/054) United States Environmental Protection Agency, Office of Research and Development, Washington, DC
- Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W. 2011. Trace Metal Behaviour in Riverine Sediments: Role of Organic Matter and Sulphides. Applied Geochemistry, Elsevier, 2010, 26 (1), pp.80-90.
- Chesapeake Bay Program. 2018. Field Guide: Little Brown Bat. URL: https://www.chesapeakebay.net/S=0/fieldguide/critter/little brown bat
- DeGraaf, R.M. and D.D. Rudis. 1986. New England Wildlife: Habitat, Natural History, and Distribution. Northeast Forest Experiment Station, General Technical Report NE-108.

- Efroymson, R.A., Jackson, B.L., Jones, D.S., Sample, B.E., Suter, G.W.II, and Welsh, C.J.E. 1996. Waste Area Grouping 2 Phase I Task Data Report: Ecological Risk Assessment and White Oak Creek Watershed Screening Ecological Risk Assessment. ORNL/ER-366. May 1996.
- Elk County Planning Commission. 2006. Elk County Natural Heritage Inventory 2006. http://www.naturalheritage.state.pa.us/cnai pdfs/elk%20county%20nai%202006.pdf
- Fike, Jean. 1999. Terrestrial and Palustrine Plant Communities of Pennsylvania. Pennsylvania Natural Diversity Inventory. June 1999. URL: http://www.naturalheritage.state.pa.us/fikebook/terrestrial_plant_book.pdf
- Hansch, Leo and Hoekman. 1995. Exploring OSAR Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society.
- Hoffman, D.J., Rattner, B.A., Burton, G.A. Jr., and Cairns, J. Jr. 1995. Handbook of Ecotoxicology. Lersi Publishers, Boca Raton, FL.
- Jones, D.S., Suter II, G.W., and Hull, R.N. 1997. Toxicological Benchmarks for Screening Contaminants of Potential Concern for Effects on Sediment-Associated Biota: 1997 Revision.
- Johnson, M.S., Aubee, C., Salice, C.J., Leigh, K.B., Liu, E., Pott, U., and Pillard, D. A Review of Ecological Risk Assessment Methods for Amphibians: Comparative Assessment of Testing Methodologies and Available Data. Integrated Environmental Assessment and Management 2017-Volume 13, Number 4-pp. 601-613.
- Natural Resources Conservation Service (NRCS). 2018. Web Soil Survey. United States Department of Agriculture. URL: https://websoilsurvey.nrcs.usda.gov/APP/WebSoilSurvey.aspx
- New Jersey Department of Environmental Protection. 2014. Data Quality Assessment and Data Usability Evaluation Technical Guidance Manual. Site Remediation Program. Version 1.0. April 2014. Accessed via: https://www.nj.gov/dep/srp/guidance/srra/data qual assess guidance.pdf
- Pennsylvania Department of Environmental Protection (PADEP). 2002. Pennsylvania's Land Recycling Program Technical Guidance Manual, 253-0300-100, June 8, 2002.
- Pennsylvania Game Commission (PGC). 2018. Threatened and Endangered Species. https://www.pgc.pa.gov/Wildlife/EndangeredandThreatened/Pages/default.aspx

Prepared for: Army National Guard AECOM

- Sackett, Tara E., Sandy M. Smith, and Nathan Basiliko. 2012. Exotic Earthworm Distribution in a Mixed-use Northern Temperate Forest Region: Influence of Disturbance Type, Development Age, and Soils. Canadian Journal of Forest Research 42.2 (2012): 375-81.
- Sample, B.E. and G.W. Suter, II. 1994. Estimating Exposure of Terrestrial Wildlife to Contaminants. ES/ER/TM-125. Oak Ridge National Laboratory, Oak Ridge TN.
- Scharenbroch, Bryant C., and Douglas P. Johnston. 2011. A Microcosm Study of the Common Night Crawler Earthworm (Lumbricus Terrestris) and Physical, Chemical and Biological Properties of a Designed Urban Soil. Urban Ecosystems 14.1 (2011): 119-34.
- Stumm, W. and Morgan, J.J. 1981. Aquatic Chemistry: An Introduction Emphasizing Chemical Equilibria in Natural Waters. New York: Wiley-Interscience Publication.
- Suter, G.W.II, Efroymson, R.A., Sample, B., and Jones, D.S. 2000. Ecological Risk Assessment for Contaminated Sites. CRC Press LLC.
- Suter, G. W.II., Sample, B.E., Jones, D.S., Ashwood, T.L., and Loar, J.M. 1995. Approach and Strategy for Performing Ecological Risk Assessments for the Department of Energy's Oak Ridge Reservation: 1995 Revision. ES/ER/TM-33/R2. Environmental Restoration Division, Oak Ridge, Tennessee.
- Thakali, S., Allen, H.E., DiToro, D.M., Ponizovsky, A.A., Rooney, C.P., Zhao, F., and McGrath, S.P. 2006a. A Terrestrial Biotic Ligand Model.1. Development and Application to Cu and Ni Toxicities to Barley Root Elongation in Soils. Environ. Sci. Technol. 2006, 40, 7085-7093.
- Thakali, S., Allen, H.E., DiToro, D.M., Ponizovsky, A.A., Rooney, C.P., Zhao, F., McGrath, S.P., Criel, P., van Eeckhout, H., Janssen, C.R., Oorts, K., and Smolders, K. 2006b. Terrestrial Biotic Ligand Model. 2. Application to Ni and Cu Toxicities to Plants, Invertebrates, and Microbes in Soil. Environ. Sci. Technol. 2006, 40, 7094-7100.
- United States Army Center for Health Promotion and Preventive Medicine (USACHPPM). 2007. Wildlife Toxicity Assessment for Nitroglycerin (NG). Document No. 37-EJ-1138-01F. November 2007.
- United States Environmental Protection Agency (USEPA). 2018. Region 4 Ecological Risk Assessment Supplemental Guidance. Scientific Support Section, Superfund Division, USEPA Region 4. Originally published November 1995 and last updated March 2018.

Prepared for: Army National Guard AECOM

- USEPA. 2015a. Considerations For Assessing Ecological Risks Interim Final: March 2015. U.S. Environmental Protection Agency (USEPA) Region I - New England Resource Conservation and Recovery Act (RCRA) Corrective Action.
- USEPA. 2015b. Determination of the Biologically Relevant Sampling Depth for Terrestrial and Aquatic Ecological Risk Assessments (Final Report). U.S. Environmental Protection Agency, Ecological Risk Assessment Support Center, Cincinnati, OH, EPA/600/R-15/176, 2015.
- USEPA, 2013. Ecoregions of the United States. Level III Ecoregions. ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/us/Eco Level III US.pdf.
- USEPA. 2008. ECO Update/Ground Water Forum Issue Paper: Evaluating Ground-Water/Surface-Water Transition Zones in Ecological Risk Assessments. Publication 9285.6-17 EPA-540-R-06-072 July 2008.
- USEPA. 2007a. Framework for Metals Risk Assessment. EPA 120/R-07/001. March 2007.
- USEPA. 2007b. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, D.C. November. OSWER Directive 92857-55.
- USEPA. 2006. Freshwater Sediment Benchmarks. EPA Region 3 BTAG. URL: http://www.epa.gov/reg3hscd/risk/eco/btag/sbv/fw/screenbench.htm
- USEPA. 2005. Procedures for the Derivation of Equilibrium Partitioning Sediment Benchmarks (ESBs) for the Protection of Benthic Organisms: Metals Mixtures (Cadmium, Copper, Lead, Nickel, Silver, and Zinc). Office of Science and Technology and Office of Research and Development. 600-R-02-013. January 2005.
- USEPA. 2001. Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses—Contaminated Sediments in Water. EPA-823-B-01-002. October 2001.
- USEPA. 2000. Bioaccumulation Testing and Interpretation for the Purpose of a Sediment *Quality Assessment – Status and Needs*. EPA-823-R-00-001. February 2000.
- USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Office of Solid Waste and Emergency Response. EPA 540/R-97/006. June 1997.
- USEPA. 1993. Wildlife Exposure Factors Handbook. Volumes I and II. EPA/600/R-93/187a&b.Office of Health and Environmental Assessment, Office of Research and Development, Washington, D.C.

AECOM Prepared for: Army National Guard

- USEPA. 1992. Ground Water Issue: Behavior of Metals in Soils. EPA/540/S-92/018. October 1992.
- United States Fish and Wildlife Service (USFWS). 2018. Environmental Conservation Online System (ECOS). https://ecos.fws.gov/ecp0/reports/species-by-current-rangecounty?fips=45063. Accessed October 2018.
- USFWS. 1983. National Wetlands Inventory website. U.S. Department of the Interior, Fish and Wildlife Service, Washington, D.C. http://www.fws.gov/wetlands/
- Washington Department of Fish and Wildlife. 2018. Living with Wildlife: Bats. URL: https://wdfw.wa.gov/living/bats.html

Attachment A Photographic Log

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 1

Location of Photo:

Front of the Ridgway Training Range

Description:

Covered firing position area pictured, facing northwest

Photo No. 2

Location of Photo:

Front of Ridgway Training Range

Description:

Drainage ditch east of the covered firing positions at Ridgway Training Range, facing southwest

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 3

Location of Photo: Target Berm

Description:

Target Berm downrange on the west end of the MRS, facing north

Photo No. 4

Location of Photo: Range floor

Description:

Soil Pile DU on the north side of the range floor between two wooden baffles, facing north

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 5

Location of Photo:

French Drain DU outfall area

Description:

French Drain outfall north of training range walled area, facing north. Standing water visible

Photo No. 6

Location of Photo:

Target Berm DU

Description:

Incremental sample locations at the Target Berm DU, facing southwest. White flags = XRF sample locations; orange flags = primary sample locations; blue flags = duplicate sample locations; yellow flags = triplicate sample locations. Gravel at the base of the berm pictured.

Client Name:

Army National Guard

Site Location:

Ridgway Training Range MRS, Ridgway Township, Pennsylvania **Project No.** 60519685

Photo No. 7

Location of Photo: Target Berm DU

Description:

Drainage ditch south of the MRS, facing southwest. XRF and incremental sample locations pictured on both sides of the drainage ditch.

Photo No. 8

Location of Photo: French Drain DU

Description:

Standing water in the French Drain DU outfall area, facing north. Samples were collected from sediment beneath the standing water.

Attachment B

PA Department of Conservation and Natural Resources Conservation Planning Report

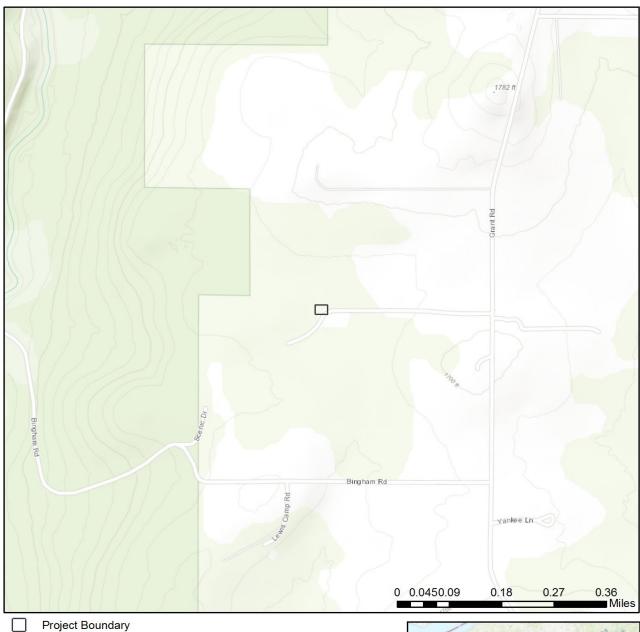
Introduction

This Conservation Planning Report compiles names, descriptions, maps, locations, measurements, links and references for Natural Heritage Areas (core and supporting habitats), Important Bird Areas, State Lands, and agency designated water resources that are coincident with an area of interest defined by the user of the Pennsylvania Conservation Explorer tool. For an overview and additional details, please be sure to visit the website at www.naturalheritage.state.pa.us and download the applicable County Natural Heritage Inventory report(s).

Site Area: 0.22 acres County(s): Elk

Township/Municipality(s): RIDGWAY
Quadrangle Name(s): PORTLAND MILLS

Watersheds HUC 8: Clarion


Watersheds HUC 12: Big Mill Creek

Decimal Degrees: 41.453208 N, -78.776556 W

Degrees Minutes Seconds: 41° 27' 11.5476" N, 78° 46' 35.6029" W

No conservation planning areas of interest have been detected.

SLERA - Ridgway Training Range

Service Layer Credits: Sources: Esri, HERE, DeLorme, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo,

10/30/2018 12:09:00 PM SLERA - Ridgway Training Range

For additional information about the Pennsylvania Natural Heritage Program, visit the website at www.naturalheritage.state.pa.us or you can email your questions and comments to RA-HeritageReview@pa.gov.

Attachment C Sample Data Evaluated

Table 1. Summary of Samples Used in the SLERA

	Samplo	Samplo		Analytical	Analytical Darameters	
Sample Identification	Collection Date	Depth (inches bgs)	Media Type	Total Metals ¹	Explosives ²	Comments
INCREMENTAL SAMPLES	L SAMPLES					
Target Berm						
RTR01IS01	7/11/2018	9 - 0	Soil	×		Primary, used also for MS/MSD
RTR01IS02	7/11/2018	9-0	Soil	×		Duplicate
RTR01IS03	7/11/2018	9 - 0	Soil	×		Triplicate
Firing Point						
RTR03IS01	7/12/2018	9 - 0	Soil		×	Primary
RTR03IS02	7/12/2018	9 - 0	Soil		×	Duplicate, used also for MS/MSD
RTR03IS03	7/12/2018	9 - 0	Soil		×	Triplicate
DISCRETE SAMPLES	MPLES					
Target Berm						
RTR01DD01A	7/12/2018	9 - 0	Sediment	×		Collected from drainage ditch south of XRF sample RTR01X125 location
RTR01DD02A	7/12/2018	9-0	Sediment	×		Collected from drainage ditch south of MRS, equidistant between the Firing Point and Target Berm
Soil Pile						
RTR02DS01A	7/9/2018	0 - 12*	Soil	×		Collected from the western half of the Soil Pile
RTR02DS01B	7/9/2018	0 - 12*	Soil	×		Field Duplicate of RTR02DS01A
RTR02DS02A	7/9/2018	0 - 12*	Soil	×		Collected from the western half of the Soil Pile
RTR02DS03A	7/9/2018	0 - 12*	Soil	×		Collected from the western half of the Soil Pile
RTR02DS04A	7/9/2018	0 - 12*	Soil	×		Collected from the eastern half of the Soil Pile
RTR02DS05A	7/9/2018	0 - 12*	Soil	×		Collected from the eastern half of the Soil Pile
RTR02DS06A	7/9/2018	0 - 12*	Soil	×		Collected from the eastern half of the Soil Pile
French Drain						
RTR05DD01A	7/12/2018	9 - 0	Sediment	×		Collected from the southwestern corner of the ponded area , MS/MSD
RTR05DD01B	7/12/2018	9 - 0	Sediment	×		Field Duplicate of RTR05DD01A
RTR05DD02A	7/12/2018	0 - 6	Sediment	×		Collected from the southern half of the ponded area
RTR05DD03A	7/12/2018	9 - 0	Sediment	×		Collected from the southern half of the ponded area
RTR05DD04A	7/12/2018	0 - 6	Sediment	×		Collected from the southeastern comer of the ponded area
RTR05DD05A	7/12/2018	0 - 6	Sediment	×		Collected from the northwestern comer of the ponded area
RTR05DD06A	7/12/2018	9 - 0	Sediment	×		Collected from the northern half of the ponded area
RTR05DD07A	7/12/2018	0 - 6	Sediment	×		Collected from the northern half of the ponded area
RTR05DD08A	7/12/2018	0 - 6	Sediment	×		Collected from the northeastern corner of the ponded area
RTR05DD09A	7/12/2018	9 - 0	Sediment	×		Collected 10 feet east of the ponded area
RTR05DD10A	7/12/2018	9 - 0	Sediment	×		Collected 10 feet west of the ponded area
Notes:						

¹ - Antimony, Copper, Lead, & Zinc, by USEPA SW-846 Method 6020A ² - Nitroglycerin by USEPA SW-846 Method 8330B

Table 2. Incremental Sampling Results Summary

					Taı	get Be	erm					
	R	RTR01IS	01		R	TR01I	S02		R	TR01	S03	
		0-6				0-6				0-6		
		7/11/20 ⁻	18		7	'/11/2 0	18		7	7/11/20	18	
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
	1				Nesuit	LQ	٧Q	110	Nesuit	LQ	V Q	110
Total Metals b	y USEPA S	-	-			-	VQ	NO	Result	LQ	VQ	NO
Total Metals b Antimony	y USEPA S 24.80	-	-			-	J-	m	40.1	LQ	J-	m
		W-846	Metho	d 602	0A (mg/kg)	-				LQ		
Antimony	24.80	W-846 NA	Metho	d 602 0	0 A (mg/kg) 27	-	J-	m	40.1	LQ	J-	m

					Fir	ing Po	oint					
	F	RTR03IS	01		R	TR03I	S02		R	TR03I	S03	
		0-6				0-6				0-6		
		7/12/20 ⁻	18		7	7/12/20	18			7/12/20	18	
Amalista	Dooult	1.0	V0	DC.	Dozult		V 0	D0	Danulé		\ ' 0	D 0
Analyte	Result	LQ	VQ	RC	Result	LQ	VQ	RC	Result	LQ	VQ	RC
Explosives by	USEPA SV	N-846 N	lethod	8330	B (mg/kg)			•		•	•	•
Nitroglycerin	3.70	L	J	ı	4.4	LMM	J		21	L	J	I

Notes:

bgs = below ground surface

LQ = Laboratory qualifier

VQ = Validiation qualifier

RC = Reason Code

U = non-detect

J = estimated

J- = estimated, negative bias

I = LCS recovery failure

m = MS/MSD percent recovery anomaly

s = surrogate failure

Table 3. Discrete Soil and Sediment Results

Sample ID:		RTR01DD01A	4		RTR01DD02A	DD0	2A		RTR02DS01A	S01	4	RT	RTR02DS01B	301B		RTR	RTR02DS02A	02A	
Decision Unit:		Target Berm - NA	ΑN	ľ	Target Berm - NA	erm	۷N-	S	Soil Pile - NA	N- e	4	So	Soil Pile - NA	Ψ.		Soil	Soil Pile - NA	٨	
Media:		Sediment			Sedi	Sediment	L.		Soil	=			Soil				Soil		
Sample Depth (inches bgs):		9-0			0	9-0			0 - 12	12			0 - 12	2)	0 - 12		
Date Collected:		7/12/2018			7/12	7/12/2018	_		7/9/2018	018			7/9/2018	18		//	7/9/2018	8	
Analyte	Result LQ VQ RC	רס	a RC		Result		LQ VQ RC	C Result	 	۵ ۸	LQ VQ RC	Result LQ VQ RC	t LG	NC AC	RC	Result	LQ VQ RC	۷۵	RC
Total Metals by USEPA SW-846 Method 6020A (mg/kg)																			
Antimony	996.0			0.	0.18			51.2		*z	рП	4.93		ſ	р	289		ſ	р
Copper	7.67			15	15.3	В		828		Ą Y	+	145		7	+	1740			
Lead	242			15	15.8	В		6940		, A*N	р	666		ſ	р	0868		ſ	р
Zinc	74.9			62	62.4			266		z	-	106		7	4	314			
Explosives by USEPA SW-846 Method 8330B (mg/kg)																			
Nitroglycerin	I			'	-			-				I				I			

Notes:

* = Field duplicate

bgs = below ground surface LQ = laboratory qualifier

VQ = validiation qualifier

RC = reason code NA = not applicable B = associated blank detection

U = non-detect

J = estimated J- = estimated, negative bias

d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

z = preparation/method blank anomaly

AECOM Attachment C

Table 3. Discrete Soil and Sediment Results

Sample ID:		RTR02DS03A	3A		RTR02DS04A	2DS0	44		RTR02DS05A	3 805	Ą		RTR02DS06A	DS0	6 A		RTR05DD01A	5DD0	4	
Decision Unit:		Soil Pile - NA	ΑN		Soil Pile - NA	ile -	Ą		Soil Pile - NA	e - N	4		Soil Pile - NA	le - N	٧		French Drain - NA	Drain	Ž	4
Media:		Soil			S	Soil			Soil	=			Soil	Ξ			Sed	Sediment	ı.	
Sample Depth (inches bgs):		0 - 12			0	0 - 12			0 - 12	12			0 - 12	12				9-0		
Date Collected:		7/9/2018			46/2	7/9/2018			7/9/2018	018			7/9/2	7/9/2018			7/12	7/12/2018	8	
Analyte	Result LQ VQ RC	L	۸۵		Result LQ VQ RC	ΓO	Va		Result L	٥.	LQ VQ RC		Result LQ VQ RC	-۵	/Q R		Result	LQ VQ RC	VQ	RC
Total Metals by USEPA SW-846 Method 6020A (mg/kg)																				
Antimony	15.2		٦	р	10.2		7	d 2	2.24			Р	7.74		¬	р	0.253	z		
Copper	278				202			7,	9.92				149				17.4	RB		
Lead	2460		7	р	1660		7	9 P	672		7	σ	1570			ъ	106	NBA	7	Ŧ
Zinc	122				112			2	211				134				48.4			
Explosives by USEPA SW-846 Method 8330B (mg/kg)																				
Nitroglycerin	1				ŀ				ı				ı				ŀ			
			1	1															1	Ī

* = Field duplicate

bgs = below ground surface
LQ = laboratory qualifier
VQ = validiation qualifier
RC = reason code
NA = not applicable
B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

d = MS/MSD imprecision

m = MS/MSD percent recovery anomaly f = field duplicate imprecision

s = surrogate failure

z = preparation/method blank anomaly

AECOM Attachment C

Table 3. Discrete Soil and Sediment Results

Sample ID:	RTR05DD01B	5DD	31B		RTR05DD02A	SDD(02A	RTR	105DI	RTR05DD03A	RTI	305D	RTR05DD04A	RTF	RTR05DD05A	05 4	
Decision Unit:	French Drain - NA	Drail	N-C	4	French Drain - NA	Drain	NA - ۲		հ Dra	French Drain - NA	Frenc	h Dra	French Drain - NA	Frenc	French Drain - NA	in - N	≰
Media:		Sediment	ıt		Sed	Sediment	ıτ	Š	Sediment	ent .	S	Sediment	ent	S	Sediment	nt	
Sample Depth (inches bgs):		9-0				9-0			9-0			9-0			9-0		
Date Collected:		7/12/2018	8		7/13	7/12/2018	8	//	7/12/2018	18	7.	7/12/2018	118	7.	7/12/2018	18	
Analyte	Result	LQ VQ RC	۸۵	RC	Result LQ VQ RC	LQ	VQR	C Result	LQ	LQ VQ RC		2	Result LQ VQ RC	Result LQ VQ RC		δ	RC
Total Metals by USEPA SW-846 Method 6020A (mg/kg)																	
Antimony	0.362				0.29			0.2			0.264			0.638			
Copper	25.2	В			38.7	В		20.7	В		13.2	В		29.6	В		
Lead	179	В	ſ	+	358	В		81.8	В		37.3	В		189	В		
Zinc	56.6				58.2			51			58.8			42.4			
Explosives by USEPA SW-846 Method 8330B (mg/kg)				·													
Nitroglycerin	1				1			I			l			ı			
	0			ĺ		ĺ											Ī

* = Field duplicate

bgs = below ground surface LQ = laboratory qualifier

VQ = validiation qualifier RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias d = MS/MSD imprecision

f = field duplicate imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

z = preparation/method blank anomaly

AECOM Attachment C

Table 3. Discrete Soil and Sediment Results

Sample ID:		RTR05DD06A	eA		RTR05DD07A	3DD0	17A	RTR	RTR05DD08A	08A		RTR05DD09A	5DD0	9 4	2	RTR05DD10A	D10	4
Decision Unit:	: French Drain - NA	Drain	- NA	_	French Drain - NA	Drain	-NA	French Drain - NA	Drai	n - NA	_	French Drain - NA	Drain	٩ ۲	Frei	French Drain - NA	rain -	¥
Media:		Sediment	t		Sed	Sediment	t	Se	Sediment	nt		Sed	Sediment	1		Sediment	nent	
Sample Depth (inches bgs):		9-0			3	9-0			9-0			0	9-0			9-0	9	
Date Collected:		7/12/2018	3		7/12	7/12/2018	8	./2	7/12/2018	8		7/12	7/12/2018	~		7/12/2018	2018	
Analyte	Result	LQ VQ RC	Va		Result LQ VQ RC	ΓO	VQR	C Result LQ VQ RC	La	VQ		Result	ΓO	LQ VQ RC		Result LQ VQ RC	ď	a R
Total Metals by USEPA SW-846 Method 6020A (mg/kg)																		
Antimony	0.152				0.092	ſ		0.438				0.36			0.236	98		
Copper	12.2	В			6.63	В		30.3	В			31.5	В		20.6		В	
Lead	28	В			17.6	В		120	В			124	В		67.3		В	
Zinc	34.7				37.7			58.1				53.2			71.1	_		
Explosives by USEPA SW-846 Method 8330B (mg/kg)																		
Nitroglycerin	-							I				-			-			
	•					1												

* = Field duplicate

bgs = below ground surface LQ = laboratory qualifier

VQ = validiation qualifier RC = reason code

NA = not applicable

B = associated blank detection

U = non-detect

J = estimated

J- = estimated, negative bias

f = field duplicate imprecision d = MS/MSD imprecision

m = MS/MSD percent recovery anomaly

s = surrogate failure

z = preparation/method blank anomaly

Attachment D

Dose Rate Models, Toxicity Reference Values, and Step 3 Refinements

Table of Contents

1.	Introd	uction 1	[-]
2.	Modeli	ing Approach	! -[
	2.1 D	Pose Rate Model	2-1
3.	Model	Parameters	3-]
	3.1 R	Receptor-Specific Exposure Parameters	3- [
4.	Exposu	re Point Concentrations	 -]
	4.1 S	oil and Sediment Bioaccumulation Factors	 -
5.	Toxicit	y Reference Values5)-]
6.		ing Refinements	
		Refined Modeling Parameters	
7.	Refere	nces	/-]
Tab	les		
Tabl	e 1	Life History Parameters and Ingestion Rates (Terrestrial)	
Tabl	e 2	Life History Parameters and Ingestion Rates (Aquatic and Semi-Aquatic)	
Tabl	e 3	Soil Bioaccumulation Factors and Estimated Concentrations in Prey Items (Targ Berm DU)	;et
Table	e 4	Soil Bioaccumulation Factors and Estimated Concentrations in Prey Items (Soil Pile DU)	
Tabl	e 5	Biota Sediment Accumulation Factors and Estimated Concentrations in Prey Items (Site-Wide)	
Tabl	e 6	Toxicity Reference Values	
Tabl	e 7	Dose Rate Model Output (Target Berm DU)	
Tabl	e 8	Dose Rate Model Output (Soil Pile DU)	
Tabl	e 9	Dose Rate Model Output (Site-Wide Soil)	
Tabl	e 10	Dose Rate Model Output (Site-Wide Sediment)	
Tabl	e 11	Biota Sediment Accumulation Factors and Refined Estimated Concentrations in Prey Items (Site-Wide)	
Tabl	e 12	Refined Toxicity Reference Values	
Table	e 13	Refined Dose Rate Model Output (Site-Wide Sediment)	

ACRONYMS AND ABBREVIATIONS

AUF	Area Use Factor
BAF	Bioaccumulation Factor
BERA	Baseline Ecological Risk Assessment
BSAF	Biota Sediment Accumulation Factor
COPEC	Chemical of Potential Ecological Concern
DRM	Dose Rate Model
dw	dry weight
EA	Exposure Area
EDD	Estimated Daily Dose
EPC	Exposure Point Concentration
ESV	Ecological Screening Value
ha	hectares
HQ	Hazard Quotient
kg	kilogram
LOAEL	Lowest Observed Adverse Effects Level
mg	milligram
NOAEL	No Observed Adverse Effects Level
SLERA	Screening Level Ecological Risk Assessment
TRV	Toxicity Reference Value
UCL	Upper Confidence Limit
USEPA	United State Environmental Protection Agency
VDEQ	Virginia Department of Environmental Quality
%	Percent

1. Introduction

The purpose of this attachment is to present the approach that was used to develop dose rate models (DRMs) to evaluate exposures to terrestrial wildlife receptors during the screening level ecological risk assessment (SLERA) and refinements made during baseline ecological risk assessment (BERA) Step 3.

The following sections provide a detailed description of the development of species-specific exposure parameters, soil bioaccumulation factors (BAFs), biota sediment accumulation factors (BSAFs), area use factors (AUFs), wildlife toxicity reference values (TRVs), simplified food web modeling, and refinements made during BERA Step 3.

The following tables accompany this memo:

- **Tables 1 and 2** present life history parameters and body weights;
- Tables 3 and 4 presents terrestrial BAFs and estimated concentrations in prey items;
- **Table 5** presents aquatic BSAFs and estimated concentrations in prey items;
- **Table 6** presents the selected wildlife TRVs;
- **Tables 7 through 10** present the DRM outputs for selected wildlife;
- **Table 11** presents refinements made to estimated prey concentrations;
- Table 12 presents refinements made to wildlife TRVs; and
- **Table 13** presents the refined DRM outputs for selected wildlife.

2. Modeling Approach

Wildlife ingestion pathways were evaluated by considering the trophic transfer of constituents from soil and sediment through the food web to the selected receptors of concern. Wildlife dose modeling incorporates conservative site-specific parameters and assumptions regarding exposure to prevent underestimating potential risk associated with site COPECs, receptors, and the potential interactions between chemical stressors and biota. Hence, the SLERA uses the maximum concentration and assumes that receptors forage exclusively within the exposure area (EA) at the location of the maximum concentration.

Wildlife receptors evaluated in the SLERA include:

- Terrestrial Receptors and
 - o Mammalian invertivore: Short-tailed shrew (Blarina brevicauda)
 - o Mammalian carnivore: Red fox (Vulpes vulpes)
 - Avian invertivore: American robin (*Turdus migratorious*)
 - o Avian carnivore: Red-tailed hawk (*Buteo jamaicensis*)
- Aquatic and Semi-Aquatic Receptors.
 - o Mammalian invertivore: Little brown bat (*Myotis lucifugis*)

Simplified food web DRMs were used to calculate estimated daily doses (EDDs) of constituents that selected receptor groups experience through exposure to surface soil in terrestrial habitats. The EDD represents the dose of a chemical that an individual member of a receptor population would receive if the individual foraged solely within the area used to develop the EPC. The EDDs were then compared to no observed adverse effect level (NOAEL) and lowest observed adverse effect level (LOAEL) TRVs to assess the potential for adverse effects.

The simplified food web DRM considers the primary routes of exposure to wildlife receptors as the direct ingestion of prey and the incidental ingestion of media. Concentrations of chemicals in prey were expressed as a function of chemical concentrations in soil using BAFs and sediment using BSAFs. The following sections provide descriptions of each of the elements associated with the development of exposures and risks to selected wildlife receptors, including dose model equations, AUFs, and estimates of bioaccumulation, e.g., BAFs and BSAFs.

2.1 Dose Rate Model

This section describes the simplified food web DRM developed to calculate EDDs from chemical concentrations in soil and sediment. The total EDD (EDD_{total}) experienced by each selected receptor was expressed as the sum of the doses obtained from the three primary routes of exposure:

$$EDD_{total} = EDD_{diet} + EDD_{substrate} + EDD_{surfacewater}$$

The total dose from surface water ($EDD_{surfacewater}$) was considered negligible. It was assumed that wildlife receptors receive the majority of their dietary water intake from consumption of prey items.

The total dose from each route of exposure was calculated individually as follows:

Dietary Dose

$$EDD_{diet} = \frac{IR_{diet} * \sum_{i=1}^{n} (B[S]AF * C_{S} * DF_{i}) * AUF_{i}}{BW}$$

where:

EDD_{diet} = Dose of constituent obtained from the diet (milligram [mg] constituent/kilogram [kg] receptor body weight-day);

n = Number of contaminated food types;

IR_{diet} = Ingestion rate of food (kg food ingested/day, dry weight [dw]);

B[S]AF = Soil BAFs or sediment BSAFs specific to prey type and constituent

(kg substrate/kg food, dw);

 C_s = Concentration of constituent in soil (mg constituent/kg soil, dw);

Dietary fraction of food item *i* (proportion of food type in the diet). In accordance with USEPA (1997) guidance, the exposure calculations

DF_i = will be based upon an exclusive diet consisting of 100 percent (%) of

the most contaminated dietary component. Food items can include

plants, soil invertebrates, and small mammals;

The proportion of time that an individual receptor i is expected to contact contaminated environmental media as determined with home range size. This will be expressed as an area use factor for receptor i

 AUF_i = (AUF_i) . The area use factor accounts for the size of the Site relative to

the size of the home range for receptor *i*. *AUFi* will be defaulted to 1.0, which assumes that the receptor spends 100% of its time on the

Site; and

BW = Body weight of the receptor, wet weight (kg)

Substrate Dose

$$EDD_{substrate} = \frac{IR_S \times C_S \times AUF}{BW}$$

where:

EDD_{substrate} = Dose of constituent obtained from incidental ingestion of soil (mg constituent/kg receptor body weight-day)

constituent/kg receptor body weight-day)

IR_s = Incidental ingestion rate of soil (kg soil ingested per day, dw)

 C_s = Concentration of constituent in soil (mg constituent/kg soil, dw)

AUF = Area use factor includes, when appropriate, seasonal and area use rates. AUF will be defaulted to 1.0.

BW = Body weight of the receptor, wet weight (kg)

The receptor dose of COPECs from dietary and incidental substrate ingestion was modeled using dw parameters to avoid introducing unnecessary uncertainty into the model by converting parameters from dw to wet weight based on approximate moisture contents of dietary items. Food ingestion rates, substrate ingestion rates, and substrate-to-biota accumulation rates were expressed on a dw basis.

3. Model Parameters

The DRM includes parameters relating to receptor-specific exposure factors, bioaccumulation factors, and area use factors. The following section describes the estimation of these parameters and the major assumptions used.

3.1 Receptor-Specific Exposure Parameters

Exposure parameters used to determine the EDD for each receptor included body weight (kg, wet weight), home range, food ingestion rate (kg dry weight/day), incidental substrate ingestion rate (kg dry weight/day), dietary composition, and AUF (**Tables 1 and 2**). Details are provided below:

Body Weight;

Body weights were obtained from available literature. The values used in their derivation (as provided by the source) are presented below:

Receptor	Body Weight (kg, wet weight)	Source	Source Notes
American robin	0.077	Sample and Suter (1994)	Dunning, 1984
Red-tailed hawk	1.13	Sample and Suter (1994)	Dunning, 1984
Red fox	4.5	Sample and Suter (1994)	4.5 kg mean ♂+♀ for both Illinois and Iowa Storm et al. 1976
Short-tailed shrew	0.015	Sample and Suter (1994)	0.015 ± 0.00078 kg New Hampshire (field) Schlessinger & Potter, 1974
Little brown bat	0.0075	Sample and Suter (1994)	Gould, 1955

• Home Range;

Home ranges were obtained from available literature and are presented below in hectares (ha):

American robin = 0.42 ha (Sample and Suter, 1994)

Red-shouldered hawk = 233 ha (Sample and Suter, 1994)

Red fox = 407 ha (Sample and Suter, 1994)

Short-tailed shrew = 0.39 ha (Sample and Suter, 1994)

Little brown bat = N/A None available in literature

• Food Ingestion Rate;

Food ingestion rates (IR_{food}) for selected wildlife receptors were based on allometric regressions of feeding rates versus body mass for over 170 species of mammals and birds (Nagy, 2001), as follows:

Receptor	Category	Equation	IR _{food} (kg /day, dw)
American robin	Avian Invertivore	0.540*(BW [kg] * 1000 [g/kg]) ^{0.705} * 0.001 (kg/g)	0.012
Red-tailed hawk	Avian Carnivore	0.849*(BW [kg] * 1000 [g/kg]) ^{0.663} * 0.001 (kg/g)	0.0898
Red fox	Mammalian Carnivore	0.153*(BW [kg] * 1000 [g/kg]) ^{0.834} * 0.001 (kg/g)	0.170
Short-tailed shrew	Mammalian Invertivore	0.373*(BW [kg] * 1000 [g/kg]) ^{0.622} * 0.001 (kg/g)	0.002
Little brown bat	Mammalian Invertivore	0.373*(BW [kg] * 1000 [g/kg]) ^{0.622} * 0.001 (kg/g)	0.0013

• Incidental Substrate Ingestion Rate;

Incidental substrate ingestion rates for soil are represented by multiplying the rate of food intake (IR $_{\rm food}$) by the fraction of substrate in dry intake (USEPA, 2007). Substrate (as a % of dry intake) for each receptor was obtained from available literature and are listed below:

Receptor	Substrate (as % of Dry Intake)	IR _{substrate} (kg /day, dw)	Source	Source Notes
American robin	10.4%	0.00120	Beyer et al. (1994)	Based on a soil consumption rate for a woodcock of 10.4%
Red-tailed hawk	5.7%	0.00512	USEPA (2007)	Based on 90 th percentile of Monte Carlo Simulation (n = 100,000)
Red fox	2.8%	0.00477	Beyer et al. (1994)	N/A
Short-tailed shrew	3.0%	0.00006	USEPA (2007)	Based on 90 th percentile of Monte Carlo Simulation (n = 100,000)
Little brown bat	0%	0	Sample and Suter (1994)	Negligible due to feeding behavior (aerial hawk)

Dietary Composition; and

Dietary composition was assumed to be 100% of the food item most sensitive to Site COPECs:

American robin = Invertebrates (USEPA, 1993)

Red-shouldered = Small (DeGraaf and Rudis, 1992)

hawk mammals

Red fox = $\frac{\text{Small}}{\text{mammals}}$ (USEPA, 1993)

Short-tailed shrew = Invertebrates (USEPA, 1993)

Little brown bat = Invertebrates (Sample and Suter, 1994)

Area Use Factor

The AUF accounts for the proportion of time that an organism spends in an area of concern during the time period of possible exposure. This factor is generally calculated as the ratio of the size of the EA to the home range of each receptor, but may also include considerations of temporal use of the EA such as seasonality. The AUF provides a more realistic estimate of exposure since it incorporates a more realistic assumption that reduces the overall uncertainty of the risk assessment, while retaining the conservative nature of the model. An AUF of 100% was used to calculate the EDD for each wildlife receptor in order to provide the most conservative exposure estimation.

4. **Exposure Point Concentrations**

Wildlife exposures were evaluated using the maximum COPEC concentration as an EPC. This was done to represent a conservative estimate of risk that assumes receptors are continuously exposed to maximum COPEC concentrations in media throughout their life span. This section presents the methods used to estimate COPEC concentrations in prey items based on the COPEC EPC.

4.1 Soil and Sediment Bioaccumulation Factors

B(S)AFs provide quantitative indicators of the tendency for a chemical to partition into biological organisms relative to the concentrations present in environmental exposure media. Site-specific measurements of tissue concentrations are the best data to reduce uncertainty in estimating EPCs in dietary components. However, the collection of tissue for all dietary components is not practical in most screening-level ecological risk assessments. Therefore, B(S)AFs or models must be applied, and a level of uncertainty in estimated concentrations must be accepted.

BAFs represent observed or predicted ratios between chemical concentrations in prey and soil:

$$C_p = B(S)AF \times C_S$$

where:

Chemical concentration predicted in prey (mg chemical/kg prey, dw); C_{p}

Soil BAFs and sediment BSAFs specific to prey type and constituent B(s)AF

(kg substrate/kg food, dw); and

Concentration of constituent in soil or sediment (mg constituent/kg C_{s}

soil or sediment, dw).

The methodologies and resources used to derive soil BAFs and estimated concentrations in prey items are presented in **Tables 3 and 4** and outlined below:

Terrestrial Plants:

Herbivores were not evaluated in this SLERA since, for Site COPECs, assuming 100% invertebrate diet is more conservative and protective of herbivores. However, plant BAFs were required to assess bioaccumulation of antimony for small mammals (USEPA, 2007).

Consistent with USEPA Eco-SSL guidance (USEPA, 2005), the concentrations of metals in plants were estimated using the recommended applications of plant bioaccumulation models developed by Efroymson et al. (2001) and supplemented using data compiled in Bechtel-Jacobs (1998a) and USEPA (2007). The model used is presented below.

$$ln(tissue) = B0 + B1(ln[soil])$$

Parameters in the above equation are included in Tables 3 and 4.

Soil Invertebrates; and

Consistent with USEPA Eco-SSL guidance (USEPA, 2005), the concentrations of metals (copper, lead, and zinc) in soil invertebrates were estimated using the recommended

applications of earthworm bioaccumulation models developed by Sample et al. (1998a) and as presented below.

$$ln(tissue) = B0 + B1(ln[soil])$$

Parameters in the above equation are included in Tables 3 and 4. USEPA (2007) recommends a BAF of 1 for antimony.

• Small Mammals

Consistent with USEPA Eco-SSL guidance (USEPA, 2005), the concentrations of metals (copper, lead, and zinc) in small mammals were estimated using the recommended applications of earthworm bioaccumulation models developed by Sample et al. (1998b) and as presented below.

$$ln(tissue) = B0 + B1(ln[soil])$$

Parameters in the above equation are included in Tables 3 and 4. For antimony, USEPA (2007) suggests using a diet-to-beef model presented in Baes et al. (1984), where:

The methodologies and resources used to derive sediment BSAFs and estimated concentrations in prey items are presented in **Table 5** and outlined below:

• Benthic Invertebrates

The concentrations of metals in benthic invertebrates were estimated using the recommended applications of biota sediment accumulation models developed by Bechtel-Jacobs (1998b). For lead, Bechtel-Jacobs (1998b) recommended using the median BSAF for non-depurated invertebrates (0.066). For copper, the BSAF was modeled using an upper prediction limit formula develop by Dowdy and Wearden (1983) and presented in Appendix A of Bechtel-Jacobs (1998b).

5. Toxicity Reference Values

Assigning a level of likelihood to risk for birds and mammals was achieved with wildlife TRVs, which constitute threshold effects concentrations derived from published toxicity test data. They are used to estimate the nature and magnitude of effects that a chemical may potentially have on a receptor.

Two TRVs were used including the NOAEL and the LOAEL. The NOAEL and LOAEL are daily dose levels normalized to the body weight of the test animals, e.g., milligrams of chemical per kilogram body weight per day (mg/kg bw-day). USEPA (1997) considers the NOAEL to be the most conservative, and hence, preferred benchmark. Where available, recommended NOAELs that reflect reproduction, growth, and survival endpoints were used, in addition to LOAELs.

Chronic effects levels were included preferentially, and TRVs with reproductive, growth or survival endpoints were considered for selection. These endpoints were favored because effects to these endpoints have a clear impact on the fitness of the organism.

For the Site COPECs (metals), TRVs were selected following guidance in USEPA (2005) and using the applicable Eco-SSL guidance document (accessed via https://www.epa.gov/risk/ecological-soil-screening-level-eco-ssl-guidance-and-documents).

NOAEL TRVs were selected using the following methodology 1) if the NOAEL geometric mean (preferably based reproduction, growth, and survival effect groups) is lower than the lowest bounded LOAEL use the NOAEL geometric mean or otherwise 2) select the highest bounded NOAEL lower than the lowest bounded LOAEL.

If the second option outlined above, the NOAEL geometric mean TRV was retained as a LOAEL TRV. Otherwise, LOAEL TRVs were not selected for the initial DRMs. Selected TRVs for avian and mammalian wildlife are presented in **Table 6**.

6. Modeling Refinements

Based on the results in **Tables 7 through 10** and as discussed in the SLERA, BERA Step 3 was used to determine if the COPECs identified with SLERA Step 2 truly warrant further evaluation. Receptors carried forward to the Step 3 DRM refinement include:

• Mammalian invertivore: Little brown bat (*Myotis lucifugis*)

Components of Step 3 DRM and risk characterization refinements included exposure point concentrations (EPCs) and NOAEL TRVs.

6.1 Refined Modeling Parameters

Consistent with USEPA (1997), parameters used in the DRMs were based on conservative assumptions in order to estimate Reasonable Maximum Exposure (RME). The RME approach, used in the initial steps of the SLERA, is defined by USEPA (1992) as the "highest exposure that could reasonably be expected to occur for a given exposure pathway at a site". Because the use of the maximum concentration in the exposure assessment provides an unrealistically conservative estimate of exposure.

Refinements were made for receptors which had a NOAEL HQ greater than 1. The refinements made to modeling parameters are provided in **Tables 11 and 12** and **Table 13** provides the refined DRM output. Refinements made in BERA Step 3 are summarized below:

• Refined EPC;

Tthe 95% upper confidence limit (UCL) of the arithmetic mean was used to reduce uncertainty associated with using the MDC and remain more protective than using the arithmetic mean concentration. As discussed by USEPA (1992), the 95% UCL provides reasonable confidence that the true site arithmetic mean will not be underestimated. The calculation of the UCL was conducted with ProUCL Version 5.1.002 (Singh and Maichle, 2016).

Refinement of TRVs; and

The NOAEL geometric mean was selected as the NOAEL TRV for use in the Step 3 refined DRMs. The use of the geometric mean provides a representative estimate of a NOAEL observed for reproduction, growth, and survival effect groups in all studies selected in the development of the Eco-SSLs.

7. References

- Baes, C.F., R. Sharp, A. Sjoreen and R. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. Prepared by ORNL for U.S. Dept. of Energy. 150 pp.
- Bechtel-Jacobs (Bechtel-Jacobs Company, LLC). 1998a. Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants. BJC/OR-133. Oak Ridge, TN.
- Bechtel-Jacobs. 1998b. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel Jacobs Company LLC,
- Beyer, W.N., Connor, E.E., and S. Gerould. 1994. Estimates of soil ingestion by wildlife. Journal of Wildlife Management. 58(2):375-382.
- Dowdy, S., and S. Wearden. 1983. Statistics for Research. John Wiley and Sons, New York.
- Dunning, John B. 1984. Body weights of 686 species of North American birds. 1984.
- Efroymson, R.A., Sample, B.E., and G.W. Suter. 2001. Uptake of inorganic chemicals from soil by plant leaves: Regressions of field data. Environ. Toxicol. Chem. 20:2561-2571.
- Gould, E.D. 1955. The feeding efficiency of insectivorous bats. J. Mammal. 36: 399-407
- Nagy, K.A. 2001. Food requirements of wild animals: Predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews, Series B: Livestock Feeds and Feeding, Volume 71, No. 10.
- Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter, II, and T.L. Ashwood. 1998a. Development and Validation of Bioaccumulation Models for Earthworms. Oak Ridge National Laboratory, Oak Ridge TN. 93 pp. ES/ER/TM-220.
- Sample, B.E., J.J. Beauchamp, R.A. Efroymson, and G.W. Suter, II. 1998b. Development and Validation of Bioaccumulation Models for Small Mammals. Oak Ridge National Laboratory, Oak Ridge TN. 89 pp. ES/ER/TM-219.
- Sample, B.E. and G.W. Suter, II. 1994. Estimating Exposure of Terrestrial Wildlife to Contaminants. ES/ER/TM-125. Oak Ridge National Laboratory, Oak Ridge TN.
- Schlesinger WH, Potter GL. 1974. Lead, copper, and cadmium concentrations in small mammals in the Hubbard Brook Experiment Forest. Oikos 25:148–152.
- Singh, A. and Maichle, R. 2016. ProUCL Version 5.1.002 Users Guide, Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations, U.S. Environmental Protection Agency (EPA), EPA/600/R-07/041, May 2016.
- Storm, Gerard L. et al. 1976. Morphology, Reproduction, Dispersal, and Mortality of Midwestern Red Fox Populations. Wildlife Monographs, No. 49, Morphology, Reproduction, Dispersal, and Mortality of Midwestern Red Fox Populations (Apr., 1976), pp. 3-82.
- USEPA, 2018. Region 4 Ecological Risk Assessment Supplemental Guidance. March 2018
 Update. https://www.epa.gov/risk/regional-ecological-risk-assessment-era-supplemental-guidance
- USEPA. 2007. Guidance for Developing Ecological Soil Screening Levels. Attachment 4-1. Exposure Factors and Bioaccumulation Models for Derivation of Wildlife Eco-SSLs.

- OSWER Directive 9285.7-55. Office of Solid Waste and Emergency Response. Washington, DC. April 2007.
- USEPA. 2005. Guidance for Developing Ecological Soil Screening Levels. OSWER Directive 9285.7-55. Office of Solid Waste and Emergency Response. Washington, DC. February 2005.
- USEPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Office of Solid Waste and Emergency Response. EPA 540/R-97/006. June 1997.
- USEPA. 1993. Wildlife Exposure Factors Handbook. Volumes I and II. EPA/600/R-93/187a&b. Office of Health and Environmental Assessment, Office of Research and Development, Washington, D.C.
- USEPA. 1992. Supplemental Guidance to RAGS: Calculating the Concentration Term. Publication 9285.7-08I; May 1992. Office of Emergency and Remedial Response Hazardous Site Evaluation Division, OS-230. Intermittent Bulletin; Volume 1 Number 1.

Tables

Life History Parameters and Ingestion Rates (Terrestrial) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

R	Representative Species							Dietar	Dietary Composition	_			Ingestion Rates	n Rates		
			Homo	Home Pande	Screening Body	Meight (kg					ŭ	Food		Substrate	trate	
Common Name	Scientific Name	Food-web classification	Range	Reference	Use Factor (AUF)	weight)	Plant Material Invertebrates	Invertebrates	Small Mammals	References	kg dry weight/day	Reference	% of Dry Intake	% of Dry kg dry Intake weight/day	Comment Reference	Reference
Avian Receptors																
American robin	Turdus migratorius	Small soil probing invertivore	0.42 ha	0.42 ha Sumple and Suter (1994)	1	0.077		100%		USEPA (1993)	0.012	Nagy (2001) ^a	10.4%	0.00120		Beyer et al. (1994) ^b
Red-tailed hawk	Buteo jamaicensis	Avian carnivore	233 ha	Sample and Suter (1994)	1	1.13			100%	USEPA (1993)	0.0898	Nagy (2001) ^c	5.7%	0.00512)	USEPA (2007)
Mammalian Receptors	S															
Short-tailed shrew	Blarina brevicauda	Terrestrial invertivore	0.39 ha	Sample and Suter (1994)	1	0.015		100%		USEPA (1993)	0.002	Nagy (2001) ^d	3.0%	0.00006)	USEPA (2007)
Red fox	Vulpes vulpes	Medium terrestrial carnivore	407 ha	Sample and Suter (1994)	1	4.5			100%	USEPA (1993)	0.170	Nagy (2001) ^e	2.8%	0.00477	В	Beyer et al. (1994)

Notes:

ha = hectare; kg = kilogram; % = percent

(a) Estimated food ingestion rate (kg/day dry weight) for insectivorous birds = (0.540°IBody Weight in kg*1000°N°.705)/1000

(b) Estimated based on a soil consumption rate of woodcock of 10.4% (Beyer et al. 1994).

(c) Estimated food ingestion rate (kg/day dry weight) for carnivorous birds = (0.849°IBody Weight in kg*1000]^0.663)/1000

(d) Estimated food ingestion rate (kg/day dry weight) for mammalian insectivores = (0.373°IBody Weight in kg*1000]^0.622)/1000

(e) Estimated food ingestion rate (kg/day dry weight) for mammalian carnivores = (0.153°IBody Weight in kg*1000]^0.834)/1000

Table 2
Life History Parameters and Ingestion Rates (Aquatic and Semi-Aquatic)
Screening Level Ecological Risk Assessment
Ridgway Training Range, Pennsylvania

	Representative Species					- 1		Dietary Composition	osition		lng	Ingestion Rates	Se	
				Home Range	Area Use	Dody Weight (kg				Food	pc		Substrate	
Common Name	Scientific Name	Food-web classification	Home Range	Reference	Factor (AUF)	wet weight)	wet Invertebrates	Fish	References	kg dry weight/day	kg dry Reference % of Dry kg dry eight/day	% of Dry Intake	kg dry weight/day	Reference
Mammalian Receptors	ors													
Little brown bat	Myotis lucifugus	Aerial insectivore	N/A	-	1	0.0075	100%		Sample and Suter (1994)	0.0013 Nagy (2001) ^a	Nagy (2001) ^a	%0	0	Sample and Suter (1994)

Notes:
ha = hectare; kg = kilogram; km = kilometers; N/A = Not Available; % = percent
(a) Estimated food ingestion rate (kg/day dry weight) for mammalian insectivores = (0.373*[Body Weight in kg*1000]^0.622)/1000

Table 3
Soil Bioaccumulation Factors and Estimated Concentrations in Prey Items (Target Berm DU)
Screening Level Ecological Risk Assessment
Ridgway Training Range, Pennsylvania

		Maximum Soil			Estimated Concer	Estimated Concentrations in Dietary Items of Terrestrial Receptors (mg/kg, dry weight)	tems of Terrestri	al Receptors (mg	/kg, dry weight)		
		Exposure Point	Ter	Terrestrial Plants		Soi	Soil Invertebrates		Sr	Small Mammals	
Analyte	log K _{ow}	Concentration (mg/kg, dry weight)	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference
Metals											
Antimony	N/A	40.1	Regression ^a	1.25	USEPA (2007)	-	40.1	USEPA (2007)	Modeling ^c	90.0	USEPA (2007)
Copper	N/A	636	Regression ^a	24.2	Bechtel-Jacobs (1998)	Regression ^b	28.5	Sample et al. (1998a)	Regression ^d	19.6	Sample et al. (1998b)
Lead	N/A	8770	Regression ^a	42.7	Bechtel-Jacobs (1998)	Regression ^b	1267	Sample et al. (1998a)	Regression ^d	8'69	Sample et al. (1998b)
Zinc	N/A	165	Regression ^a	84.7	Bechtel-Jacobs (1998)	Regression ^b	457	Sample et al. (1998a)	Regression ^d	112.6	Sample et al. (1998b)

kg = kilogram; $K_{ow} = n$ -octanol/water partitioning coefficient; log = base-10; mg = milligram

(a) Plant tissue concentrations (mg/kg dry weight) calculated based on regression models, where In((tissuel)) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

Chemical	ВО	B1	Data Source for Model
Antimony	-3.233	0.937	USEPA (2007)
Copper	29.0	0.39	Bechtel-Jacobs (1998)
Lead	-1.33	0.56	Bechtel-Jacobs (1998)
Zinc	1.58	0.56	Bechtel-Jacobs (1998)

(b) Soil invertebrate tissue concentrations (mg/kg dry weight) calculated based on regression models, where In([tissue]) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

Chemical	ВО	B1	Data Source for Model
Copper	1.67	0.26	Sample et al. (1998a)
Lead	-0.21	0.81	Sample et al. (1998a)
Zinc	4.44	0.33	Sample et al. (1998a)

(c) USEPA (2007) suggests using a diet-to-beef model presented in Baes et al. (1984), where BAF solt-beef = BA

(d) Small mammal tissue concentrations (mg/kg dry weight) calculated based on regression models, where In([tissue]) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

Chemical	90	DI	Data Source for Model
Copper	2.042	0.1444	Sample et al. (1998b)
Геад	0.0761	0.4422	Sample et al. (1998b)
Zinc	4.3632	90.000	Sample et al. (1998b)

References:

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter, II, and T.L. Ashwood. 1998a. Development and Validation of Bioaccumulation Models for Earthworms. Oak Ridge National Laboratory, Oak Ridge TN. 89 pp. ES/ER/TM-219. Baes, C.F., R. Sharp, A. Sjoreen and R. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. Prepared by ORNL for U.S. Dept. of Energy. 150 pp. U.S. Environmental Protection Agency (USEPA). 2007. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, D.C. November. OSWER Directive 92857-55. Bechtel Jacobs Company LLC. 1998. Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants. Bechtel Jacobs Company LLC, Oak Ridge, TN. BJC/OR-133

Table 4
Soil Bioaccumulation Factors and Estimated Concentrations in Prey Items (Soil Pile DU)
Screening Level Ecological Risk Assessment
Ridgway Training Range, Pennsylvania

		Maximum Soil			Estimated Concer	Estimated Concentrations in Dietary Items of Terrestrial Receptors (mg/kg, dry weight)	ems of Terrestri	al Receptors (mg/	kg, dry weight)		
		Exposure Point	Ter	Terrestrial Plants		Soi	Soil Invertebrates		Sr	Small Mammals	
Analyte	log K _{ow}	Concentration (mg/kg, dry weight)	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference	Bioaccumulation Factor (BAF)	Estimated Concentration	BAF Reference
Metals											
Antimony	N/A	58.5	Regression ^a	1.79	USEPA (2007)	_	58.5	USEPA (2007)	Modeling ^c	0.09	USEPA (2007)
Copper	N/A	1740	Regression ^a	35.9	Bechtel-Jacobs (1998)	Regression ^b	37.0	Sample et al. (1998a)	Regression ^d	22.6	Sample et al. (1998b)
Lead	N/A	8980	Regression ^a	43.3	Bechtel-Jacobs (1998)	Regression ^b	1291	Sample et al. (1998a)	Regression ^d	60.4	Sample et al. (1998b)
Zinc	N/A	314	Regression ^a	121.5	Bechtel-Jacobs (1998)	Regression ^b	565	Sample et al. (1998a)	Regression ^d	117.8	Sample et al. (1998b)

kg = kilogram; K_{ow} = n-octanol/water partitioning coefficient; log = base-10; mg = milligram

(a) Plant tissue concentrations (mg/kg dry weight) calculated based on regression models, where In((tissuel)) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

5	07)	(1998)	(1998)	(1998)
Data Source for Model	USEPA (2007)	Bechtel-Jacobs	Bechtel-Jacobs (1998)	Bechtel-Jacobs (1998)
2	0.937	0.39	0.56	0.56
80	-3.233	29.0	-1.33	1.58
Chemical	Antimony	Copper	Lead	Zinc

(b) Soil invertebrate tissue concentrations (mg/kg dry weight) calculated based on regression models, where In([tissue]) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

Chemical	ВО	B1	Data Source for Model
Copper	1.67	0.26	Sample et al. (1998a)
Lead	-0.21	0.81	Sample et al. (1998a)
Zinc	4.44	0.33	Sample et al. (1998a)

(c) USEPA (2007) suggests using a diet-to-beef model presented in Baes et al. (1984), where BAF solt-beef = BA

(d) Small mammal tissue concentrations (mg/kg dry weight) calculated based on regression models, where In([tissue]) = B0 + B1(In[soil]). Slopes (B1) and intercepts (B0) are as follows:

Chemical	2	<u>-</u>	Data Source for Model
Copper	2.042	0.1444	Sample et al. (1998b)
Lead	0.0761	0.4422	Sample et al. (1998b)
Zinc	4.3632	90.00	Sample et al. (1998b)

Kererences:

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter, II, and T.L. Ashwood. 1998a. Development and Validation of Bioaccumulation Models for Earthworms. Oak Ridge National Laboratory, Oak Ridge TN. 89 pp. ES/ER/TM-219. Baes, C.F., R. Sharp, A. Sjoreen and R. Shor. 1984. A Review and Analysis of Parameters for Assessing Transport of Environmentally Released Radionuclides through Agriculture. Prepared by ORNL for U.S. Dept. of Energy. 150 pp. U.S. Environmental Protection Agency (USEPA). 2007. Guidance for Developing Ecological Soil Screening Levels. Office of Solid Waste and Emergency Response, Washington, D.C. November. OSWER Directive 92857-55. Bechtel Jacobs Company LLC. 1998. Empirical Models for the Uptake of Inorganic Chemicals from Soil by Plants. Bechtel Jacobs Company LLC, Oak Ridge, TN. BJC/OR-133

Biota Sediment Accumulation Factors and Estimated Concentrations in Prey Items (Site-Wide) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania Table 5

		Maximim Sediment		Estimated Concentrations i	Estimated Concentrations in Dietary Items of Aquatic Receptors (mg/kg, dry weight)	eptors (mg/kg, dry weight)
Chilos A	71 20	Concentration	Normalized BSAF	Aqua	Aquatic Life Stage Benthic Invertebrates	ates
Allaiyte	* *	(mg/kg, dry weight)	(kg 0C/kg lipid)	Site-Specific BSAF	Estimated Concentration	BSAF Reference
Metals						
Copper	N/A	79.7	N/A	74N %56	132	Bechtel-Jacobs (1998) ^a
Lead	N/A	358	N/A	0.066	23.6	Bechtel-Jacobs (1998) ^b

BSAF = biota sediment accumulation factor; kg = kilogram; K_{ow} = n-octanol/water partitioning coefficient; log = base-10; mg = milligram

N/A = log K_{ow} and normalized BSAF were not available/applicable for metals

(a) 95% upper prediction limit (UPL) of regressions calculated by Bechtel-Jacobs (1998); calculated according to Appendix A in Bechtel-Jacobs (1998) (b) Median BSAF for non-depurated invertebrates determined by Bechtel-Jacobs (1998)

References:

Bechtel Jacobs Company LLC. 1998. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel Jacobs Company LLC, Oak Ridge, TN. BJC/OR-112

Toxicity Reference Values Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

		Avian Re	Avian Receptors			Mammalian	Mammalian Receptors	
Analyte	Chronic NOAEL (mg/kg-bw/d)	Source	Chronic LOAEL (mg/kg-bw/d)	Source	Chronic NOAEL (mg/kg-bw/d)	Source	Chronic LOAEL (mg/kg-bw/d)	Source
Metals								
Antimony	N/A	USEPA Eco-SSL; Insufficient data to derive a TRV	N/A	ı	0.059	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded LOAEL	13.3	USEPA Eco-SSL; Geometric Mean (NOAEL)
Copper	4.05	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded LOAEL	18.5	USEPA Eco-SSL; Geometric Mean (NOAEL)	5.60	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded LOAEL	25.0	USEPA Eco-SSL; Geometric Mean (NOAEL)
Lead	1.63	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded LOAEL	44.6	USEPA Eco-SSL; Geometric Mean (NOAEL)	4.7	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded LOAEL	186.4	USEPA Eco-SSL; Geometric Mean (NOAEL)
Zinc	66.1	USEPA Eco-SSL; Geometric Mean (NOAEL)	N/A		75.4	USEPA Eco-SSL; Geometric Mean (NOAEL)	N/A	ı

-- Appropriate data are not available from published literature to derive NOAEL and LOAEL values.
bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

References: USEPA Eco-SSLs available at https://www.epa.gov/risk/ecological-soil-screening-level-eco-ssl-guidance-and-documents

Table 7 Dose Rate Model Output (Target Berm DU) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

	Maximum Soil		Sho	ort-tailed Shr	ew (mg/kg b	w-day)			TRV (mg/	kg bw-dw)	
Analysta	Exposure Point		Di	et		Substrate					
Analyte	Concentration (mg/kg, dry weight)	Plant Material	Invertebrate s	Small Mammals	Dose _{diet} ^a	Dose _{substrate} b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
Metals											
Antimony	40.1	0	5.37	0	5.37	0.161	5.54	0.059	94	13.3	<1
Copper	636	0	3.81	0	3.81	2.56	6.37	5.6	1	25	<1
Lead	8770	0	170	0	170	35.3	205	4.7	44	186.4	1
Zinc	165	0	61.3	0	61.3	0.663	61.9	75.4	<1	N/A	

	Maximum Soil		Aı	merican Rob	in (mg/kg bw	r-day)			TRV (mg/l	kg bw-dw)	
Analyte	Exposure Point		Di	et		Substrate					
Analyte	Concentration	Plant	Invertebrate	Small	D a	Dana b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
	(mg/kg, dry weight)	Material	s	Mammals	Dose _{diet} ^a	Dose _{substrate} ^D					
Metals											
Antimony	40.1	0	6.01	0	6.01	0.625	6.64	N/A		N/A	
Copper	636	0	4.27	0	4.27	9.92	14.2	4.05	4	18.5	<1
Lead	8770	0	190	0	190	137	327	1.63	200	44.6	7
Zinc	165	0	68.5	0	68.5	2.57	71.1	66.1	1	N/A	

Notes:

bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

(a) Dietary dose calculated as:

$$EDD_{diet} \, = \, \frac{IR_{diet} \, \times \, \sum (BAF \, \times \, C_{soil} \, \times \, DF_i) \, \times AUF}{BW}$$

(b) Substrate dose calculated as:

$$EDD_{substrate} \, = \, \frac{IR_{substrate} \, \times \, C_{substrate} \, \times AUF}{BW}$$

(c) Total dose calculated as:

$$EDD_{total} = EDD_{diet} + EDD_{substrate}$$

Where: **EDDdiet**

= Dose of COPC obtained from the diet (mg COPC/kg receptor body weight-day)

IRdiet = Ingestion rate of food (kg food ingested per day, dry weight) = Bioaccumulation factor (BAF) specific to prey type and COPC BAF

(kg substrate/kg food, dry weight)

= COPC concentration in soil (mg COPC/kg soil, dry weight) Csoil

DFi = Dietary fraction of food item i

AUF = Area use factor accounts for receptor home range

= Body weight of the receptor, wet weight BW EDDsubstrate = Dose of COPC obtained from substrate

(mg COPC/kg receptor body weight-day)

IRsubstrate = Incidental Ingestion rate of substrate (kg substrate ingested per day, dry weight)

Csubstrate = COPC concentration in substrate

(mg COPC/kg substrate, dry weight)

Table 8 Dose Rate Model Output (Soil Pile DU) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

	Maximum Soil		Sho	ort-tailed Shr	ew (mg/kg b	w-day)			TRV (mg/	kg bw-dw)	
Amaluta	Exposure Point		Di	et		Substrate					
Analyte	Concentration (mg/kg, dry weight)	Plant Material	Invertebrate s	Small Mammals	Dose _{diet} a	Dose _{substrate} b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
Metals											
Antimony	58.5	0	7.84	0	7.84	0.235	8.07	0.059	137	13.3	<1
Copper	1740	0	4.95	0	4.95	7.00	11.9	5.6	2	25	<1
Lead	8980	0	173	0	173	36.1	209	4.7	44	186.4	1
Zinc	314	0	75.8	0	75.8	1.26	77.0	75.4	1	N/A	

	Maximum Soil		Ar	merican Rob	in (mg/kg bw	r-day)			TRV (mg/	kg bw-dw)	
Analyte	Exposure Point		Di	et		Substrate					
Analyte	Concentration	Plant	Invertebrate	Small	D a	Dana b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
	(mg/kg, dry weight)	Material	s	Mammals	Dose _{diet} ^a	Dose _{substrate} ^D					
Metals											
Antimony	58.5	0	8.77	0	8.77	0.912	9.68	N/A		N/A	
Copper	1740	0	5.54	0	5.54	27.1	32.7	4.05	8	18.5	2
Lead	8980	0	194	0	194	140	334	1.63	205	44.6	7
Zinc	314	0	84.7	0	84.7	4.90	89.6	66.1	1	N/A	

Notes:

bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

(a) Dietary dose calculated as:

$$EDD_{diet} \, = \, \frac{IR_{diet} \, \times \, \sum (BAF \, \times \, C_{soil} \, \times \, DF_i) \, \times AUF}{BW}$$

(b) Substrate dose calculated as:

$$EDD_{substrate} \ = \ \frac{IR_{substrate} \ \times \ C_{substrate} \ \times AUF}{BW}$$

(c) Total dose calculated as:

$$EDD_{total} = EDD_{diet} + EDD_{substrate}$$

Where: **EDDdiet**

= Dose of COPC obtained from the diet (mg COPC/kg receptor body weight-day)

IRdiet = Ingestion rate of food (kg food ingested per day, dry weight) = Bioaccumulation factor (BAF) specific to prey type and COPC BAF

(kg substrate/kg food, dry weight)

= COPC concentration in soil (mg COPC/kg soil, dry weight) Csoil

DFi = Dietary fraction of food item i

AUF = Area use factor accounts for receptor home range

= Body weight of the receptor, wet weight BW EDDsubstrate = Dose of COPC obtained from substrate

(mg COPC/kg receptor body weight-day) = Incidental Ingestion rate of substrate

IRsubstrate (kg substrate ingested per day, dry weight)

Csubstrate = COPC concentration in substrate

(mg COPC/kg substrate, dry weight)

Table 9 Dose Rate Model Output (Site-Wide Soil) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

	Maximum Soil			Red Fox (n	ng/kg bw-day	')			TRV (mg/l	kg bw-dw)	
Analyte	Exposure Point		Di	et		Substrate					
Analyte	Concentration (mg/kg, dry weight) ⁽¹⁾	Plant Material	Invertebrates	Small Mammals	Dose _{diet} a	Dose _{substrate} b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
Metals											
Antimony	58.5	0	0	0.003	0.003	0.062	0.065	0.059	1	13.3	<1
Copper	1740	0	0	0.857	0.857	1.84	2.70	5.6	<1	25	<1
Lead	8980	0	0	2.29	2.29	9.52	11.8	4.7	3	186.4	<1
Zinc	314	0	0	4.46	4.46	0.333	4.79	75.4	<1	N/A	-

	Maximum Soil		Re	ed-tailed Hav	vk (mg/kg bw	r-day)			TRV (mg/l	kg bw-dw)	
Analyte	Exposure Point		Di	et		Substrate					
Allalyte	Concentration (mg/kg, dry weight) ⁽¹⁾	Plant Material	Invertebrates	Small Mammals	Dose _{diet} a	Dose _{substrate} b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
Metals											
Antimony	58.5	0	0	0.007	0.007	0.265	0.272	N/A	-	N/A	-
Copper	1740	0	0	1.80	1.80	7.88	9.68	4.05	2	18.5	<1
Lead	8980	0	0	4.80	4.80	40.7	45.5	1.63	28	44.6	1
Zinc	314	0	0	9.36	9.36	1.42	10.8	66.1	<1	N/A	

(1) Site-Wide exposure point concentrations represent the maximum concentration encountered at the Site.

bwld = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

(a) Dietary dose calculated as:

$$EDD_{diet} \, = \, \frac{IR_{diet} \, \times \, \Sigma (BAF \, \times \, C_{soil} \, \times \, DF_i) \, \times AUF}{BW}$$

(b) Substrate dose calculated as:

$$EDD_{substrate} \, = \, \frac{IR_{substrate} \, \times \, C_{substrate} \, \times AUF}{BW}$$

(c) Total dose calculated as:

$$EDD_{total} = EDD_{diet} + EDD_{substrate}$$

Where:

EDDdiet = Dose of COPC obtained from the diet

(mg COPC/kg receptor body weight-day)

IRdiet = Ingestion rate of food (kg food ingested per day, dry weight) BAF = Bioaccumulation factor (BAF) specific to prey type and COPC

(kg substrate/kg food, dry weight)

Csoil = COPC concentration in soil (mg COPC/kg soil, dry weight)

DFi = Dietary fraction of food item i

AUF = Area use factor accounts for receptor home range BW = Body weight of the receptor, wet weight

EDDsubstrate = Dose of COPC obtained from substrate (mg COPC/kg receptor body weight-day)

= Incidental Ingestion rate of substrate **IRsubstrate**

(kg substrate ingested per day, dry weight)

Csubstrate = COPC concentration in substrate

(mg COPC/kg substrate, dry weight)

Table 10 Dose Rate Model Output (Site-Wide Sediment) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

	Maximum Sediment		Little bro	wn bat (mg/kg	g bw-day)			TRV (mg/k	g bw-day)	
Analyte	Exposure Point		Diet		Substrate					
•	Concentration	Invertebrates	Fish	Doos a	Door b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
	(mg/kg, dry weight) ⁽¹⁾	invertebrates	risn	Dose _{diet} ^a	Dose _{substrate} ^b					
Metals						-				
Copper	79.7	22.9	0	22.9	0	22.9	5.6	4	25	<1
Lead	358	4.11	0	4.11	0	4.11	4.7	<1	186.4	<1

Notes

(1) Site-Wide exposure point concentrations represent the maximum concentration encountered at the Site.

bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

(a) Dietary dose calculated as: Where: ADD_{diet} = Dose of COPC obtained from the diet $ADD_{diet} = \frac{IR_{diet} \times \sum (B[S]AF \times C_{substrate} \times DF_i) \times AUF}{BW}$ (mg COPC/kg receptor body weight-day) $\mathsf{IR}_{\mathsf{diet}}$ = Ingestion rate of food (kg food ingested per day, dry weight) B(S)AF = Bioaccumulation factor (BAF) or biota-sediment accumulation (b) Substrate dose calculated as: factor (BSAF), specific to prey type and COPC (kg substrate/kg food, dry weight) $ADD_{substrate} \, = \, \frac{IR_{substrate} \, \times \, C_{substrate} \, \times AUF}{BW}$ DF_i = Dietary fraction of food item i AUF = Area use factor accounts for receptor home range BW = Body weight of the receptor, wet weight $\mathsf{ADD}_{\mathsf{substrate}}$ = Dose of COPC obtained from substrate (c) Total dose calculated as: (mg COPC/kg receptor body weight-day) $ADD_{total} = ADD_{diet} + ADD_{water} + ADD_{substrate}$ $\mathsf{IR}_{\mathsf{substrate}}$ = Incidental Ingestion rate of substrate (kg substrate ingested per day, dry weight) $\mathsf{C}_{\text{substrate}}$ = COPC concentration in substrate (mg COPC/kg substrate, dry weight)

Biota Sediment Accumulation Factors and Refined Estimated Concentrations in Prey Items (Site-Wide) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania Table 11

				Estimated Concentrations i	Estimated Concentrations in Dietary Items of Aquatic Receptors (mg/kg, dry weight)	eptors (mg/kg, dry weight)
4.100 V	y sol	93% UCL Sediment	Normalized BSAF	Aqua	Aquatic Life Stage Benthic Invertebrates	ates
Allayte	*° C	(mg/kg, dry weight)	(kg 0C/kg lipid)	Site-Specific BSAF	Estimated Concentration	BSAF Reference
Metals						
Copper	N/A	36.56	N/A	95% UPL	106	Bechtel-Jacobs (1998) ^a

Red text indicates a Step 3 refinement

BSAF = biota sediment accumulation factor; kg = kilogram; Kow = n-octanol/water partitioning coefficient; log = base-10; mg = milligram; 95% UCL = 95 Percent Upper Confidence Limit

 $N/A = log \ K_{ow}$ and normalized BSAF were not available/applicable for metals

(a) 95% upper prediction limit (UPL) of regressions calculated by Bechtel-Jacobs (1998); calculated according to Appendix A in Bechtel-Jacobs (1998)

References:

Bechtel Jacobs Company LLC. 1998. Biota Sediment Accumulation Factors for Invertebrates: Review and Recommendations for the Oak Ridge Reservation. Bechtel Jacobs Company LLC, Oak Ridge, TN. BJC/OR-112

Refined Toxicity Reference Values Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

		Avian Re	eceptors			Mammalian Receptors	Receptors	
Analyte	Chronic NOAEL (mg/kg-bw/d)	Source	Chronic LOAEL (mg/kg-bw/d)	Source	Chronic NOAEL (mg/kg-bw/d)	Source	Chronic LOAEL (mg/kg-bw/d)	Source
Metals								
Copper	4.05	USEPA Eco-SSL; Highest bounded NOAEL lower than the lowest bounded I OAFI	18.5	USEPA Eco-SSL; Geometric Mean (NOAEL)	25	JSEPA Eco-SSL; Geometric Mean (NOAEL)	None Selected N/A	N/A

-- Appropriate data are not available from published literature to derive NOAEL and LOAEL values. Red text indicates a Step 3 refinement

bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value

References: USEPA Eco-SSLs available at https://www.epa.gov/risk/ecological-soil-screening-level-eco-ssl-guidance-and-documents

Table 13 Refined Dose Rate Model Output (Site-Wide Sediment) Screening Level Ecological Risk Assessment Ridgway Training Range, Pennsylvania

		95% UCL Sediment		Little bro	wn bat (mg/kg	g bw-day)			TRV (mg/l	kg bw-day)	
	Analyte	Exposure Point		Diet		Substrate					
	•	Concentration (mg/kg, dry weight) ⁽¹⁾	Invertebrates	Fish	Dose _{diet} a	Dose _{substrate} b	Total Dose ^c	TRV _{NOAEL}	HQ _{NOAEL}	TRV _{LOAEL}	HQ _{LOAEL}
Metals								•			
Copper		36.56	18.5	0	18.5	0	18.5	25	<1	None Selected	

Notes:

Red text indicates a Step 3 refinement

bw/d = body weight per day; kg = kilogram; LOAEL = Lowest Observable Adverse Effect Level; mg = milligram; NOAEL = No Observable Adverse Effect Level; TRV = toxicity reference value; 95% UCL = 95 Percent Upper Confidence Limit

Where: (a) Dietary dose calculated as: ADD_{diet} = Dose of COPC obtained from the diet $ADD_{diet} = \frac{IR_{diet} \times \sum (B[S]AF \times C_{substrate} \times DF_i) \times AUF}{BW}$ (mg COPC/kg receptor body weight-day) $\mathsf{IR}_{\mathsf{diet}}$ = Ingestion rate of food (kg food ingested per day, dry weight) = Bioaccumulation factor (BAF) or biota-sediment accumulation B(S)AF (b) Substrate dose calculated as: factor (BSAF), specific to prey type and COPC (kg substrate/kg food, dry weight) $ADD_{substrate} \, = \, \frac{IR_{substrate} \, \times \, C_{substrate} \, \times AUF}{BW}$ DF_i = Dietary fraction of food item i AUF = Area use factor accounts for receptor home range BW = Body weight of the receptor, wet weight $\mathsf{ADD}_{\mathsf{substrate}}$ = Dose of COPC obtained from substrate (c) Total dose calculated as: (mg COPC/kg receptor body weight-day) $ADD_{total} = ADD_{diet} + ADD_{water} + ADD_{substrate}$ $\mathsf{IR}_{\mathsf{substrate}}$ = Incidental Ingestion rate of substrate (kg substrate ingested per day, dry weight) $\mathsf{C}_{\text{substrate}}$ = COPC concentration in substrate (mg COPC/kg substrate, dry weight)

Attachment E ProUCL Output

User Selected Options

Date/Time of Computation ProUCL 5.110/31/2018 11:08:29 AM

From File SLERA_Ridgway_ProUCL_Input.xls

Full Precision OFF

Confidence Coefficient 95% Number of Bootstrap Operations 2000

Conc (copper (sed, mg/kg))

Gen	eral	Sta	tisti	CS

Total Number of Observations	12	Number of Distinct Observations	12
		Number of Missing Observations	0
Minimum	6.63	Mean	26.64
Maximum	79.7	Median	21
SD	19.13	Std. Error of Mean	5.522
Coefficient of Variation	0.718	Skewness	2.116

Normal GOF Test

Shapiro Wilk Test Statistic	0.789	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.859	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.233	Lilliefors GOF Test
5% Lilliefors Critical Value	0.243	Data appear Normal at 5% Significance Level

Data appear Approximate Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	36.56	95% Adjusted-CLT UCL (Chen-1995)	39.33

95% Modified-t UCL (Johnson-1978) 37.12

Gamma GOF Test

A-D Test Statistic	0.32	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.74	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.147	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.248	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	2.773	k star (bias corrected MLE)	2.135
Theta hat (MLE)	9.61	Theta star (bias corrected MLE)	12.48
nu hat (MLE)	66.54	nu star (bias corrected)	51.24
MLE Mean (bias corrected)	26.64	MLE Sd (bias corrected)	18.24
		Approximate Chi Square Value (0.05)	35.8
Adjusted Level of Significance	0.029	Adjusted Chi Square Value	33.84

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 38.13 95% Adjusted Gamma UCL (use when n<50) 40.34

User Selected Options

Date/Time of Computation ProUCL 5.110/31/2018 11:08:29 AM

From File SLERA_Ridgway_ProUCL_Input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.976	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.859	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.125	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.243	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.892	Mean of logged Data	3.092
Maximum of Logged Data	4.378	SD of logged Data	0.638

Assuming Lognormal Distribution

95% H-UCL	42.21	90% Chebyshev (MVUE) UCL	41.62
95% Chebyshev (MVUE) UCL	48.49	97.5% Chebyshev (MVUE) UCL	58.02
99% Chebyshev (MVUE) UCL	76.74		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 36	JCL	95% CLT UCL
95% Bootstrap-t UCL 44	JCL	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 35	JCL	95% Hall's Bootstrap UCL
	JCL	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 50	JCL	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 81	JCL	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

95% Student's-t UCL 36.56

When a data set follows an approximate (e.g., normal) distribution passing one of the GOF test
When applicable, it is suggested to use a UCL based upon a distribution (e.g., gamma) passing both GOF tests in ProUCL

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

User Selected Options

Date/Time of Computation ProUCL 5.110/31/2018 11:08:29 AM

From File SLERA_Ridgway_ProUCL_Input.xls

Full Precision OFF

Confidence Coefficient 95%

Number of Bootstrap Operations 2000

Conc (lead (sed, mg/kg))

General Statistics

13	Number of Distinct Observations		Total Number of Observations
0	Number of Missing Observations		
122.8	Mean	15.8	Minimum
106	Median	358	Maximum
27.29	Std. Error of Mean	98.38	SD
1.206	Skewness	0.801	Coefficient of Variation

Normal GOF Test

Shapiro Wilk Test Statistic	0.901	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.866	Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.187	Lilliefors GOF Test
5% Lilliefors Critical Value	0.234	Data appear Normal at 5% Significance Level

Data appear Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	171.4	95% Adjusted-CLT UCL (Chen-1995)	177.4

95% Modified-t UCL (Johnson-1978) 172.9

Gamma GOF Test

A-D Test Statistic	0.146	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.749	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.0943	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.241	Detected data appear Gamma Distributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Gamma Statistics

k hat (MLE)	1.577	k star (bias corrected MLE)	
Theta hat (MLE)	77.83	77.83 Theta star (bias corrected MLE)	
nu hat (MLE)	41.01	nu star (bias corrected)	32.88
MLE Mean (bias corrected)	122.8	MLE Sd (bias corrected)	
		Approximate Chi Square Value (0.05)	20.77
Adjusted Level of Significance	0.0301	Adjusted Chi Square Value	19.41

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 194.3 95% Adjusted Gamma UCL (use when n<50) 208

User Selected Options

Date/Time of Computation ProUCL 5.110/31/2018 11:08:29 AM

From File SLERA_Ridgway_ProUCL_Input.xls

Full Precision OFF
Confidence Coefficient 95%
Number of Bootstrap Operations 2000

Lognormal GOF Test

Shapiro Wilk Lognormal GOF Test	0.953	Shapiro Wilk Test Statistic
Data appear Lognormal at 5% Significance Leve	0.866	5% Shapiro Wilk Critical Value
Lilliefors Lognormal GOF Test	0.123	Lilliefors Test Statistic
Data appear Lognormal at 5% Significance Leve	0.234	5% Lilliefors Critical Value

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.76	Mean of logged Data	4.461
Maximum of Logged Data	5.881	SD of logged Data	0.951

Assuming Lognormal Distribution

95% H-UCL	290.6	90% Chebyshev (MVUE) UCL	240.2
95% Chebyshev (MVUE) UCL	290.1	97.5% Chebyshev (MVUE) UCL	359.4
99% Chebyshev (MVUE) UCL	495.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	167.6	95% Jackknife UCL	171.4
95% Standard Bootstrap UCL	167.1	95% Bootstrap-t UCL	188.7
95% Hall's Bootstrap UCL	196.8	95% Percentile Bootstrap UCL	167.9
95% BCA Bootstrap UCL	175.2		
90% Chebyshev(Mean, Sd) UCL	204.6	95% Chebyshev(Mean, Sd) UCL	241.7
97.5% Chebyshev(Mean, Sd) UCL	293.2	99% Chebyshev(Mean, Sd) UCL	394.2

Suggested UCL to Use

95% Student's-t UCL 171.4

 $Note: Suggestions \ regarding \ the \ selection \ of \ a \ 95\% \ UCL \ are \ provided \ to \ help \ the \ user \ to \ select \ the \ most \ appropriate \ 95\% \ UCL.$

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix G:

Munitions Response Site Prioritization Protocol Tables

Table A

MRS Background Information

DIRECTIONS: Record the background information below for the MRS to be evaluated. Much of this information is available from Service and DoD databases. If the MRS is located on a FUDS property, the suitable FUDS property information should be substituted. In the MRS Summary, briefly describe the UXO, DMM, or MC that are known or suspected to be present, the exposure setting (the MRS's physical environment), any other incidental nonmunitions-related contaminants (e.g., benzene, trichloroethylene) found at the MRS, and any potentially exposed human and ecological receptors. If possible, include a map of the MRS.

Munit	Munitions Response Site Name: Ridgway Training Range (PAE40-001-R-01)						
-	Component: Army National Guard Directorate						
	lation/Property Nam	•					
Locat	ion (City, County, St	ate): Ridgway Towns	ship, Elk Cou	nty, Peni	nsylvania		
Site N	lame/Project Name (Project No.): Ridgwa	y Training Ra	ange Rer	medial Investigation		
Point	Date Information Entered/Updated: 11 October 2018 Point of Contact (Name/Phone): Dave Connolly (ARNG), (703)607-7589 Project Phase (check only one):						
	□PA	□SI	☑RI		□FS	□RD	
	□RA-C	□RIP	□RA-O		□RC	□LTM	
Media	edia Evaluated (check all that apply): Groundwater Sediment (human receptor) Surface soil Surface Water (ecological receptor) Surface Water (human receptor)						

MRS Summary:

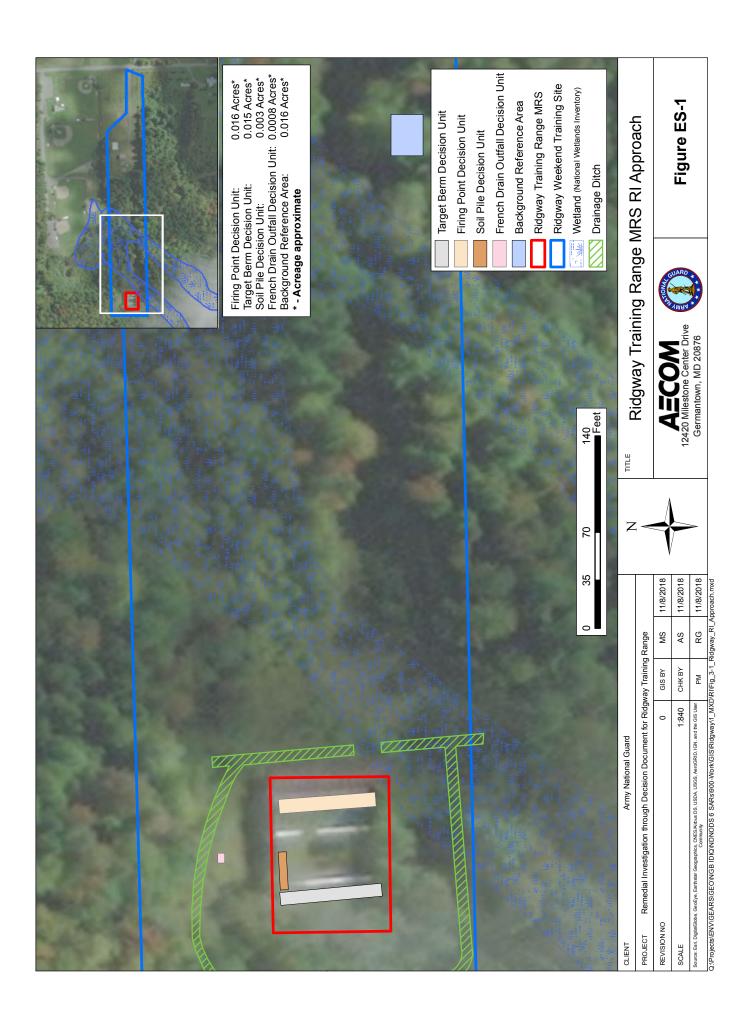
MRS Description: Describe the munitions-related activities that occurred at the installation, the dates of operation, and the UXO, DMM, or MC known or suspected to be present. When possible, identify munitions, CWM, and MC by type:

The NDNODS Ridgway Training Range MRS is a 0.22-acre site used by the PAARNG for live-fire weapons training from 1987 to 2005. Weapons training was conducted within the enclosed 25 Meter Outdoor Baffle M-16 Rifle Range. Support structures on the range included a block target storage building, a downrange backstop, and a shelter building over the 12 firing positions protecting the soldiers from the weather. The firing points were recessed into the ground surface via culvert type material. Wooden covers enclosed the firing positions. The range configuration consisted of 12-foot high concrete side and impact walls (original construction). Documentation specifying the exact munitions used was not found; however, based on range type, timeframe of range use, and location, AECOM surmised that the following munitions were fired: .22 caliber, .38 caliber, .45 caliber, .50 caliber, 9 millimeter (mm), 5.56mm, and 7.62mm. (continued next page)

Transfer of the property to a private owner was completed in 2015. To improve drainage in front of the target berm at the MRS, the landowner installed a French drain parallel to the berm. Soil excavated during construction of the berm is stored in a pile within the MRS walls.

Description of Pathways for Human and Ecological Receptors:

MC within soil at the MRS is anticipated to remain at the Target Berm, Firing Point, Soil Pile, and French Drain Outfall and not be transported off site. Exposure pathways between MC and receptors are restricted to source areas, which is potentially the soil at the Target Berm, the Firing Point, and the Soil Pile, and sediment at the French Drain Outfall. Particulates from the berm are being transported, via the French drain, to the ponded area (French Drain Outfall) to the north of the MRS. Since the drain discharges to a ponded area, it is expected that particulates settle in the small detention pond and receptors are only potentially exposed to sediment in this area. A drainage ditch south of the MRS abuts the southern end of the Target Berm which extends beyond the southern MRS wall, and there is potential for runoff to enter the drainage ditch; however, sample data indicates that MC are not being transported throughout the drainage ditch. The drainage ditch is intermittently inundated, but potentially confluences with a wetland in the southeast portion of the MRS when flowing. The MRS walls prevent soil particles from the Target berm within the MRS walls from being transported off-site to the east. Evidence of erosion is present on the center of the Target Berm, but the MRS walls prevent soil particles from the center of the Target Berm from being transported off-site to the east. MC deposited in the Soil Pile have limited potential to migrate due to the pile's location within the MRS walls.


Antimony, copper, lead, and zinc have a strong affinity to sorb to soil particles, particularly soils that are rich in organic matter, and usually only migrate via physical transport pathways. Because of these chemical properties, they typically do not leach to groundwater except where shallow groundwater exists less than 5 feet below ground surface (bgs). According to the 2011 Environmental Baseline Survey, existing boring logs from wells in the area show depths to bedrock varying from 10 to 33 feet (see Cross Section A-A' of **Figure 10-1** of the UFP-QAPP [AECOM, 2017]). Therefore, groundwater pathways are incomplete for the Ridgway Training Range MRS. Because explosives (e.g. nitroglycerin) are organic compounds, they also are subject to biological or chemical degradation over time, which results in these compounds being less persistent in the environment than MC metals.

MC may be transported to the ponded area where the French drain daylights and the drainage ditch south of the MRS. Exposure pathways between MC and receptors are restricted to source areas, which are the Target Berm, Firing Point, and Soil Pile, as well as the French Drain Outfall and the drainage ditch south of the MRS.

Description of Receptors (Human and Ecological):

The area surrounding the MRS is predominantly rural; the properties surrounding the MRS include agricultural, mining, residential, and recreational land (**Figure 2-1** of the RI Report). A community baseball/athletic is north of the property. The property is privately owned, and the property is used as a staging area by a landscaping company. Future use is planned to be the same. Access to the MRS is mostly restricted via a locked gate, so the public does not have access to the site. Potential human receptors include the landowner and visitors or workers (e.g., construction, commercial/industrial) that the landowner allows on site. As there is no restriction on the land, there is potential that the site could be used for residential purposes in the future.

There is no federally designated critical habitat located within the site; however, habitat supporting ecological receptors is present within the MRS. A portion of a wetland is present within the MRS that could provide habitat for aquatic species, and some preferential habitat quality exists in the areas surrounding the MRS. Although no federally designated critical habitat is located within the MRS, Pennsylvania State-endangered species have the potential to exist at or in the vicinity of the MRS. Many of these species will not be found on or near the MRS; a list of species and their preferred habitat is listed in Table 2-1 of the RI report to help determine the likelihood of each species being present.

EHE Module: Munitions Type Data Element Table

DIRECTIONS: Below are 11 classifications of munitions and their descriptions. Circle the scores that correspond with **all** the munitions types known or suspected to be present at the MRS.

Note: The terms *practice munitions, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Sensitive	 UXO that are considered most likely to function upon any interaction with exposed persons (e.g., submunitions, 40mm high-explosive [HE] grenades, white phosphorus [WP] munitions, high-explosive antitank [HEAT] munitions, and practice munitions with sensitive fuzes, but excluding all other practice munitions). Hand grenades containing energetic filler. Bulk primary explosives, or mixtures of these with environmental media, such that the mixture poses an explosive hazard. 	30
High explosive (used or damaged)	 UXO containing a high-explosive filler (e.g., RDX, Composition B), that are not considered "sensitive." DMM containing a high-explosive filler that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	25
Pyrotechnic (used or damaged)	 UXO containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades). DMM containing a pyrotechnic filler other than white phosphorus (e.g., flares, signals, simulators, smoke grenades) that have: Been damaged by burning or detonation Deteriorated to the point of instability. 	20
High explosive (unused)	 DMM containing a high-explosive filler that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	15
Propellant	 UXO containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor) that are: Damaged by burning or detonation Deteriorated to the point of instability. 	15
Bulk secondary high explosives, pyrotechnics, or propellant	 DMM containing mostly single-, double-, or triple-based propellant, or composite propellants (e.g., a rocket motor). DMM that are bulk secondary high explosives, pyrotechnic compositions, or propellant (not contained in a munition), or mixtures of these with environmental media such that the mixture poses an explosive hazard. 	
Pyrotechnic (not used or damaged)	 DMM containing a pyrotechnic filler (i.e., red phosphorus), other than white phosphorus filler, that: Have not been damaged by burning or detonation Are not deteriorated to the point of instability. 	
Practice	 UXO that are practice munitions that are not associated with a sensitive fuze. DMM that are practice munitions that are not associated with a sensitive fuze and that have not: Been damaged by burning or detonation Deteriorated to the point of instability. 	5
Riot control	UXO or DMM containing a riot control agent filler (e.g., tear gas).	3
Small arms	 Used munitions or DMM that are categorized as small arms ammunition. (Physical evidence or historical evidence that no other types of munitions [e.g., grenades, subcaliber training rockets, demolition charges] were used or are present on the MRS is required for selection of this category.) 	
Evidence of no munitions	Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present.	
MUNITIONS TYPE	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 30).	2

DIRECTIONS: Document any MRS-specific data used in selecting the *Munitions Type* classifications in the space provided.

The 2012 SI report reported there was no evidence of MEC at this MRS (RI report, Section 2.2.2). During the RI, no evidence of MEC was observed at this site; a 5.56mm caliber bullet was observed during RI field work on the ground surface at the Firing Point; no evidence of munitions was observed at the Target Berm, Soil Pile, or French drain area.

EHE Module: Source of Hazard Data Element Table

DIRECTIONS: Below are 11 classifications describing sources of explosive hazards. Circle the scores that correspond with **all** the sources of explosive hazards known or suspected to be present at the MRS.

Note: The terms *former range, practice munitions, small arms range, physical evidence*, and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description		
Former range	 The MRS is a former military range where munitions (including practice munitions with sensitive fuzes) have been used. Such areas include impact or target areas and associated buffer and safety zones. 	10	
Former munitions treatment (i.e., OB/OD) unit	 The MRS is a location where UXO or DMM (e.g., munitions, bulk explosives, bulk pyrotechnic, or bulk propellants) were burned or detonated for the purpose of treatment prior to disposal. 	8	
Former practice munitions range	The MRS is a former military range on which only practice munitions without sensitive fuzes were used.		
Former maneuver area	 The MRS is a former maneuver area where no munitions other than flares, simulators, smokes, and blanks were used. There must be evidence that no other munitions were used at the location to place an MRS into this category. 	5	
Former burial pit or other disposal area	The MRS is a location where DMM were buried or disposed of (e.g., disposed of into a water body) without prior thermal treatment.	5	
Former industrial operating facilities	The MRS is a location that is a former munitions maintenance, manufacturing, or demilitarization facility.	4	
Former firing points	The MRS is a firing point, where the firing point is delineated as an MRS separate from the rest of a former military range.	4	
Former missile or air defense artillery emplacements	The MRS is a former missile defense or air defense artillery (ADA) emplacement not associated with a military range.	2	
Former storage or transfer points	 The MRS is a location where munitions were stored or handled for transfer between different modes of transportation (e.g., rail to truck, truck to weapon system). 	2	
Former small arms range	The MRS is a former military range where only small arms ammunition was used. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present to place an MRS into this category.)	<u>1</u>	
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that no UXO or DMM are present, or there is historical evidence indicating that no UXO or DMM are present. 	0	
SOURCE OF HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	1	

DIRECTIONS: Document any MRS-specific data used in selecting the **Source of Hazard** classifications in the space provided.

During the RI, no evidence of MEC was observed at this MRS a 5.56mm caliber bullet was observed during RI field work on the ground surface at the Firing Point; no evidence of munitions was observed at the Target Berm, Soil Pile, or French drain area.

EHE Module: Location of Munitions Data Element Table

DIRECTIONS: Below are eight classifications of munitions locations and their descriptions. Circle the scores that correspond with **all** the locations where munitions are known or suspected to be present at the MRS.

Note: The terms *confirmed, surface, subsurface, small arms ammunition, physical evidence,* and *historical evidence* are defined in Appendix C of the Primer.

Classification	Description	Score
Confirmed surface	 Physical evidence indicates that there are UXO or DMM on the surface of the MRS. Historical evidence (i.e., a confirmed report such as an explosive ordnance disposal [EOD], police, or fire department report that an incident or accident that involved UXO or DMM occurred) indicates there are UXO or DMM on the surface of the MRS. 	25
Confirmed subsurface, active	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS, and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena (e.g., drought, flooding, erosion, frost heave, tidal action), or intrusive activities (e.g., plowing, construction, dredging) at the MRS are likely to expose UXO or DMM. 	20
Confirmed subsurface, stable	 Physical evidence indicates the presence of UXO or DMM in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. Historical evidence indicates that UXO or DMM are located in the subsurface of the MRS and the geological conditions at the MRS are not likely to cause UXO or DMM to be exposed, in the future, by naturally occurring phenomena, or intrusive activities at the MRS are not likely to cause UXO or DMM to be exposed. 	15
Suspected (physical evidence)	 There is physical evidence (e.g., munitions debris such as fragments, penetrators, projectiles, shell casings, links, fins), other than the documented presence of UXO or DMM, indicating that UXO or DMM may be present at the MRS. 	10
Suspected (historical evidence)	There is historical evidence indicating that UXO or DMM may be present at the MRS.	5
Subsurface, physical constraint	 There is physical or historical evidence indicating that UXO or DMM may be present in the subsurface, but there is a physical constraint (e.g., pavement, water depth over 120 feet) preventing direct access to the UXO or DMM. 	2
Small arms (regardless of location)	 The presence of small arms ammunition is confirmed or suspected, regardless of other factors such as geological stability. (There must be evidence that no other types of munitions [e.g., grenades] were used or are present at the MRS to place an MRS into this category.) 	1
Evidence of no munitions	 Following investigation of the MRS, there is physical evidence that there are no UXO or DMM present, or there is historical evidence indicating that no UXO or DMM are present. 	0
LOCATION OF MUNITIONS	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 25).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Location of Munitions* classifications in the space provided.

During the RI, no evidence of MEC was observed at this site; a 5.56mm caliber bullet was observed during RI field work on the ground surface at the Firing Point (RI report, Section 5.3); no evidence of munitions was observed at the Target Berm, Soil Pile, or French drain area. Analytical results from the RI showed elevated levels of small arms metals MC in the Target Berm, Soil Pile, and French Drain soil and sediment compared to background and elevated levels of nitroglycerin in the Firing Point soil compared to background (RI report, Section 5).

EHE Module: Ease of Access Data Element Table

DIRECTIONS: Below are four classifications of barrier types that can surround an MRS and their descriptions. The barrier type is directly related to the ease of public access to the MRS. Circle the score that corresponds

with the ease of access to the MRS.

Note: The term *barrier* is defined in Appendix C of the Primer.

Classification	Description	
No barrier	 There is no barrier preventing access to any part of the MRS (i.e., all parts of the MRS are accessible). 	10
Barrier to MRS access is incomplete	 There is a barrier preventing access to parts of the MRS, but not the entire MRS. 	8
Barrier to MRS access is complete but not monitored	 There is a barrier preventing access to all parts of the MRS, but there is no surveillance (e.g., by a guard) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	<u>5</u>
Barrier to MRS access is complete and monitored	 There is a barrier preventing access to all parts of the MRS, and there is active, continual surveillance (e.g., by a guard, video monitoring) to ensure that the barrier is effectively preventing access to all parts of the MRS. 	0
EASE OF ACCESS	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 10).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Ease of Access* classification in the space provided.

Access to the MRS is restricted via a locked gate (RI report, Section 2.3).

EHE Module: Status of Property Data Element Table

DIRECTIONS: Below are three classifications of the status of a property within the Department of Defense (DoD) and their descriptions. Circle the score that corresponds with the status of property at the MRS.

Classification	Description	
Non-DoD control	 The MRS is at a location that is no longer owned by, leased to, or otherwise possessed or used by DoD. Examples are privately owned land or water bodies; land or water bodies owned or controlled by state, tribal, or local governments; and land or water bodies managed by other federal agencies. The MRS is at a location that is owned by DoD, but that DoD has leased to another entity and for which DoD does not control access 24 hours per day. 	<u>5</u>
Scheduled for transfer from DoD control	• The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD, and DoD plans to transfer that land or water body to the control of another entity (e.g., a state, tribal, or local government; a private party; another federal agency) within 3 years from the date the Protocol is applied.	3
DoD control	 The MRS is on land or is a water body that is owned, leased, or otherwise possessed by DoD. With respect to property that is leased or otherwise possessed, DoD must control access to the MRS 24 hours per day, every day of the calendar year. 	0
STATUS OF PROPERTY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Status of Property* classification in the space provided.

The MRS is a NDNODS Site that contains one parcel of land. The MRS is entirely privately owned by Steve Lawrie (RI report, Section 2.2).

EHE Module: Population Density Data Element Table

DIRECTIONS: Below are three classifications for population density and their descriptions. Determine the population density per square mile that most closely corresponds with the population of the MRS, including the area within a two-mile radius of the MRS's perimeter. Circle the most appropriate score.

Note: Use the U.S. Census Bureau tract data available to capture the **highest** population density within a two-mile radius of the perimeter of the MRS.

Classification	Description	
> 500 persons per square mile	There are more than 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	5
100-500 persons per square mile	There are 100 to 500 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	3
< 100 persons per square mile	There are fewer than 100 persons per square mile in the U.S. Census Bureau tract in which the MRS is located.	1
POPULATION DENSITY	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	1

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Density* classification in the space provided.

The MRS is a small 0.22-acre tract of land that is surrounded by predominantly rural areas. According to the 2010 US Census for Pennsylvania, the Ridgway Township has a population density of 29.0 per square mile.

EHE Module: Population Near Hazard Data Element Table

DIRECTIONS: Below are six classifications describing the number of inhabited structures near the MRS. The number of

inhabited buildings relates to the potential population near the MRS. Determine the number of inhabited structures within two miles of the MRS boundary and circle the score that corresponds with the number

of inhabited structures.

Note: The term inhabited structures is defined in Appendix C of the Primer.

Classification	Description	Score
26 or more inhabited structures	 There are 26 or more inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	<u>5</u>
16 to 25 inhabited structures	 There are 16 to 25 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	4
11 to 15 inhabited structures	 There are 11 to 15 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	3
6 to 10 inhabited structures	 There are 6 to 10 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	2
1 to 5 inhabited structures	 There are 1 to 5 inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	1
0 inhabited structures	 There are no inhabited structures located up to 2 miles from the boundary of the MRS, within the boundary of the MRS, or both. 	0
POPULATION NEAR HAZARD	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	5

DIRECTIONS: Document any MRS-specific data used in selecting the *Population Near Hazard* classification in the space provided.

The MRS is a small 0.22-acre tract of uninhabited land that is comprised of that does not contain any habitable structures. More than 26 inhabited structures are located within a two-mile radius of the MRS.

EHE Module: Types of Activities/Structures Data Element Table

DIRECTIONS: Below are five classifications of activities and/or inhabited structures and their descriptions. Review the

types of activities that occur and/or structures that are present within two miles of the MRS and circle the

scores that correspond with **all** the activities/structure classifications at the MRS.

Note: The term *inhabited structure* is defined in Appendix C of the Primer.

Classification	Description	Score
Residential, educational, commercial, or subsistence	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with any of the following purposes: residential, educational, child care, critical assets (e.g., hospitals, fire and rescue, police stations, dams), hotels, commercial, shopping centers, playgrounds, community gathering areas, religious sites, or sites used for subsistence hunting, fishing, and gathering. 	<u>5</u>
Parks and recreational areas	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with parks, nature preserves, or other recreational uses.	
Agricultural, forestry	Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with agriculture or forestry.	
Industrial or warehousing	 Activities are conducted, or inhabited structures are located up to two miles from the MRS's boundary or within the MRS's boundary, that are associated with industrial activities or warehousing. 	
No known or recurring activities	There are no known or recurring activities occurring up to two miles from the MRS's boundary or within the MRS's boundary.	
TYPES OF ACTIVITIES/STRUCTURES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	

DIRECTIONS: Document any MRS-specific data used in selecting the *Types of Activities/Structures* classifications in the space provided.

The MRS is currently used for the staging of landscaping equipment. Land uses of properties surrounding the site include recreational, agricultural, residential, and mining. Located on the site's northern boundary is a community baseball/athletic field (RI Report, Section 2.1).

EHE Module: Ecological and/or Cultural Resources Data Element Table

DIRECTIONS: Below are four classifications of ecological and/or cultural resources and their descriptions. Review the

types of resources present and circle the score that corresponds with the ecological and/or cultural

resources present on the MRS.

Note: The terms ecological resources and cultural resources are defined in Appendix C of the Primer.

Classification	Description	
Ecological and cultural resources present	There are both ecological and cultural resources present on the MRS.	5
Ecological resources present	There are ecological resources present on the MRS.	
Cultural resources present	There are cultural resources present on the MRS.	
No ecological or cultural resources present	There are no ecological resources or cultural resources present on the MRS.	
ECOLOGICAL AND/OR CULTURAL RESOURCES	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 5).	

DIRECTIONS: Document any MRS-specific data used in selecting the *Ecological and/or Cultural Resources* classification in the space provided.

There are no known cultural resources located within the MRS. There are no documented occurrences of federally listed threatened and endangered species or federally-designated critical habitat on the MRS. A portion of a wetland is located within the MRS, providing habitat for aquatic species (RI Report, Section 2.1; RI Report **Figure 2-1**).

Table 10Determining the EHE Module Rating

DIRECTIONS:

- 1. From Tables 1–9, record the data element scores in the **Score** boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the EHE Module Total box below.
- 4. Circle the appropriate range for the **EHE Module Total** below.
- 5. Circle the **EHE Module Rating** that corresponds to the range selected and record this value in the **EHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	- Courto		raido	
Explosive Hazard Factor Data E	ements			
Munitions Type	Table 1	2	_	
Source of Hazard	Table 2	1	3	
Accessibility Factor Data Eleme	nts			
Location of Munitions	Table 3	1		
Ease of Access	Table 4	5	11	
Status of Property	Table 5	5		
Receptor Factor Data Elements				
Population Density	Table 6	1		
Population Near Hazard	Table 7	5		
Types of Activities/Structures	Table 8	5	14	
Ecological and/or Cultural Resources	Table 9	3		
			20	

Source

Score

Value

EHE Module Total	EHE Module Rating	
92 to 100	Α	
82 to 91	В	
71 to 81	С	
60 to 70	D	
48 to 59	Е	
38 to 47	F	
less than 38	G	
	Evaluation Pending	
Alternative Module Ratings	No Longer Required	
	No Known or Suspected Explosive Hazard	
EHE MODULE RATING	No Known or Suspected Explosive Hazard	

EHE MODULE TOTAL

As small arms are the only munitions known to have been used on the MRS, small arms do not present a unique explosive hazard [Army Guidance SAIE (ESOH) Memorandum February 2009], therefore the MRS does not present a unique explosive hazard. Accordingly, the EHE module has been rated "No Known or Suspected Explosive Hazard".

CHE Module: CWM Configuration Data Element Table

DIRECTIONS: Below are seven classifications of CWM configuration and their descriptions. Circle the scores that correspond with **all** the CWM configurations known or suspected to be present at the MRS.

Note: The terms CWM/UXO, CWM/DMM, physical evidence, and historical evidence are defined in Appendix C of the

Primer.

Classification	Description	Score
CWM, that are either UXO, or explosively configured damaged DMM	 The CWM known or suspected of being present at the MRS are: CWM that are UXO (i.e., CWM/UXO) Explosively configured CWM that are DMM (i.e., CWM/DMM) that have been damaged. 	30
CWM mixed with UXO	The CWM known or suspected of being present at the MRS are undamaged CWM/DMM or CWM not configured as a munition that are commingled with conventional munitions that are UXO.	25
CWM, explosive configuration that are undamaged DMM	 The CWM known or suspected of being present at the MRS are explosively configured CWM/DMM that have not been damaged. 	20
CWM/DMM, not explosively configured or CWM, bulk container	 The CWM known or suspected of being present at the MRS are: Non-explosively configured CWM/DMM either damaged or undamaged Bulk CWM (e.g., ton container). 	15
CAIS K941 and CAIS K942	 The CWM/DMM known or suspected of being present at the MRS are CAIS K941-toxic gas set M-1 or CAIS K942-toxic gas set M- 2/E11. 	12
CAIS (chemical agent identification sets)	 CAIS, other than CAIS K941 and K942, are known or suspected of being present at the MRS. 	10
Evidence of no CWM	 Following investigation, the physical evidence indicates that CWM are not present at the MRS, or the historical evidence indicates that CWM are not present at the MRS. 	<u>0</u>
CWM CONFIGURATION	DIRECTIONS: Record the single highest score from above in the box to the right (maximum score = 30).	0

DIRECTIONS: Document any MRS-specific data used in selecting the *CWM Configuration* classifications in the space provided.

The 2012 SI and Historical Records Review determined that there was no evidence of MEC or CWM at the MRS (RI report, Section 2.4).

Tables 12 through 19 are Intentionally Omitted According to Army Guidance

Table 20Determining the CHE Module Rating

DIRECTIONS:

- From Tables 11–19, record the data element scores in the Score boxes to the right.
- 2. Add the **Score** boxes for each of the three factors and record this number in the **Value** boxes to the right.
- Add the three Value boxes and record this number in the CHE Module Total box below.
- 4. Circle the appropriate range for the **CHE Module Total** below.
- 5. Circle the **CHE Module Rating** that corresponds to the range selected and record this value in the **CHE Module Rating** box found at the bottom of the table.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more data elements, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

	Source	Score	Value
CWM Hazard Factor Data Elemen	ts		
CWM Configuration	Table 11	0	
Sources of CWM	Table 12	0	0
Accessibility Factor Data Elemen	ts		
Location of CWM	Table 13	0	
Ease of Access	Table 14	0	0
Status of Property	Table 15	0	
Receptor Factor Data Elements			
Population Density	Table 16	0	
Population Near Hazard	Table 17	0	
Types of Activities/Structures	Table 18	0	0
Ecological and/or Cultural Resources	Table 19	0	
СНЕ	MODULE	TOTAL	0
CHE Module Total	CHE	Module R	ating
92 to 100		Α	
82 to 91		В	
71 to 81		С	
60 to 70		D	
48 to 59		E	
38 to 47	F		
less than 38	G		
	Evaluation Pending		ding
Alternative Module Ratings	No Longer Required		
	No Known or Suspected CWM Hazard		
CHE MODULE RATING	No Known or Suspected CWM Hazard		

HHE Module: Groundwater Data Element Table

Contaminant Hazard Factor (CHF)

Maximum Concentration (ug/L)

Contaminant

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's groundwater and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional groundwater contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the groundwater, select the box at the bottom of the table.

Comparison Value (ug/L)

Ratios

	""				
Media Not Evaluated					
CHF Scale	CHF Value	Sum The Ratios			
CHF > 100	H (High)	[Maximum Concentration of Co	ntaminantl		
100 > CHF > 2	M (Medium)	CHF = \(\sum \)			
2 > CHF	L (Low)	· ·			
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	•			
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ray Factor the groundwater migratory pathway at the M	IRS.		
Classification		cription	Value		
Evident	Analytical data or observable evidence indicates that contamination in the groundwater is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in groundwater has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the groundwater to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	OR DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
	Receptor F	actor			
DIRECTIONS: Circle th	e value that corresponds most closely to				
Classification	Des	cription	Value		
Identified	There is a threatened water supply well downgradient of the source and the groundwater is a current source of drinking water or source of water for other beneficial uses such as irrigation/agriculture (equivalent to Class I or IIA aquifer).				
Potential	There is no threatened water supply well downgradient of the source and the groundwater is currently or potentially usable for drinking water, irrigation, or agriculture (equivalent to Class I, IIA, or IIB aquifer).				
Limited	There is no potentially threatened water supply well downgradient of the source and the groundwater is not considered a potential source of drinking water and is of limited beneficial use (equivalent to Class IIIA or IIIB aquifer, or where perched aquifer exists only).				
RECEPTOR FACTOR	DIRECTIONS: Record <u>the single highest value</u> from above in the box to the right (maximum value = H).				
	No Kno	wn or Suspected Groundwater MC Hazard			

HHE Module: Surface Water – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with human endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L)	Comparison Value (μg/L)	Ratios	
Media Not Evaluated				
CHF Scale	CHF Value	Sum The Ratios		
CHF > 100	H (High)			
100 > CHF > 2	M (Medium)	CHF = \(\Sigma\) [Maximum Concentration of Co	ontaminant]	
2 > CHF	L (Low)	[Comparison Value for Cont	aminant]	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	from above in the box to the right		
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	ray Factor the surface water migratory pathway at the I	MRS.	
Classification	Desc	cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR				
DIRECTIONS: Circle th	Receptor Fane value that corresponds most closely to			
Classification	Desc	cription	Value	
Identified	Identified receptors have access to surface water to which contamination has moved or can move.			
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single high the right (maximum valu			
	No Known or Suspected Sur	face Water (Human Endpoint) MC Hazard		

HHE Module: Sediment – Human Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard

with human endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios	
Antimony	0.966	880	0.00109	
Copper	79.7	81000	0.00098	
Lead	358	5000	0.0716	
Zinc	74.9	660000	0.00011	
CHF Scale	CHF Value	Sum The Ratios	0.0826	
CHF > 100	H (High)	CHF = \(\sum_{\text{[Maximum Concentration of C}} \)	ontominant]	
100 > CHF > 2	M (Medium)	[Comparison Value for Conta		
2 > CHF	L (Low)	- '	1	
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value maximum value = H).	from above in the box to the right	L	
DIRECTIONS: Circle th	Migratory Pathw ne value that corresponds most closely to	vay Factor the sediment migratory pathway at the MRS	S.	
Classification		cription	Value	
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.			
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.			
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).			
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).			
DIRECTIONS: Circle th	Receptor Face value that corresponds most closely to			
Classification	Des	cription	Value	
Identified	Identified receptors have access to sediment to w	Identified receptors have access to sediment to which contamination has moved or can move.		
Potential	Potential for receptors to have access to sediment to which contamination has moved or can move.			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.			
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).			
	No Known or Suspecte	d Sediment (Human Endpoint) MC Hazard		

HHE Module: Surface Water - Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface water and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface water contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard with ecological endpoints present in the surface water, select the box at the bottom of the table.

Contaminant	Maximum Concentration (μg/L) Comparison Value (μg/L)				
Media Not Evaluated					
CHF Scale	CHF Value	Sum the Ratios			
CHF > 100	H (High)	₹			
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	ontaminant]		
2 > CHF	L (Low)	[Comparison Value for Conta	minant]		
CONTAMINANT	DIRECTIONS: Record the CHF Value	from above in the box to the right			
HAZARD FACTOR	(maximum value = H).				
DIDECTIONS: Circle th	Migratory Pathw		ADS.		
		the surface water migratory pathway at the N	Value		
Classification	Description				
Evident	Analytical data or observable evidence indicates that contamination in the surface water is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in surface water has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the surface water to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY	DIRECTIONS: Record the single high				
PATHWAY FACTOR right (maximum value = H).					
DIRECTIONS : Circle th	Receptor Fa ne value that corresponds most closely to				
Classification	Desc	cription	Value		
Identified	Identified receptors have access to surface water to which contamination has moved or can move.				
Potential	Potential for receptors to have access to surface water to which contamination has moved or can move.				
Limited	Little or no potential for receptors to have access to surface water to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
	No Known or Suspected Surfac	e Water (Ecological Endpoint) MC Hazard			

HHE Module: Sediment – Ecological Endpoint Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the **maximum concentrations** of all contaminants in the MRS's sediment and their **comparison** values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional sediment contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard

with ecological endpoints present in the sediment, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratios		
Antimony	0.966		0.483		
Copper	79.7	31.6	2.522		
Lead	358	35.8	10		
Zinc	74.9	121	0.619		
CHF Scale	CHF Value	Sum the Ratios	13.624		
CHF > 100	H (High)	CHF = \(\Sigma \) [Maximum Concentration of Co	(
100 > CHF > 2	M (Medium)				
2 > CHF	L (Low)	[Comparison Value for Cont	amınantj		
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H).	<u> </u>	М		
		o the sediment migratory pathway at the MRS			
Classification		scription	Value H		
Evident	Analytical data or observable evidence indicates that contamination in the sediment is present at, moving toward, or has moved to a point of exposure.				
Potential	Contamination in sediment has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.				
Confined	Information indicates a low potential for contaminant migration from the source via the sediment to a potential point of exposure (possibly due to the presence of geological structures or physical controls).				
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
DIRECTIONS: Circle t	Receptor he value that corresponds most closely t				
Classification		scription	Value		
Identified	Identified receptors have access to sediment to which contamination has moved or can move.				
Potential	Potential for receptors to have access to sedime	М			
Limited	Little or no potential for receptors to have access to sediment to which contamination has moved or can move.				
RECEPTOR FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).				
No Known or Suspected Sediment (Ecological Endpoint) MC Hazard					

HHE Module: Surface Soil Data Element Table

Contaminant Hazard Factor (CHF)

DIRECTIONS: Record the maximum concentrations of all contaminants in the MRS's surface soil and their comparison values (from Appendix B of the Primer) in the table below. Additional contaminants can be recorded on Table 27. Calculate and record the ratios for each contaminant by dividing the maximum concentration by the comparison value. Determine the CHF by adding the contaminant ratios together, including any additional surface soil contaminants recorded on Table 27. Based on the CHF, use the CHF Scale to determine and record the CHF Value. If there is no known or suspected MC hazard present in the surface soil, select the box at the bottom of the table.

Contaminant	Maximum Concentration (mg/kg)	Comparison Value (mg/kg)	Ratio
Antimony	1080	3.1	348.38
Copper	2060	310	6.64
ead	57200	400	143
inc	443	2,300	0.19
litroglycerin	4.4	0.63	6.98
CHF Scale	CHF Value	Sum the Ratios	505.19
CHF > 100	H (High)	— Maximum Concentration of Co	ntominantl
100 > CHF > 2	M (Medium)	CHF = [Maximum Concentration of Co	
2 > CHF	L (Low)	[Comparison Value for Contain	minant]
CONTAMINANT HAZARD FACTOR	DIRECTIONS: Record the CHF Value (maximum value = H)		Н
Classification	Description Analytical data or observable evidence indicates that contamination in the surface soil is present at		
Classification	De	escription	Value
Evident	Analytical data or observable evidence indicates that contamination in the surface soil is present at, moving toward, or has moved to a point of exposure.		
Potential	Contamination in surface soil has moved only slightly beyond the source (i.e., tens of feet), could move but is not moving appreciably, or information is not sufficient to make a determination of Evident or Confined.		
Confined	Information indicates a low potential for contaminant migration from the source via the surface soil to a potential point of exposure (possibly due to the presence of geological structures or physical controls).		
MIGRATORY PATHWAY FACTOR	DIRECTIONS: Record the single highest value from above in the box to the right (maximum value = H).		
DIRECTIONS: Circle	Receptor the value that corresponds most closely	Factor to the surface soil receptors at the MRS.	
Classification		escription	Value
Identified		I to which contamination has moved or can move.	Н
Potential	Potential for receptors to have access to surface soil to which contamination has moved or can move.		
Limited	Little or no potential for receptors to have access to surface soil to which contamination has moved or can move.		
RECEPTOR FACTOR	DIRECTIONS: Record the single hi right (maximum value	ghest value from above in the box to the e = H).	M
	No k	Known or Suspected Surface Soil MC Hazard	

Tables 27 is Intentionally Omitted According to Army Guidance

Determining the HHE Module Rating

DIRECTIONS:

- 1. Record the letter values (H, M, L) for the **Contaminant Hazard**, **Migration Pathway**, and **Receptor Factors** for the media (from Tables 21–26) in the corresponding boxes below.
- 2. Record the media's three-letter combinations in the **Three-Letter Combination** boxes below (three-letter combinations are arranged from Hs to Ms to Ls).
- 3. Using the **HHE Ratings** provided below, determine each media's rating (A–G) and record the letter in the corresponding **Media Rating** box below.

Media (Source)	Contaminant Hazard Factor Value	Migratory Pathway Factor Value	Receptor Factor Value	Three-Letter Combination (Hs-Ms-Ls)	Media Rating (A-G)
Groundwater (Table 21)					
Surface Water/Human Endpoint (Table 22)					
Sediment/Human Endpoint (Table 23)	L	L	M	L-L-M	F
Surface Water/Ecological Endpoint (Table 24)					
Sediment/Ecological Endpoint (Table 25)	M	Н	М	M-H-M	С
Surface Soil (Table 26)	Н	М	М	H-M-M	С

DIRECTIONS (cont.):

4. Select the single highest Media Rating (A is highest; G is lowest) and enter the letter in the **HHE Module Rating** box.

Note:

An alternative module rating may be assigned when a module letter rating is inappropriate. An alternative module rating is used when more information is needed to score one or more media, contamination at an MRS was previously addressed, or there is no reason to suspect contamination was ever present at an MRS.

HHE Ratings (for reference only)

HHE MODULE RATING

C

Title Ratings (for reference offig)				
Combination	Rating			
ННН	A			
ННМ	В			
HHL	C			
HMM	<u>C</u>			
HML	D			
MMM				
HLL	Е			
MML				
MLL	F			
LLL	G			
	Evaluation Pending			
Alternative Module Ratings	No Longer Required			
	No Known or Suspected MC Hazard			

Table 29 **MRS Priority**

DIRECTIONS: In the chart below, circle the letter rating for each module recorded in Table 10 (EHE), Table 20 (CHE), and Table 28 (HHE). Circle the corresponding numerical priority for each module. If information to determine the module rating is not available, choose the appropriate alternative module rating. The MRS Priority is the single highest priority; record this relative priority in the MRS Priority or Alternative MRS Rating at the bottom of the table.

Note: An MRS assigned Priority 1 has the highest relative priority; an MRS assigned Priority 8 has the lowest relative priority. Only an MRS with CWM known or suspected to be present can be assigned Priority 1; an MRS that has CWM known or suspected to be present cannot be assigned Priority 8.

EHE Rating	Priority	CHE Rating	Priority	HHE Rating	Priority
		А	1		
А	2	В	2	А	2
В	3	С	3	В	3
С	4	D	4	С	4
D	5	Е	5	D	5
Е	6	F	6	E	6
F	7	G	7	F	7
G	8			G	8
Evaluation	Pending	Evaluation Pending		Evaluation Pending	
No Longer	Required	No Longer Required		No Longer Required	
No Known or Suspected No Known or Suspected CWM Explosive Hazard No Known or Suspected CWM No Known or Suspected CWM			No Known or Sus	spected MC Hazard	
MRS PRIORITY or ALTERNATIVE MRS RATING			4	<u>I</u>	